
Algorithms and Data Structures course overview
This is a quick seven-page summary of the contents of the algorithm and data structures course. We will

begin by building up the necessary mathematical theory necessary to discuss applicable data structures

and algorithms; we then proceed by looking at various data structures for storing, accessing and

manipulating linearly ordered data, then data without relationships, and then graphs. This will be

followed by a smaller section devoted to algorithms including algorithm design techniques and an

introduction to the theory of computation.

Building the mathematical foundations
In software engineering, programming, and life in general, we need to store collections of numbers,

values, or other objects. A class that implements a mechanism for storing objects is said to be a

container. There may be things we want to do to objects in a container: add more objects, remove

objects from the container, query the objects in the container, rearrange them, or possibly perform other

operations such as combining the contents of two containers into one.

In addition to storing objects, we may also want to store relationships between those objects and then

perform queries or other operations based on the relationships. This course looks at six relationship,

including

linear, hierarchical, partial, and weak.

These are classified as orderings where if x ≺ y, then y ⊀ x. In English, if x comes before y, it cannot be

true that y also comes before x. The other two relationships are

equivalence and adjacency.

In the first case, objects are grouped into things that are equal or equivalent according to some definition.

The second is a definition used in this class to describe more general relationships where one object may

or may not be considered to be adjacent to another.

Now, based on storing objects and relationships between the objects, there are certain types of containers

that are used over and over again throughout engineering. These patterns are given special names to

identify them so that they need not be described each time they are used. Such patterns are generally

described as Abstract Data Types or ADTs. The ADTs we will look at in this class include

1. lists and strings;

2. stacks, queues and deques;

3. sorted lists and priority queues; and

4. directed acyclic graphs and graphs.

The abstraction only describes the behaviour: a queue has a first-in—first-out character with respect to its

two operations for inserting (pushing or enqueuing) into and removing (popping or dequeuing) from such

a queue container.

The next questions is one of implementation: how do we actually design and implement an abstract

container? What data structures do we use? Do we use node-based data structrues such as linked lists or

trees? Do we use arrays? Do we use a combination of various data structures? We may have operations

or queries we may want to perform and we may develop algorithms to implement those queries or

operations. Thus, we must question how are we to compare implementations? Which implementation is

better? Do different implementations have different strengths and weaknesses?

The criteria by which we analyze various implementations and algorithms could include such soft criteria

such as expected development and maintenance costs; however, we will focus on those criteria that we

can measure mathematically: run time and memory usage; that is, how fast can it run under certain

circumstances (usually how fast are operations when a container already has n objects in it) and how

much memory does it require (usually a container storing n objects will occupy some multiple of n bytes,

but some queries and operations may require additional memory)?

Given any implementation or algorithm, we could find an exact mathematical function that describes

exactly the run time and the memory usage; however, we will find that this is often unnecessary overkill.

Instead, to practically compare the run-time and memory usages of various functions, we have less

interest in those differences that can be practically solved by upgrading our hardware. Consequently, we

consider the asymptotic behaviour between two function f(n) and g(n) by considering the limit
 

 
lim
n

f n

g n

. There are three cases of interest for the types of functions we will consider:

1. The limit is zero: that is, proportionally, f(n) grows significantly slower than g(n).

2. The limit is finite but non-zero: that is, the growth of the functions is proportional to the other.

3. The limit is infinity, in which case, f(n) grows proportionally more quickly than g(n).

The mathematical tool that describes these three are Landau symbols. Respectively, we write:

f(n) = o(g(n)), f(n) = (g(n)) and f(n) = (g(n)). In the second case, it will always be theoretically

possible to purchase proportionately faster or more memory to have one implementation or algorithm run

as fast as another. (Note that while, in general, we will ignore such differences, there is one case, that of

B+ trees, where we will take the proportion into account as the ratio is a matter of at least six orders of

magnitude.) The balance of the course will comprise a larger section looking at data structures followed

by one looking at algorithms, specifically, algorithm design techniques and an introduction to the theory

of computation.

