
© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 14

9.2 Hash Functions

The Meriam-Webster dictionary defines a hash as a restatement of something that is already known. The

ultimate goal will be to hash any object to a value from 0 to M – 1. Any function that performs this

operation is called a hash function.

9.2.1 Design

In order to simplify the overall process of mapping an arbitrary object onto a number on the range 0 to

M – 1, we will divide this operation into two steps:

A function h:D → Z2
32

 maps our space of objects onto positive 32-bit integers (from 0 to 2
32

 – 1). A

second function hM: Z2
32

 → ZM maps positive 32-bit integers onto the range 0, ..., M – 1. This is shown

graphically in Figure 1.

Figure 1. The process of mapping an object onto a positive 32-bit number

and then further mapped onto an integer on the range 0, ..., M – 1.

By breaking the process into two steps, the second function hM can be written to account for any possible

value of M and thus the original hash function is need not concern itself over which interval the hash

value must appear.

In C++, the first hash function h will usually be implemented as a member function

 unsigned int Class_name::hash() const;

while the second hash function hM would likely be defined within the hash-table class:

 unsigned int Hash_table::hash_M(unsigned int) const;

Thus, the function

template <typename Type>

void Hash_table::insert(Type const &obj) {

 int bin = hash_M(obj.hash());

 // ...

}

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 14

9.2.2 Properties

We will require certain properties of each of these hash functions. The properties for the function h are:

1a. It must be fast—ideally (1),

1b. It must be deterministic: it must always return the same value for the same object,

1c. If two objects x and y are considered equal, their hash values must be equal, i.e., h(x) = h(y),

1d. If two objects are chosen at random, there should be a very low probability (approximately

1 in 2
32

) that they have the same hash value, and

1e. The distribution of hash values in 0 to 2
32

 – 1 should be approximately even (that is, the

distribution of values is either uniform distribution or a Poisson distribution).

The second hash function hM must have the properties that:

2a. It must be (1),

2b. It must be deterministic: given a positive integer n and range M, hM(n) must always return the

same value,

2c. If two integers are chosen at random, there should be a 1 in M chance that they will map onto the

same integer in 0, ..., M – 1, and

2d. It must create an even distribution in 0, ..., M – 1; that is, there should not be any clustering.

In this topic, we will look at various ways of finding appropriate functions h that satisfy Properties 1a

through 1e and the next topic will look at functions hM that satisfy Properties 2a through 2d.

 9.2.3 Types of Hash Functions

We will look at two general classes of hash functions:

1. Predetermined hash functions (either implicit or explicit), and

2. Arithmetic hash functions (implicitly defined).

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 14

9.2.4 Predetermined Hash Values

One of the easiest ways to assign a hash value to an object is to give each newly created object its own

unique hash value in the constructor. This can most easily be achieved by having a counter that is

incremented each time an object is constructed:

class Class_name {

 private:

 unsigned int hash_value;

 // Static variables are class variables shared by all instances of the class

 static unsigned int hash_count;

 public:

 Class_name();

 unsigned int hash() const;

};

// Static variables must be initialized outside the class definition:

unsigned int Class_name::hash_count = 0;

Class_name::Class_name() {

 hash_value = hash_count;

 ++hash_count;

}

unsigned int Class_name::hash() const {

 return hash_value;

}

All UW Co-op students will have two pre-determined unique numbers hash values that could be

considered hash values: the UW Student ID Number (e.g., 20123456) and the Canadian Social Insurance

Number (S.I.N.) (e.g., 123-456-789). Any 9-digit number can be interpreted as a 32-bit number.

Another possibility is to use the address of the object that was created. This is useful if the hash value of

the object is only required for the duration of its existence in memory:

unsigned int Class_name::hash() const {

 return reinterpret_cast<unsigned int>(this);

}

9.2.4.1 Weaknesses with Predetermined Hash Values

There are some cases where such predetermined hash values are not appropriate. Suppose, for example,

we define two strings that are identical:

#include <string>

std::string str1 = "Hello world!";

std::string str2 = "Hello world!";

The addresses of these two strings will be different even though their contents are the same.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 4 of 14

Suppose we define a rational number class:

 Rational p(1, 2);

 Rational q(3, 6);

In this case, both of these represent the same rational number ½; therefore, any hash function should

return the same value: p.hash() == q.hash().

The usual solution is to create a hash function that is derived from the member variables of the objects

using arithmetic functions.

9.2.5 Arithmetic Hash Functions

We will look at defining hash values for rational numbers, double-precision floating-point numbers and

strings. In each case, we try to satisfy all the requirements 1a through 1e.

