
Algorithms and Data Structures course overview 
This is a quick seven-page summary of the contents of the algorithm and data structures course.  We will 

begin by building up the necessary mathematical theory necessary to discuss applicable data structures 

and algorithms; we then proceed by looking at various data structures for storing, accessing and 

manipulating linearly ordered data, then data without relationships, and then graphs.  This will be 

followed by a smaller section devoted to algorithms including algorithm design techniques and an 

introduction to the theory of computation. 

Building the mathematical foundations 
In software engineering, programming, and life in general, we need to store collections of numbers, 

values, or other objects.  A class that implements a mechanism for storing objects is said to be a 

container.  There may be things we want to do to objects in a container:  add more objects, remove 

objects from the container, query the objects in the container, rearrange them, or possibly perform other 

operations such as combining the contents of two containers into one. 

In addition to storing objects, we may also want to store relationships between those objects and then 

perform queries or other operations based on the relationships.  This course looks at six relationship, 

including 

linear, hierarchical, partial, and weak. 

These are classified as orderings where if x ≺ y, then y ⊀ x.  In English, if x comes before y, it cannot be 

true that y also comes before x.  The other two relationships are  

equivalence and adjacency. 

In the first case, objects are grouped into things that are equal or equivalent according to some definition.  

The second is a definition used in this class to describe more general relationships where one object may 

or may not be considered to be adjacent to another. 

Now, based on storing objects and relationships between the objects, there are certain types of containers 

that are used over and over again throughout engineering.  These patterns are given special names to 

identify them so that they need not be described each time they are used.  Such patterns are generally 

described as Abstract Data Types or ADTs.  The ADTs we will look at in this class include 

1. lists and strings; 

2. stacks, queues and deques; 

3. sorted lists and priority queues; and 

4. directed acyclic graphs and graphs. 

The abstraction only describes the behaviour:  a queue has a first-in—first-out character with respect to its 

two operations for inserting (pushing or enqueuing) into and removing (popping or dequeuing) from such 

a queue container. 



The next questions is one of implementation:  how do we actually design and implement an abstract 

container?  What data structures do we use?  Do we use node-based data structrues such as linked lists or 

trees?  Do we use arrays?  Do we use a combination of various data structures?  We may have operations 

or queries we may want to perform and we may develop algorithms to implement those queries or 

operations.  Thus, we must question how are we to compare implementations?  Which implementation is 

better?   Do different implementations have different strengths and weaknesses? 

  



The criteria by which we analyze various implementations and algorithms could include such soft criteria 

such as expected development and maintenance costs; however, we will focus on those criteria that we 

can measure mathematically:  run time and memory usage; that is, how fast can it run under certain 

circumstances (usually how fast are operations when a container already has n objects in it) and how 

much memory does it require (usually a container storing n objects will occupy some multiple of n bytes, 

but some queries and operations may require additional memory)? 

Given any implementation or algorithm, we could find an exact mathematical function that describes 

exactly the run time and the memory usage; however, we will find that this is often unnecessary overkill.  

Instead, to practically compare the run-time and memory usages of various functions, we have less 

interest in those differences that can be practically solved by upgrading our hardware.  Consequently, we 

consider the asymptotic behaviour between two function f(n) and g(n) by considering the limit 
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.  There are three cases of interest for the types of functions we will consider: 

1. The limit is zero:  that is, proportionally, f(n) grows significantly slower than g(n). 

2. The limit is finite but non-zero:  that is, the growth of the functions is proportional to the other. 

3. The limit is infinity, in which case, f(n) grows proportionally more quickly than g(n). 

The mathematical tool that describes these three are Landau symbols.  Respectively, we write: 

f(n) = o(g(n)), f(n) = (g(n)) and f(n) = (g(n)).  In the second case, it will always be theoretically 

possible to purchase proportionately faster or more memory to have one implementation or algorithm run 

as fast as another.  (Note that while, in general, we will ignore such differences, there is one case, that of 

B+ trees, where we will take the proportion into account as the ratio is a matter of at least six orders of 

magnitude.)  The balance of the course will comprise a larger section looking at data structures followed 

by one looking at algorithms, specifically, algorithm design techniques and an introduction to the theory 

of computation. 