Data structures
Thus, we will begin by looking at ADTs storing linearly ordered data. We begin by looking at three

specializations of abstract lists where there the interface is reasonably restricted: stacks, queues, and

deques. The specifications for these is so simple that it is reasonable to expect all run times to be (1).

While considering these three, we looked at the asymptotic consequences of resizing arrays, the concept

of amortized asymptotic analysis, the use of cyclic arrays, the use of queues in breadth-first traversals of

trees, and the concept of an iterator.

We continue by considering abstract sorted lists. Arrays and linked lists are not appropriate underlying

data structures for storing sorted lists because there are always some operations that must run in (n)

time. Instead, we take a diversion to trees.

A rooted tree data structure at first appears to be most appropriate for storing hierarchically ordered

objects. There is a single root node and each node has a reference to its parent and its children. We

considered one concrete implementation of a tree using a linked list of pointers to store references to the

children of a node while storing a pointer to the parent in a separate member variable, this variable being

assigned null if the node is the root of a tree.

Next, we consider visiting all the nodes in a tree. We have already seen a breadth-first traversal, but the

memory requirements for such a tree may be prohibitively expensive, so we consider depth-first

traversals.

Next, we look at ordered trees, including binary trees and N-ary trees with applications including

expression trees and phylogenetic trees in the first case and tries in the second. We consider the special

cases of perfect binary and N-ary trees to see that we can store n nodes in a tree of height ln(n). We also

define complete binary and N-ary trees and observe that we can efficiently store such trees in an array

where there is an implicit formula for calculating the location of the parent and the children of a node

stored at a specific index.

With binary trees defined, we proceed to considering binary search trees: trees where all nodes in the left

sub-tree are less than the current node and all nodes in the right sub-tree are greater than the current node.

We observe that many operations are O(h), but in general, h = O(n), so if the distribution of nodes within

a binary sub-tree is to unbalanced, we will end up with operations that run in O(n) time—something that

is no better than using arrays or linked lists.

Thus we introduce the concept of balance. The ideal case is something similar to either perfect or

complete binary trees, but this is unreasonable—maintaining such a shape following either insertions or

deletions would require O(n) time. Instead, we consider relaxed definitions of balance including height,

null-path, and weight balancing. We specifically look at AVL trees that use height balancing. We

observe that the additional work required to maintain AVL balance for insertions is (1) for insertions

and we also showed that if a tree is AVL balanced, its height is, in the worst case,

log(n) – 1.3277 = (ln(n)). Consequently, all operations that are O(h) in a binary search tree must be

O(ln(n)) in an AVL tree.

Next, we consider in-order traversals and observe that while applying to binary trees, the do not make

sense for N-ary trees and that N-ary trees with N > 2 cannot be used to store sorted lists. Instead, we

consider the concept of an M-way tree. Like binary search trees, M-way trees have a height that is

(ln(n)). We cannot, however, use the rules of AVL trees to ensure the height of an M-way tree remains

fixed at (ln(n)). Instead, we consider B+ trees.

A B+ tree uses M-way nodes internally, and the additional complexity of performing operations within

the nodes is observed to cancel any benefit from the reduced height except in one case: where the

operation of stepping from a parent to a child is prohibitively expensive. We saw that this is the case if

the nodes are being stored in secondary memory such as hard drives. We see that the restrictions to the

distribution of values stored in internal and leaf nodes ensures that the height remains (ln(n)) and that

consequently, any operation that runs in O(h) time will run in O(ln(n)) time in a B+ tree.

We continue by looking at abstract priority queues. The definition is similar to that of an abstract queue,

but the objects are stored relative to a linear ordering imposed by a priority assigned to each—thus, a

priority queue is a specialization of an abstract sorted list. We could use an AVL tree to implement a

priority queue, but all operations would run in (ln(n)) time. Instead, we turn to a heap data structure and

observe that with a complete binary heap, we can implement a priority queue where the front operation

runs in (1) time, push in an amortized (ln(n)) time and pop in O(ln(n)), but with an expected run time

of (1) given random priorities on incoming entries.