9.2.5.1 A Rational Number Class

class Rational {

 private:

 int numer, denom;

 public:

 Rational(int, int);

 unsigned int Rational::hash() const;

};

unsigned int Rational::hash() const {

 return static_cast<unsigned int>(numer) + static_cast<unsigned int>(denom);

}

Unfortunately, this scheme does not work too well: All of these will have the same hash value:

 Rational p(1, 2);

 Rational q(-1, 4);

 Rational r(2, 1);

 Rational s(-2, 5);

and it would not be too difficult to find more. As an alternative, consider multiplying the denominator by

a very large prime number:

class Rational {

 private:

 int numer, denom;

 public:

 Rational(int, int);

};

unsigned int Rational::hash() const {

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 5 of 14

 return static_cast<unsigned int>(numer) + 429496751*static_cast<unsigned int>(
denom);

}

Let us consider the four requirements for a hash function:

Requirement 1a: This is a still a fast hash function running in (1) time.

Requirement 1b: This hash value is deterministic—it will always be the same for a rational number with

the same numerator and denominator.

We will pass on Requirement 1c to go onto Requirement 1d:

In this case, two rational numbers that are close in both the numerator and denominator will have different

hash values. For example, consider Table 1 which lists a number of rational numbers and their

corresponding hash values. Recall that integer operations wrap on overflow.

Table 1. Rational numbers a/b and their hash values

 found by multiplying calculating a + 429496751b.

Rational Object Hash Value

Rational(0, 1) 429496751
Rational(1, 1) 429496752
Rational(2, 1) 429496753
Rational(1, 2) 858993503
Rational(2, 3) 1288490255
Rational(99, 100) 2239

Aside: it is very easy to find a large prime number in Maple. Give the procedure nextprime a large

integer value and it will return the next largest prime number.

> nextprime(9385293292438);

9385293292439
> nextprime(%); # The symbol % in Maple is similar to 'ans' in Matlab

9385293292489

Given that you know the prime number 429496751, it is easy to generate two rational numbers that have

the same hash value; however, finding two numbers at random requires more work. It required the

creation of 1.5 billion random rational numbers before the following three rationals were found to have

the same hash values:

Fixed Rational
Random Rational

with Same Hash Value

0/1 1327433019/800977868

1/2 534326814/1480277007

2/3 820039962/1486995867

With respect to Requirement 1e, if we were to generate all possible pairs of numerators and

denominators, we would find that every possible has value has exactly the same number of different

rational numbers mapping onto it: 2
32

.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 6 of 14

The last requirement is Requirement 1d: two objects that are considered equal should have the same hash

value. With our default constructor, this is not possible:

Rational Object Hash Value

Rational(1, 2) 858993503
Rational(2, 4) 1717987006

Thus, 1/2 and 2/4 are conceptually the same rational number but they have different hash values. To

solve this, we could write a greatest common divisor function:

int gcd(int a, int b) {
 while(true) {
 if (a == 0) {
 return (b >= 0) ? b : -b;
 }
 b %= a;
 if (b == 0) {
 return (a >= 0) ? a : -a;
 }
 a %= b;
 }
}

and then rewrite our constructor as:

Rational::Rational(int a, int b):numer(a), denom(b) {

 int divisor = gcd(numer, denom);

 numer /= divisor;

 denom /= divisor;

}

Now, both 1/2 and 2/4 will normalize to 1/2. This, however, isn’t all: consider:

Rational Object Hash Value

Rational(1, 2) 858993503
Rational(-1, -2) 3435973793

Again, 1/2 and -1/-2 are conceptually the same rational number but, too, have different hash values.

Thus, we can again normalize these by ensuring that if there is a negative sign, it only appears in the

numerator:

Rational::Rational(int a, int b):numer(a), denom(b) {

 int divisor = gcd(numer, denom);

 divisor = (denom >= 0) ? divisor : -divisor;

 numer /= divisor;

 denom /= divisor;

}

With these changes, our hash function satisfies all of the requirements.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 7 of 14

9.2.5.2 Hash Values for Double-precision Floating-point Numbers (aside)

As an aside, recall that a double-precision floating-point number is 64 bits. To convert this to a 32-bit

hash value, we could interpret the first 32 and the last 32 bits as two 32-bit integers and repeat the

processes from the rational number class. To do this, we will reinterpret the address of a double as the

address of an unsigned integer and assign this to the pointer ptr. Next, ptr[0] treats the first 32 bits as

an unsigned integer and ptr[1] treats the second 32 bits also as an unsigned integer. Thus, we have:

unsigned int hash(double d) {
 unsigned int *ptr = reinterpret_cast<unsigned int *>(&d);
 return ptr[0] + 429496751*ptr[1];
}

9.2.5.3 Strings

In order to create a hash function for a string, because the hash values of identical strings should be the

same, it is necessary to deterministically build the hash value from the characters (e.g., we cannot use the

address). Now, in C++, the string class has a member function length() and the individual characters

can be accessed using indices as if the string was an array. Each character can be treated as an unsigned

integer between the values of 0 and 255.

