
ECE 250 Algorithms and Data Structures

Douglas Wilhelm Harder, M.Math. LEL

Vajihollah Montaghami, M.A.Sc.

Department of Electrical and Computer Engineering

University of Waterloo

Waterloo, Ontario, Canada

ece.uwaterloo.ca

dwharder@alumni.uwaterloo.ca

vajih.montaghami@gmail.com

© 2014 by the authors. Some rights reserved.

Introductory Project

2

Introductory Laboratory

Outline

 In this introductory project, we will:

– Review pass-by-reference and pass-by-value

– Describe remote logins

– Give an introduction to Unix

– Create a hello world program

– Create a header file for an Array class

– Discuss bug fixing

– Introduce five other functions and three statistical functions

– Other features of classes

– Templates

– Our testing environment

3

Introductory Laboratory

Safety first

 This is RCH 108 and in case of an emergency:

– There two room exits and four available building exits

• Exit promptly and orderly if a fire alarm goes off

– Emergency information posters are at both doors

• The location of the first-aid kit is listed on the First Aid Emergency

Procedures poster

– A phone is in the back room

• Call 911 in an emergency

– Fire extinguishers are located

in the hallways towards the

building exits

4

Introductory Laboratory

Project requirements

 Project requirements include:

– Submissions are individual

– You can work together, but the authoring of code must be done alone

– Projects 1, 2, 3, 4 are due at 22:00 (10:00 PM) on the Tuesday

immediately following the laboratory corresponding with the project

– Project 5 is due at midnight on the last day of class

– Project submissions are through Learn

– The Drop box is open for late submissions until 6:00 AM the next

morning

– All submissions are compiled and graded on ecelinux.uwaterloo.ca

– Project details at ece.uwaterloo.ca/~dwharder/aads/Projects/

5

Introductory Laboratory

Outline

 In this laboratory, we will:

– Review pass-by-value versus pass-by-reference

– Get you logged into ecelinux

– Have you save, compile and execute a Hello World! program

– We will introduce you to C++ in Visual Studio

– The introduction will be through an Array class

• We will implement and add additional functionality

• We will create executable functions using this class

• We will use this class in our testing framework

– We will then copy this class to ecelinux and test it there

– We will conclude with topics such as:

• Recursion

6

Introductory Laboratory

Pass-by-value and pass-by-reference

 Normally, when you pass an argument to a function, the parameter

in the function is assigned the value of the argument, but the

parameter is a different variable

– Changes to the parameters of a function do not affect the arguments

#include <iostream>

void swap(int x, int y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main() {

 int m = 5, n = 17;

 swap(m, n);

 std::cout << "m = " << m << " and n = " << n << std::endl;

 return 0;

}

7

Introductory Laboratory

Pass-by-value and pass-by-reference

 If you want changes in the functions to affect the original

arguments, we must pass the arguments by reference:

#include <iostream>

void swap(int &x, int &y) {

 int tmp = x;

 x = y;

 y = tmp;

}

int main() {

 int m = 5, n = 17;

 swap(m, n);

 std::cout << "m = " << m << " and n = " << n << std::endl;

 return 0;

}

8

Introductory Laboratory

Pass-by-value and pass-by-reference

 In object-oriented programming, a pass-by-value of an object must

make a complete copy of the object

– This may be prohibitively expensive

– Passing an Array object by value makes a complete copy of the array

and that copy is deleted when the function exits…

– We will therefore often pass objects by reference

• Problem: objects passed by reference may be changed—what if we don’t

want the function to change the object

• Solution: pass-by-constant-reference

 The notation for pass-by-constant-reference is:
void f(int const &x) {

 // x refers to the argument, but you cannot change the value of x

 x = y;

 y = tmp;

}

– We will discuss this later in relation to objects

9

Introductory Laboratory

Remote logins

 You can log into a Unix machine by using a terminal program

– Launch the Secure Shell Client (SSh)

– All Nexus terminals have SSh installed under Internet Tools

– Select the Quick Connect button

– Set the Host Name to ecelinux.uwaterloo.ca

– Set the User Name to your

uWaterloo User ID (e.g., dwharder)

– Select Connect and use your Nexus password

10

Introductory Laboratory

Remote logins

 You have now established a remote shell user interface

 You can optionally

add a profile to save

your Host and User

names under Profiles

 You will be randomly

logged onto one of
 eceLinux1
 eceLinux2
 eceLinux3
 etc.