Next, we will look at sorting algorithms for converting a list into a sorted list. We see that all algorithms

run in (n) time, but that those algorithms that compare entries, they require (n ln(n)) time on average.

We will look at insertion and bubble sort which run in (d) time where d is the number of inversions and

where d = O(n
2
). We will also look at heap, merge, and quick sort, all of which run on average in

(n ln(n)) time, but where quick sort runs in (n
2
) time and where merge sort requires (n) additional

memory, quick sort requires O(n) additional memory, but on average (ln(n)) additional memory, and

heap sort requires (1) additional memory. Unfortunately, heap sort is also the slowest of the three of

these, so we consider modifications to quick sort that minimize the probability of the worst case

scenarios.

There is an optional reading topic on splay trees.

This concludes our investigations of storing linearly ordered data. We considered both abstract lists and

abstract sorted lists and specializations of each. We also quickly investigated abstract trees for storing

hierarchically ordered data. Next, we look at storing data without any relationship.

Anything stored on a computer must be stored as ones and zeros; consequently, it is possible to linearly

order anything and therefore we could store anything we want in, for example, an AVL tree. However,

there are times where we have no interest in that linear relationship. (For example, who cares whose

student ID number the next largest of your own?) In these cases, we can use the concept of hash

functions and hash tables to store data so that, on average, all operations of interest (inserting into,

accessing, removing from a container) may be performed on average in (1) time. We will look at

chained hash tables and the open addressing implementations using linear probing and double hashing.

There is an optional reading topic on disjoint sets used to store equivalence relations on a finite number of

objects.

Next we consider the implementation of graphs and directed acyclic graphs for storing data with

adjacency relations and partial orderings, respectively. We will look at three problems: finding a

topological sorting of directed acyclic graphs, finding minimum spanning trees within weighted graphs,

and finding single-source shortest distances, also in weighted graphs. We will use a simple algorithm to

find a topological sorting by observing that every directed acyclic graph has at least one vertex with in-

degree zero. The run time will be O(|V| + |E|). To find a minimum spanning tree, we will build a global

minimum spanning tree by extending minimum spanning trees on sub-graphs, an algorithm attributed to

Prim. Following this, we will look at the problem of finding the shortest distance from a given vertex to

every other vertex in the graph. Specifically, we will consider Dijkstra’s algorithm which has many

characteristics similar to Prim’s algorithm. In both cases, judicious choices made in how we store the

graph and how we store intermediate information used in the algorithm will allow us to solve these

problems in O(|E| ln(|V|)) time.

This concludes our investigations into storing data with or without relationships in various data structures.

We have seen a number of approaches to solving some of the problems, and we will continue by

formalizing those approaches.

Algorithms
The next component considers algorithm design techniques. We look at greedy algorithms, divide-and-

conquer algorithms including a proof of the master theorem, dynamic programming, backtracking

algorithms, branch and bound algorithms, and finally stochastic algorithms.

Greedy algorithms are those where a partial solution is built up from a trivial partial solution where, at

each step, a simple decision is made as to how to extend the partial solution. Such a sequence of partial

solutions may grow into either an optimal or possibly a near optimal feasible solution. It is when the

problem has an optimal sub-structure characteristic, that is, the partial solutions are known to be optimal

for that sub-graph on which it is defined, that the global solution is also known to be optimal. We will

look at a project management example (the 0/1 knapsack problem), process scheduling, and interval

scheduling.