9.2.5.3.1 First Attempt

We could simply add the characters:

unsigned int hash(const string &str) {

 unsigned int hash_vaalue = 0;

 for (int k = 0; k < str.length(); ++k) {

 hash_value += str[k];

 }

 return hash_value;

}

Unfortunately, this creates neither large nor evenly distributed hash values. If we consider all words in

Moby
TM

 Words II (Grady Ward), we note that there is a clear pattern emerging with no word having a

hash value greater than 4000, as is shown in Figure 2.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 8 of 14

Figure 2. The hash values of all words in Moby

TM
 Words II by Grady Ward.

Note that there are hash values in the range from 800 to 1000 for which there are over 1100 words

mapping to the same hash value while for all hash values greater than 4000, there are no words mapping

to such a value.

9.2.5.3.2 Horner’s Rule

We could consider each character in a string of length n to be the coefficient of a (n – 1)
st
-degree

polynomial in a variable x:

p(x) = c0x
n – 1

 + c1x
n – 2

 + ··· + cn – 3x
2
 + cn – 2x + cn – 1.

We can then use Horner’s rule to evaluate this polynomial at some prime value, say x = 12347.

unsigned int hash(string const &str) {

 unsigned int hash_value = 0;

 for (int k = 0; k < str.length(); ++k) {

 hash_value = 12347*hash_value + str[k];

 }

 return hash_value;

}

In order to determine whether or not this is a good hash function, we need to quickly introduce Poisson

distributions (covered in Appendix A). We will test all 354985 strings in the Moby
TM

 Words II file

single.txt and divide the interval up into just as many approximately equally sized intervals of width

12099. We then count the proportion of these intervals that have 0, 1, 2, etc. hash values mapped into

their interval.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 9 of 14

Figure 3. The difference between the observed proportions (black)

and the expected proportions from a Poisson distribution with  = 1.

Calculating the 2
 = 0.044, we see that we have approximately an 85 % confidence that this data comes

from a Poisson distribution and therefore we can say that this is a good hash function.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 10 of 14

9.2.5.3.3 Horner’s Rule on Longer Strings

Suppose we have a significantly longer string, for example, consider this string by J.R.R. Tolkien in The

Lord of the Rings:

string str = "A Elbereth Gilthoniel,\n";
str += "Silivren penna miriel\n";
str += "O menal aglar elenath!\n";
str += "Na-chaered palan-diriel\n";
str += "O galadhremmin ennorath,\n";
str += "Fanuilos, le linnathon\n";
str += "nef aear, si nef aearon!";

If we attempt to apply Horner’s rule to this string, the run time will be (n). While using Horner’s rule

may be appropriate for shorter strings, it will not be appropriate for larger strings such as paragraphs,

chapters, books, etc.

One alternative is to use only the locations 2
k
– 1 for k = 0, 1, 2, ..., as is shown below:

A␢Elbereth Gilthoniel,\n

Silivren␢penna miriel\n

O menal aglar elenath!\n
Na-chaered palan-diriel\n
O galadhremmin ennorath,\n
Fanuilos, le linnathon\n
nef aear, si nef aearon!

In this case, the run time is now (ln(n)) in the length of the string.

unsigned int hash(string const &str) {

 unsigned int hash_value = 0;

 for (int k = 1; k <= str.length(); k *= 2) {

 hash_value = 12347*hash_value + str[k - 1];

 }

 return hash_value;

}

Note that while this hash function may be very appropriate for creating hash values, it is not appropriate

for the hash functions used in digital signatures. For digital signatures, it is absolutely necessary the hash

value changes if even one character in the text changes.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 11 of 14

Appendix A. Poisson Distributions

Suppose we have two individuals with rifles shooting at a target that is divided into 9 squares, as is shown

in Figure 3.

Figure 3. A target divided into nine square regions.

Suppose one individual is so inexperienced that after firing 27 bullets, he has an equal chance of hitting

each square on the target with any one shot. The other individual, Tanya Chernova, is a sniper and has a

much higher probability of striking the middle square. Their targets look like those in Figure 4.

Figure 4. The targets of inexperienced and experienced individuals.