11

Introductory Laboratory

Remote logins

 A shell passes commands to the host machine

– You enter commands at the prompt ($)

– The shell passes the commands to the host computer

– There, the shell converts your commands into system calls

12

Introductory Laboratory

Remote logins

 Aside:

– If you have Linux at home, you can log in remotely through the shell:

 $ ssh dwharder@ecelinux.uwaterloo.ca

13

Introductory Laboratory

Remote logins

 When you log onto ecelinux, the current (or working) directory you

are viewing is your home directory, e.g.,

/home/dwharder

 Windows uses drives to differentiate between different storage
devices, e.g., C:\Users\dwharder

– Unix makes no such distinction

– Drives are subdirectories of the /mnt directory

14

Introductory Laboratory

Introduction to Unix

 We can ask for a listing of files and directories in the working
directory:

 $ pwd

 /home/dwharder

 $ ls

 $

pwd Print working directory

ls List directory contents

15

Introductory Laboratory

Introduction to Unix

 Let’s create a directory:

 $ mkdir ece250

 $ ls

 ece250

 $ cd ece250

 $ mkdir lab0

 $ cd lab0

 $ pwd

 /home/dwharder/ece250/lab0

cd Change directory

16

Introductory Laboratory

Hello world!

 The next step is to edit a file:

 $ nano hello.cpp

17

Introductory Laboratory

Hello world!

 Many of the important commands are listed at the bottom

 Ctrl-g Get help

 Ctrl-o Write out

 Ctrl-r Read a file

 Ctrl-x Exit

 Ctrl-y Previous page

 Ctrl-v Next page

 Ctrl-k Cut text

 Ctrl-u Paste text

 Ctrl-c Cursor position

 Ctrl-j Justify

 Ctrl-w Search

 Ctrl-t Spell checker

18

Introductory Laboratory

Hello world!

 If you are familiar with vi or emacs, you can use:

 $ vi hello.cpp

 $ emacs hello.cpp

– Do not use these if you are not familiar…

• To quit vi, use :q!

• To quit emacs, use Ctrl-x Ctrl-c

19

Introductory Laboratory

Hello world!

 In your editor of choice, enter the text

#include <iostream>

using namespace std;

int main() {

 cout << "Hello world!" << endl;

 return 0;

}

 To cut-and-paste, you must first use Ctrl-c in Windows and then use

Edit→Paste in the SSh window

 Next, save the file (Ctrl-o) and exit (Ctrl-x)

20

Introductory Laboratory

Hello world!

 At the shell, we can list the contents of the working directory:

 $ ls

 hello.cpp

 We now want g++ to compile the source code into an executable file

or program

 $ g++ hello.cpp

 $ ls

 a.out hello.cpp

 Let us now execute the command

 $./a.out

 Hello world!

a.out Assembler output

21

Introductory Laboratory

Creating a project

 We will now leave Unix and go back to Windows Visual Studio

 First, launch Visual Studio and create a new project

– Select a General project type

– Use the Empty Project installed template

– Use Lab0 as the project name

22

Introductory Laboratory

Adding a header file

 This creates a project with locations for header, resource, and

source files

– We’ll use the first and third

 First, let’s create a new header file:

– Right-click on the Header Files folder

– Select Add→New Item…

• This brings up the

Add New Item dialog

– Select the Header file (.h)

template, enter the name

 Array.h

and select Add

23

Introductory Laboratory

Creating the header file

 We will fill the array class:
#ifndef ARRAY_H

#define ARRAY_H

class Array {

 private:

 int array_capacity;

 int *internal_array;

 int array_size;

 public:

 Array(int);

 int size() const;

 void append(int);

};

// member function definitions go here...

#endif

The capacity is the number of things the

container can hold, while the size is the

number of objects the container is holding

24

Introductory Laboratory

Creating the header file

 The member function definitions follow:

Array::Array(int n):

array_capacity(n),

internal_array(new int[array_capacity]),

array_size(0) {

 // does nothing

}

int Array::size() const {

 return array_size;

}

void Array::append(int obj) {

 // currently, entries 0, ..., array_size - 1 are occupied

 internal_array[array_size] = obj;

 ++array_size;

}

25

Introductory Laboratory

Creating an executable file

 You can now save the header file

– We want to execute a program, but the header file only contains the

description of the array class—it doesn’t do anything

 We have to create a .cpp file with a main function

– Right-click on the Source Files folder

– Select Add→New Item…

– Select the C++ file (.cpp)

template, name it main.cpp,

and select Add

26

Introductory Laboratory

Creating an executable file

 We create an executable that adds entries into an array:
#include <iostream>

#include "Array.h"

int main() {

 // Create an array of size 10

 Array info(10);

 std::cout << "The size of the array is " << info.size() << std::endl;

 info.append(42);

 info.append(91);

 std::cout << "The size of the array is now " << info.size() << std::endl;

 return 0;

}

27

Introductory Laboratory

Creating an executable file

 We must now:

– Save all the files:

 File→Save All or Shift-Ctrl-s or

– Attempt to build the solution:

 Build→Build Solution or F7 or

– Note: if the Build Solution icon does not appear in your toolbar, select

 View→Toolbars→Build

28

Introductory Laboratory

Creating an executable file

 The compiler will now attempt to build a solution and the output

appears in the lower output panel

– For a successful build, the output will be something like:
1>------ Build started: Project: Lab0, Configuration: Debug Win32 ------

1>Compiling...

