
© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.1.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 6

9.1 Introduction to Hash Tables

In order to discuss hash tables, we will first consider the following supporting problem.

9.1.1 A Supporting Problem

Suppose that we had approximately 150 different error conditions and each is associated with a unique

8-bit identifier on the range 0, ..., 255. Suppose that each error condition is associated with a error-

handling function that will resolve the problem and that function is supposed to be called immediately

upon receiving the error-condition identifier.

9.1.1.1 A Sub-optimal Solution

The way in which this can be done is to create an array of 150 function pointers and to assign them as

appropriate, as is demonstrated by this code:

#include <iostream>

void a() {
 std::cout << "Calling 'void a()'" << std::endl;
}

void b() {
 std::cout << "Calling 'void b()'" << std::endl;
}

int main() {
 void (*function_array[150])();

 function_array[0] = a;
 function_array[1] = b;

 function_array[0]();
 function_array[1]();

 return 0;
}

The output of the resulting executable is

% ./a.out
Calling 'void a()'
Calling 'void b()'

Unfortunately, because the identifiers are not necessarily uniformly distributed, we would need to find out

which of the 150 array entries corresponds to identifier. This means that we would have to, somehow,

perform a binary search requiring approximately 6 comparisons per call. Suppose, also, that we may be

modifying what functions are called or what identifiers are used for which errors. We could not use an

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.1.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 6

array for this and thus, we would have to use an AVL tree. This would extend the worst-case number of

comparisons to eight. If we are dealing with an embedded system, this may already be unacceptable.

9.1.1.2 A Simple and Optimal Solution

Instead, one question we must ask ourselves is: just because the identifiers are linearly ordered, do we

even care about the linear ordering? For example, will be ever ask, what is the next valid error identifier

after a given identifier? The likely answer is “no”. Consequently, we don’t even require the linear

ordering. Instead, consider the alternate solution: just create an array of size 256 function pointers and

only use those entries that correspond to known error identifiers. For example, suppose 5 and 8 are error

identifiers. We could therefore use something like:

int main() {
 void (*function_array[256])();

 function_array[5] = a;
 function_array[198] = b;

 function_array[5]();
 function_array[198]();

 return 0;
}

Now, a function can be called immediately without any prior searching: (1)

Problem: there is some wasted memory.

9.1.2 Keys and Records

Given a collection of records (structures of related data), each record is usually associated with a unique

identifying key. For example, we some examples in Table 1.

Table 1. Various keys and their ranges.

Collection Identifier Range Sample

Canadian Employees Social Insurance Number 9-digit decimal 123 456 789

UW Students UW Student ID Number 8-digit decimal 20123456

Internet Devices IP Address 32-bit binary 000.000.000.000

Database management systems (DBMSs) will invariably assign a unique primary key to each entry within

a table of a given database often using an automatically incremented counter. We will, however, focus on

IP addresses.

9.1.3 IP Addresses

Each device connected to a network that uses the Internet Protocol Version 4 (IPv4) is assigned an IP

address of 32 bits allowing over four-billion addresses. It is possible to use the IP addresses directly, for

example, the ECE web server can be connected to via http://129.97.56.100/ but this is not memorable and

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.1.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 6

prone to errors. Instead, domain names were introduced for human use. The Domain Name System

(DNS) is hierarchical, as is shown in Figure 1.

Figure 1. The DNS hierarchy.

There are a limited number of top-level domains where countries use ISO 1366 country codes. Each top-

level domain is responsible for its 2
nd

-level domains, etc. You can use the Unix command host to

translate between domain names and IP addresses:

% host uwaterloo.ca

uwaterloo.ca has address 129.97.128.40

% host ece.uwaterloo.ca

ece.uwaterloo.ca has address 129.97.56.100

% host www.uwaterloo.ca

www.uwaterloo.ca is an alias for info.uwaterloo.ca.

info.uwaterloo.ca has address 129.97.128.40

% host www.google.ca

www.google.ca is an alias for www.google.com.

www.google.com is an alias for www.l.google.com.

www.l.google.com has address 72.14.205.99

www.l.google.com has address 72.14.205.103

www.l.google.com has address 72.14.205.104

www.l.google.com has address 72.14.205.147

As you may note, the mapping is not one-to-one:

1. Some IP addresses may be associated with multiple domain names

(e.g., both www.uwaterloo.ca and info.uwaterloo.ca map to 129.97.128.40), and

2. Some domain names may be associated with multiple IP addresses

(e.g., www.google.ca maps to 72.14.205.99, .103, .104, and .147).