Data structures 
Thus, we will begin by looking at ADTs storing linearly ordered data.  We begin by looking at three 

specializations of abstract lists where there the interface is reasonably restricted:  stacks, queues, and 

deques.  The specifications for these is so simple that it is reasonable to expect all run times to be (1).  

While considering these three, we looked at the asymptotic consequences of resizing arrays, the concept 

of amortized asymptotic analysis, the use of cyclic arrays, the use of queues in breadth-first traversals of 

trees, and the concept of an iterator. 

We continue by considering abstract sorted lists.  Arrays and linked lists are not appropriate underlying 

data structures for storing sorted lists because there are always some operations that must run in (n) 

time.  Instead, we take a diversion to trees. 

A rooted tree data structure at first appears to be most appropriate for storing hierarchically ordered 

objects.  There is a single root node and each node has a reference to its parent and its children.  We 

considered one concrete implementation of a tree using a linked list of pointers to store references to the 

children of a node while storing a pointer to the parent in a separate member variable, this variable being 

assigned null if the node is the root of a tree. 



Next, we consider visiting all the nodes in a tree.  We have already seen a breadth-first traversal, but the 

memory requirements for such a tree may be prohibitively expensive, so we consider depth-first 

traversals. 

Next, we look at ordered trees, including binary trees and N-ary trees with applications including 

expression trees and phylogenetic trees in the first case and tries in the second.  We consider the special 

cases of perfect binary and N-ary trees to see that we can store n nodes in a tree of height ln(n).  We also 

define complete binary and N-ary trees and observe that we can efficiently store such trees in an array 

where there is an implicit formula for calculating the location of the parent and the children of a node 

stored at a specific index. 

With binary trees defined, we proceed to considering binary search trees:  trees where all nodes in the left 

sub-tree are less than the current node and all nodes in the right sub-tree are greater than the current node.  

We observe that many operations are O(h), but in general, h = O(n), so if the distribution of nodes within 

a binary sub-tree is to unbalanced, we will end up with operations that run in O(n) time—something that 

is no better than using arrays or linked lists. 

Thus we introduce the concept of balance.  The ideal case is something similar to either perfect or 

complete binary trees, but this is unreasonable—maintaining such a shape following either insertions or 

deletions would require O(n) time.  Instead, we consider relaxed definitions of balance including height, 

null-path, and weight balancing.  We specifically look at AVL trees that use height balancing.  We 

observe that the additional work required to maintain AVL balance for insertions is (1) for insertions 

and we also showed that if a tree is AVL balanced, its height is, in the worst case, 

log(n) – 1.3277 = (ln(n)).  Consequently, all operations that are O(h) in a binary search tree must be 

O(ln(n)) in an AVL tree. 

Next, we consider in-order traversals and observe that while applying to binary trees, the do not make 

sense for N-ary trees and that N-ary trees with N > 2 cannot be used to store sorted lists.  Instead, we 

consider the concept of an M-way tree.  Like binary search trees, M-way trees have a height that is 

(ln(n)).  We cannot, however, use the rules of AVL trees to ensure the height of an M-way tree remains 

fixed at (ln(n)).  Instead, we consider B+ trees. 

A B+ tree uses M-way nodes internally, and the additional complexity of performing operations within 

the nodes is observed to cancel any benefit from the reduced height except in one case:  where the 

operation of stepping from a parent to a child is prohibitively expensive.  We saw that this is the case if 

the nodes are being stored in secondary memory such as hard drives.  We see that the restrictions to the 

distribution of values stored in internal and leaf nodes ensures that the height remains (ln(n)) and that 

consequently, any operation that runs in O(h) time will run in O(ln(n)) time in a B+ tree. 

We continue by looking at abstract priority queues.  The definition is similar to that of an abstract queue, 

but the objects are stored relative to a linear ordering imposed by a priority assigned to each—thus, a 

priority queue is a specialization of an abstract sorted list.  We could use an AVL tree to implement a 

priority queue, but all operations would run in (ln(n)) time.  Instead, we turn to a heap data structure and 

observe that with a complete binary heap, we can implement a priority queue where the front operation 

runs in (1) time, push in an amortized (ln(n)) time and pop in O(ln(n)), but with an expected run time 

of (1) given random priorities on incoming entries. 