Divide-and-conquer algorithms take a larger problem and devises sub-problems that are smaller in size to

solve. These sub-problems are solved recursively and the solutions to the sub-problems are then

combined to generate a solution to the larger problems. In general, a problem is divided into a sub-

problems of size n/b and the effort required to generate the sub-problems together with the effort required

to generate a solution from the sub-problems is considered to be polynomial of the form O(n
k
). We will

consider numerous applications including merge sort, searching an ordered matrix, integer multiplication,

matrix-matrix multiplication, and the fast Fourier transform. Having considered these examples, we will

then deduce a general formula given by the master theorem which describes the run-time behavior of all

such divide-and-conquer algorithms.

Next we consider dynamic programming. We will look at two simple recursive algorithms, namely

calculating the factorial and Newton polynomial coefficients. To discuss the approaches, we will define

both top-down design and bottom-up design of algorithms. In both cases, the naïve top-down

implementation will be seen to run in exponential time. We will see how a bottom-up design can be used

to build solutions from previous solutions, but at the same time, we will see how a simple application of

memoization will result in significant speed ups for top-down solutions. We will then look at

optimization problems, where the recursive algorithms are repeatedly seeking optimal solutions on sub-

problems. It is when optimal solutions are sought multiple times on the same sub-problem (overlapping

sub-problems) that memoization helps significantly. We will look at matrix chain multiplications with

both top-down and bottom-up designs and next we will see how optimal polygon triangulation is, while

initially seeming to be a very different algorithm, is in fact a very similar problem, and finding a solution

in one allows one to find a solution to the other. This introduces a concept of reduction which will be

expanded upon later. We will then look at interval scheduling and a restricted version of the 0/1-

knapsack problem. An overview of the Maple programming language’s remember tables will

demonstrate how memoization can be built into a programming language.

Next we will look at backtracking algorithms for a mechanism to systematically search through a space of

possible partial solutions by using an appropriate traversal. In some cases, it will be possible to deem

unfeasible entirely sub-branches of the traversed tree thereby reducing the search from what would

normally be equivalent to a brute force search. We look at an implementation of an algorithm to solve the

Sudoku puzzle and we look at other class puzzles in this area. We will also look at how backtracking is

used in logic programming language such as Prolog and we will consider parsing with respect to context-

free grammars. Finally, we consider the idea of backjumping, looking specifically at algorithms for

finding solutions in mazes.

Next we will consider branch-and-bound algorithms, algorithms similar to backtracking but where, when

looking for optimal solutions, under certain conditions we can place bounds on the best possible solution

at various points in the tree. If a particular branch is known to be worse than the best currently known

solution, we can prune that branch and investigate elsewhere. We look at the game of Backgammon as an

example where branch and bound may be used to choose reasonably optimal solutions in a stochastic

environment.

Finally, we consider stochastic algorithms: we will consider random number generation techniques,

Monte Carlo techniques for approximating integrals, testing of circuit designs for stability in light of

imperfect components, a randomized variation of quicksort that prevents the deliberate insertion of worst-

case scenarios, and skip lists.

Having finished with algorithm design techniques, we conclude by having an overview of the theory of

computation. We will discuss models of computation and define the Turing machine as a model of what

can be computed. We will then observe that there are problems that cannot be solved; specifically we

will see that it is not possible, in general, to find an algorithm that can determine if another algorithm,

given a set of inputs, will go into an infinite loop. We will then classify problems into how tractable they

are to solve. Most of the problems we have looked at can be solved in polynomial time. There are

problems, however, that cannot be solved in polynomial time; however, we will look at one branch of

problems that can be solved in polynomial time assuming our algorithm is allowed to branch. There is a

subset of these problems where we are not entirely certain as to whether or not there are polynomial-time

algorithms that can solve them. We will call these NP and a subset of these (NP Complete problems) are

such that solving any one of them in polynomial time without branching allows you to solve all NP

problems in polynomial time without branching.

Summary
Finally, we will conclude with a look at the old Yale sparse matrix format; a useful data structure that

combines a lot of the ideas in this course and and ties the course material to the linear algebra course.