DNS allows a division of effort in name translation: a server in Korea (kr) does not need to know about

the sub-domains of, for example, uwaterloo.ca and, at the same time, the University of Waterloo has

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.1.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 4 of 6

complete control over any IP addresses starting with 129.97; i.e., UW has access to 256
2
 = 65 535 IP

addresses. Therefore, if we wanted to associate UW IP addresses with their corresponding domain

names, using the idea suggested before, we could create an array of 65 535 strings and index each IP

address to the last 16 bits. For example, the last 16 bits of 129.97.90.209 are

01011010110100012 = 23249. We could look up a table such as Table 1.

Table 2. IP addresses and their associated domain names.

Index Address Domain Name

23240 129.97.90.200 sidicsem.uwaterloo.ca

23241 129.97.90.201 watdist8.uwaterloo.ca

23242 129.97.90.202 NO DOMAIN NAME

23243 129.97.90.203 secure0.uwaterloo.ca

23244 129.97.90.204 msma.uwaterloo.ca

23245 129.97.90.205 ehab0.uwaterloo.ca

23246 129.97.90.206 calliope1.uwaterloo.ca

23247 129.97.90.207 calliope2.uwaterloo.ca

23248 129.97.90.208 dsip-lpt.uwaterloo.ca

23249 129.97.90.209 churchill.uwaterloo.ca

This would be a reasonably dense array: UW uses over two-thirds of the domain names assigned to it.

Again, given an IP address, the translation to the domain name is (1).

There are other, significantly larger problems:

1. What if the array size is very large relative to the number of entries?

2. Given a domain name, how do we access its IP address?

3. How does a router map an IP address onto the most appropriate route?

9.1.3.1 Large Spaces

Currently, UW uses two thirds of its allocated IP addresses. The standard IPv6 uses 128-bit addresses

allowing 340 undecillion unique address (that is approximately 1.1 IP addresses for every cubic metre

inside a sphere the radius of which equals the radius of Neptune. Alternatively, that’s 3.4 octillion IP

addresses for every star in the Milky Way galaxy. Suppose UW was assigned 2
32

 of these addresses. In

this case, we could no longer store our 45 000 IP addresses in an array as suggested before. We could

sort these addresses by their values, but this would require, again, a binary search: each lookup would

require lg(45 000) or approximately 16 comparisons. Can we somehow get back to (1) lookups?

A Simpler Example

Suppose I have 100 students in my class. Suppose I want to store grades so that I can quickly look them

up. Now, each student is assign a unique UW Student ID Number, but creating an array of 10
8
 when I

only have 100 students in my class would be a waste of memory—one million empty addresses per

student.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.1.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 5 of 6

Instead, create an array of size 1000 and map (or hash) each UW Student ID Number to the last three

digits. Thus, the student 20123456 would have his or her grade stored in array entry 456.

Problem: multiple students will have the same last three digits. In fact, what is the probability that out of

100 students, none of them will have the same last digits?

100

1

1
1 0.005959 0.60 %

1000k

k



 
   

 
 .

This is related to the birthday question: in a group of 23 students, what is the probability that no two

students will have the same birthday?

23

1

1
1 0.4937 49 %

366k

k



 
   

 
 .

Therefore, it is almost certain that we will have to deal with two students having the last three digits. If

two students have the same last three digits, we will call it a collision. Even if we took the last four digits

of 100 students, there would still be only a 60 % chance that each student will have a unique last four

digits. Thus, collisions are more-or-less inevitable.

9.1.3.2 Mapping Domain Names to IP Addresses

Suppose we want to take a domain name and map it to an IP address. We do not want to keep a

lexicographically sorted list of domain names and then perform a search. Looking at the previous idea,

we took an 8-digit number and mapped it to its last three digits. Is there a way that we could take a

domain name and map it onto a number, say, on the range 0 through 131 071 (= 2
17

 – 1)? If this were

possible

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.1.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 6 of 6

9.1.3.3 Mapping IP Addresses to Routes

The Internet backbone is connected via core routers. These routers must accept communications at rates

of 10 Gbit/s and it must read, interpret, and forward each packet to the most appropriate neighbouring

router getting that packet to its destination in the shortest number of jumps. These routers must quickly

look up IP addresses as well as dealing with problems such as other core routers being taken down for

service.

Figure 2. Core routers forwarding incoming packets.

9.1.4 Strategy

We will use the idea suggested by UW Student ID Numbers:

1. We will take an object (be it a UW Student ID Number, an IP address or a string) and convert it

to a 32-bit integer (the techniques vary according to the object),

2. we will then map that 32-bit integer onto a range 0, ..., M – 1 (using modulus or the mid-square,

multiplicative, or Fibonacci techniques), and

3. Deal with collisions with

a. Chained hash tables, or

b. Open addressing (linear and double probing).

You can see that this is three independent steps:

Object → 32-bit integer → Map down to 0, ..., M – 1 → Deal with collisions