Next, we will look at sorting algorithms for converting a list into a sorted list.  We see that all algorithms 

run in (n) time, but that those algorithms that compare entries, they require (n ln(n)) time on average.  

We will look at insertion and bubble sort which run in (d) time where d is the number of inversions and 

where d = O(n
2
).  We will also look at heap, merge, and quick sort, all of which run on average in 

(n ln(n)) time, but where quick sort runs in (n
2
) time and where merge sort requires (n) additional 

memory, quick sort requires O(n) additional memory, but on average (ln(n)) additional memory, and 

heap sort requires (1) additional memory.  Unfortunately, heap sort is also the slowest of the three of 

these, so we consider modifications to quick sort that minimize the probability of the worst case 

scenarios. 

There is an optional reading topic on splay trees. 

This concludes our investigations of storing linearly ordered data.  We considered both abstract lists and 

abstract sorted lists and specializations of each.  We also quickly investigated abstract trees for storing 

hierarchically ordered data.  Next, we look at storing data without any relationship. 

Anything stored on a computer must be stored as ones and zeros; consequently, it is possible to linearly 

order anything and therefore we could store anything we want in, for example, an AVL tree.  However, 

there are times where we have no interest in that linear relationship.  (For example, who cares whose 

student ID number the next largest of your own?)  In these cases, we can use the concept of hash 

functions and hash tables to store data so that, on average, all operations of interest (inserting into, 

accessing, removing from a container) may be performed on average in (1) time.  We will look at 

chained hash tables and the open addressing implementations using linear probing and double hashing. 

There is an optional reading topic on disjoint sets used to store equivalence relations on a finite number of 

objects. 

Next we consider the implementation of graphs and directed acyclic graphs for storing data with 

adjacency relations and partial orderings, respectively.  We will look at three problems:  finding a 

topological sorting of directed acyclic graphs, finding minimum spanning trees within weighted graphs, 

and finding single-source shortest distances, also in weighted graphs.  We will use a simple algorithm to 

find a topological sorting by observing that every directed acyclic graph has at least one vertex with in-

degree zero.  The run time will be O(|V| + |E|).  To find a minimum spanning tree, we will build a global 

minimum spanning tree by extending minimum spanning trees on sub-graphs, an algorithm attributed to 

Prim.  Following this, we will look at the problem of finding the shortest distance from a given vertex to 

every other vertex in the graph.  Specifically, we will consider Dijkstra’s algorithm which has many 

characteristics similar to Prim’s algorithm.  In both cases, judicious choices made in how we store the 

graph and how we store intermediate information used in the algorithm will allow us to solve these 

problems in O(|E| ln(|V|)) time. 

This concludes our investigations into storing data with or without relationships in various data structures.  

We have seen a number of approaches to solving some of the problems, and we will continue by 

formalizing those approaches. 

  



Algorithms 
The next component considers algorithm design techniques.  We look at greedy algorithms, divide-and-

conquer algorithms including a proof of the master theorem, dynamic programming, backtracking 

algorithms, branch and bound algorithms, and finally stochastic algorithms. 

Greedy algorithms are those where a partial solution is built up from a trivial partial solution where, at 

each step, a simple decision is made as to how to extend the partial solution.  Such a sequence of partial 

solutions may grow into either an optimal or possibly a near optimal feasible solution.  It is when the 

problem has an optimal sub-structure characteristic, that is, the partial solutions are known to be optimal 

for that sub-graph on which it is defined, that the global solution is also known to be optimal.  We will 

look at a project management example (the 0/1 knapsack problem), process scheduling, and interval 

scheduling. 