How can we tell if the first individual is actually shooting randomly? With 27 shots and nine squares, one

would expect, on average,  = 3 shots per square. On the right target, one square has 15 hits, two each

have three, two, one, and no hits—this is likely not random. The left target, however, has a much more

even distribution:

Hits per Square 0 1 2 3 4 5 6 7

Count 0 1 2 3 2 1 0 0

How can we tell if this is actually random? Fortunately, if we expect, on average,  hits per square, such

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 12 of 14

a pattern can be described by a Poisson distribution. This indicates that we would expect a proportion of

squares equal to

!

k

e
k

 

to contain k hits. If  = 3, we get the following table:

k 0 1 2 3 4 5 6 7 8 9 10

Proportion 0.050 0.149 0.224 0.224 0.168 0.101 0.050 0.022 0.008 0.002 0.001

Therefore, we would expect approximately 0.224 × 9 = 2.016 squares to have two and three shots, while

only 0.168 × 2 = 1.512 squares would have four shots. We would have less than a 1 % chance that, if the

shots were random, that one of the squares would have 8 hits.

How can we use this to determine if a hash function is good?

Suppose we divide the integers 0 through 2
32

 – 1 into L equally sized sub-intervals. If we then choose L

randomly chosen 32-bit integers, we would expect, on average,  = 1 value to fall in each of the intervals.

For example, suppose we choose sixteen 32-bit numbers and each interval has a width of

2
28

 = 268435456. This was done three times, and Table 2 shows the count for how often an integer fell

into the k
th
 interval.

 Table 2. Three runs of choosing 32-bit numbers and determining which of 16 bins they fell into.

 Interval

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 1 2 1 0 1 1 1 1 0 1 3 2 0 1 0 1

B 2 0 2 0 1 0 2 1 1 1 1 1 1 2 1 0

C 1 1 0 2 0 0 0 1 2 3 1 0 3 0 1 1

As before, we will count the number of times that a bin is empty, how often a bin has one hit, how often a

bin has two hits, etc. This is summarized in Table 3.

Table 3. The proportion of bins with n hits.

Run

Proportion Containing n Hits

0 1 2 3 4

A 0.25 0.5625 0.125 0.0625 0

B 0.25 0.5 0.25 0 0

C 0.375 0.375 0.125 0.125 0

We are expecting  = 1 hit per bin and thus it is not unexpected that in each case, the highest proportion

of bins contain one hit. But how often should we expect a bin to have two, three, or no hits?

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 13 of 14

The Poisson distribution tells us that if these are random, then the proportion of bins that have n hits will

be
1

!ek
. We can tabulate the values shown in Table 4.

Proportion of Bins with n Hits

0 1 2 3 4 5 6 7 8

Proportion 0.36788 0.36788 0.18394 0.06131 0.01533 0.00307 0.00051 0.00007 0.00001

Thus, approximately 37 % of the bins should have no hits, 37 % should have one hit, 18 % should have

two hits, only 6 % should have three hits, 1.5 % should have four hits, etc. as is shown in Figure 3.

Figure 3. The distribution and cumulative distributions of the Poisson distribution with  = 1.

The best way to determine if the distributions in Table 3 actually match are to compare the cumulative

distributions, as are tabulated in Table 5.

Table 5. The cumulative proportion of bins with ≤ n hits.

Run

Proportion Containing n Hits

0 1 2 3 4

A 0.25 0.5625 0.125 0.0625 0

B 0.25 0.5 0.25 0 0

C 0.375 0.375 0.125 0.125 0

Expected 0.36788 0.36788 0.18394 0.06131 0.01533

If we wish to test how good this test is, we must calculate the sum of the squares of the differences

between the observed proportions ok and the expected proportions ek =
!

k

e
k

  all over . This gives us

the chi-squared statistic:

2

2

0

!

!

k

k

k
k

o e
k

e
k
















 
 

 
 .

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 9.2.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 14 of 14

In this case, = 1 and thus this simplifies to

  

2

2

0 0

1

!
1 ! 2

1

!

k

k k

k k

o
ek

o ek o

ek


 

 

 
 

 
    

where in our cases, ok = 0 for k > 3. In our three test runs, we get the following three statistics:

Run 2
 statistic

A 0.179

B 0.189

C 0.104

 A 0.179

 B 0.189

 C 0.104

Comparing these with a 2
 distribution with one degree of freedom, we have

2
 statistic 0.004 0.02 0.06 0.15 0.46 1.07 1.64 2.71 3.84 6.64 10.83

p-value 95 % 90 % 80 % 70 % 50 % 30 % 20 % 10 % 5 % 1 % 0.1 %

Each of these values have p-values that lie between 80 % and 50 % and thus it is not unreasonable to

assume that the data comes from a Poisson distribution.