1>main.cpp

1>Linking...

1>LINK : C:\Users\dwharder\Documents\Visual Studio 2008\Projects\Lab0\Debug\Lab0.exe not found

1>Embedding manifest...

1>Build log was saved at "file://c:\Users\dwharder\Documents\Visual Studio 2008\Projects\Lab0\

1>Lab0 - 0 error(s), 0 warning(s)

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

= Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped =

29

Introductory Laboratory

Creating an executable file

 The compiler will now attempt to build a solution and the output

appears in the lower output panel

– For an unsuccessful build, the compiler will try to tell you something

about the error
1>------ Build started: Project: Lab0, Configuration: Debug Win32 ------

1>Compiling...

1>main.cpp

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(8) : error C2065:

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(8) : error C2146:

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(8) : error C3861:

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(10) : error C2065

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(10) : error C2228 1>

type is ''unknown-type''

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(11) : error C2065

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(11) : error C2228 1>

type is ''unknown-type''

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(12) : error C2065

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(12) : error C2228

1> type is ''unknown-type''

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(13) : error C2065

1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\lab0\main.cpp(13) : error C2228

1> type is ''unknown-type''

1>Build log was saved at "file://c:\Users\dwharder\Documents\Visual Studio 2008\Projects\Lab0\

1>Lab0 - 11 error(s), 0 warning(s)

========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========
= Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped =

30

Introductory Laboratory

Creating an executable file

 One option...

h
tt

p
:/
/g

y
ro

p
s
y
c
h

o
lo

g
y.

c
o

m
/b

lo
g
/m

a
n

a
g

in
g

-t
e

m
p

e
r-

ta
n
tr

u
m

s
/

31

Introductory Laboratory

Creating an executable file

 …or you start reading the first line of the errors:
1>c:\users\dwhr...projects\lab0\lab0\main.cpp(8) : error C2065: 'Arry' : undeclared identifier

 It tells you:

– The file name main.cpp

– The line number 8

– The problem: 'Arry' is not declared

 If you double-click on the error, it highlights line 8 in the file main.cpp

main.cpp(8) : error C2065: 'Arry' : undeclared identifier

32

Introductory Laboratory

Creating an executable file

 The compiler does not immediately stop when it finds an error

– It attempts to continue, perhaps giving further information

– In others, the first error causes subsequent errors

– In this case, fixing the first error corrects all the remaining errors

33

Introductory Laboratory

Creating an executable file

 We now want to execute the program

– Select Debug→Start Debugging or F5 or

– A black window appears and disappears

• We need to get it to pause before exiting

– At the end of your main function, add:

 system("pause");

 return 0;
}

34

Introductory Laboratory

Creating an executable file

 Now we see:

 The system("pause") generates the

 Press any key to continue . . .

35

Introductory Laboratory

Default values of parameters

Currently, explicitly pass the capacity of the array

Array info(10);

What happens if the user attempts to call

Array info;

– Currently, this causes a compilation error:
1>c:\users\dwharder\documents\visual studio 2008\projects\lab0\

 lab0\main.cpp(8) : error C2512:

'Array' : no appropriate default constructor available

 This says, there is no constructor that takes no arguments

36

Introductory Laboratory

Default values of parameters

 We have two options:
– Consider this a user error—the user failed to provide an array capacity

– Declare a default value for the parameter

 To specify the default value, we do so in the class definition:

class Array {
 private:
 int array_capacity;
 int *internal_array;
 int array_size;

 public:
 Array(int = 10);
 int size() const;
 void append(int);
};

37

Introductory Laboratory

Correcting a possible error

 What do we do if the user does:

Array info(0);

Array info(-5);

It makes sense that the capacity should be at least 1:

Array::Array(int n):

array_capacity(std::max(1, n)),

internal_array(new int[array_capacity]),

array_size(0) {

 // does nothing

}

– We must now also include a library with std::max

 #include <algorithm>

38

Introductory Laboratory

Correcting another possible error

 Consider:
void Array::append(int obj) {

 // currently, entries 0, ..., array_size - 1 are occupied

 internal_array[array_size] = obj;