Divide-and-conquer algorithms take a larger problem and devises sub-problems that are smaller in size to 

solve.  These sub-problems are solved recursively and the solutions to the sub-problems are then 

combined to generate a solution to the larger problems.  In general, a problem is divided into a sub-

problems of size n/b and the effort required to generate the sub-problems together with the effort required 

to generate a solution from the sub-problems is considered to be polynomial of the form O(n
k
).  We will 

consider numerous applications including merge sort, searching an ordered matrix, integer multiplication, 

matrix-matrix multiplication, and the fast Fourier transform.  Having considered these examples, we will 

then deduce a general formula given by the master theorem which describes the run-time behavior of all 

such divide-and-conquer algorithms. 

Next we consider dynamic programming.  We will look at two simple recursive algorithms, namely 

calculating the factorial and Newton polynomial coefficients.  To discuss the approaches, we will define 

both top-down design and bottom-up design of algorithms.   In both cases, the naïve top-down 

implementation will be seen to run in exponential time.  We will see how a bottom-up design can be used 

to build solutions from previous solutions, but at the same time, we will see how a simple application of 

memoization will result in significant speed ups for top-down solutions.  We will then look at 

optimization problems, where the recursive algorithms are repeatedly seeking optimal solutions on sub-

problems.  It is when optimal solutions are sought multiple times on the same sub-problem (overlapping 

sub-problems) that memoization helps significantly.  We will look at matrix chain multiplications with 

both top-down and bottom-up designs and next we will see how optimal polygon triangulation is, while 

initially seeming to be a very different algorithm, is in fact a very similar problem, and finding a solution 

in one allows one to find a solution to the other.  This introduces a concept of reduction which will be 

expanded upon later.  We will then look at interval scheduling and a restricted version of the 0/1-

knapsack problem.  An overview of the Maple programming language’s remember tables will 

demonstrate how memoization can be built into a programming language. 

Next we will look at backtracking algorithms for a mechanism to systematically search through a space of 

possible partial solutions by using an appropriate traversal.  In some cases, it will be possible to deem 

unfeasible entirely sub-branches of the traversed tree thereby reducing the search from what would 

normally be equivalent to a brute force search.  We look at an implementation of an algorithm to solve the 

Sudoku puzzle and we look at other class puzzles in this area.  We will also look at how backtracking is 

used in logic programming language such as Prolog and we will consider parsing with respect to context-



free grammars.  Finally, we consider the idea of backjumping, looking specifically at algorithms for 

finding solutions in mazes. 

Next we will consider branch-and-bound algorithms, algorithms similar to backtracking but where, when 

looking for optimal solutions, under certain conditions we can place bounds on the best possible solution 

at various points in the tree.  If a particular branch is known to be worse than the best currently known 

solution, we can prune that branch and investigate elsewhere.  We look at the game of Backgammon as an 

example where branch and bound may be used to choose reasonably optimal solutions in a stochastic 

environment. 

Finally, we consider stochastic algorithms:  we will consider random number generation techniques, 

Monte Carlo techniques for approximating integrals, testing of circuit designs for stability in light of 

imperfect components, a randomized variation of quicksort that prevents the deliberate insertion of worst-

case scenarios, and skip lists. 

Having finished with algorithm design techniques, we conclude by having an overview of the theory of 

computation.  We will discuss models of computation and define the Turing machine as a model of what 

can be computed.  We will then observe that there are problems that cannot be solved; specifically we 

will see that it is not possible, in general, to find an algorithm that can determine if another algorithm, 

given a set of inputs, will go into an infinite loop.  We will then classify problems into how tractable they 

are to solve.  Most of the problems we have looked at can be solved in polynomial time.  There are 

problems, however, that cannot be solved in polynomial time; however, we will look at one branch of 

problems that can be solved in polynomial time assuming our algorithm is allowed to branch.  There is a 

subset of these problems where we are not entirely certain as to whether or not there are polynomial-time 

algorithms that can solve them.  We will call these NP and a subset of these (NP Complete problems) are 

such that solving any one of them in polynomial time without branching allows you to solve all NP 

problems in polynomial time without branching. 

Summary 
Finally, we will conclude with a look at the old Yale sparse matrix format; a useful data structure that 

combines a lot of the ideas in this course and and ties the course material to the linear algebra course. 