 ++array_size;

}

 and the function
int main() {

 Array info(10);

 for (int i = 0; i < 20; ++i) {

 info.append(i);

 }

 std::cout << "The size is " << info.size() << std::endl;

}

39

Introductory Laboratory

Correcting another possible error

 Neither C nor C++ care if you go outside the bounds of your array

– Suppose you allocate an array of 10 ints (40 bytes)

 int *ptr = new int[10];

– Suppose ptr is now assigned 0x0039af78

0x0039af78

40

Introductory Laboratory

Correcting another possible error

 Suppose you access ptr[5]

– 0x0039af78 + 5 × 4 = 0x0039af8c is calculated

– Whatever is there is accessed

 Suppose you access ptr[10]

– 0x0039af78 + 10 × 4 = 0x0039afa0

– Whatever is there is accessed

 Unfortunately, this may be allocated to something else

0x0039af8c

0x0039afa0

0x0039af78

41

Introductory Laboratory

Correcting another possible error

 What do we do if we append to an array that is full?

– We could ignore the append

– We could change the return value to bool which signals whether or not

an append was successful

– We could throw an exception

 We will use the second solution

– In a future function, we will use exceptions

42

Introductory Laboratory

Correcting another possible error

 It is necessary to update the return value in both the class definition

and the member function definition

class Array {

 // ...

 bool append(int);

 // ...

};

bool Array::append(int obj) {

 if (array_size == array_capacity) {

 return false;

 }

 // currently, entries 0, ..., array_size - 1 are occupied

 internal_array[array_size] = obj;

 ++array_size;

 return true;

}

43

Introductory Laboratory

Updating the class

 Let’s add some more functionality:

– A function that returns the capacity

– Two Boolean-valued functions determining if the array is empty or full

 To do this, we must:

1. Add three member function declarations to the class definition

2. Add three member functions definitions below the class

44

Introductory Laboratory

Updating the class

 The member function declarations in the class definition could be:

 int capacity() const;

 bool empty() const;

 bool full() const;

 void clear();

 The first three member functions return queries based on the current

state of the array object—nothing is changed

– Thus, we declare these as const or read-only

– If we accidently try to change a member variable, the compiler will issue

an error

45

Introductory Laboratory

Updating the class

 In the class definition, we should separate the accessors from the

mutators
class Array {

 private:

 int array_capacity;

 int *internal_array;

 int array_size;

 public:

 Array(int = 10);

 // Accessors

 int size() const;

 int capacity() const;

 bool empty() const;

 bool full() const;

 // Mutators

 void append(int);

 void clear();

};

46

Introductory Laboratory

bool empty() const

 For the first Boolean-valued function, we could try:

bool Array::empty() const {

 if (array_size == 0) {

 return true;

 } else {

 return false;

 }

}

 Note, however, that == is a Boolean-valued operator

– It returns either true or false

– Why not just return the value generated by ==?

47

Introductory Laboratory

bool empty() const

 A better implementation is:

bool Array::empty() const {

 return (array_size == 0);

}

 Note: the parentheses are not necessary—they give clarity

 return is a statement, not a function!

48

Introductory Laboratory

bool empty() const

 Another solution:

 return (size() == 0);

– If you accidently use size() = 0, the compiler will signal an error

• You can’t assign to the return value of a function!

 Some programmers prefer:

 return (0 == array_size);

– If they accidently use 0 = array_size, the compiler will signal an error

• You can’t assign a value to a number!

– If you accidently use array_size = 0, it assigns array_size the value

of zero and then returns 0

49

Introductory Laboratory

void clear()

 The last empties the array object:

 void clear();

 In this case, the function is not declared const

– It will change the object

 It will simply set the size member variable to zero

– It does not have to zero out the array—as new objects arrive, they will

replace what currently exists in the array

50

Introductory Laboratory

void clear()

Question:

– What error do you get if you have

 void clear();

 in the class definition, but

 void Array::clear() const {

 // ...

 }

 in the member function definition?

51

Introductory Laboratory

void clear()

Answers:

– In the first case, the member function definition does not match any of

the member function declarations in the class definition:

 'void Array::clear(void) const' : overloaded member

 function not found in 'Array'

– The error message in g++ is actually more helpful:

 Array.h:36: error: prototype for'void Array::clear() const'

 does not match any in class 'Array'

 Array.h:17: error: candidate is: void Array::clear()

52

Introductory Laboratory

void clear()

Question:

– What error do you get if you have const in both?

 void clear() const ;

 void Array::clear() const {

 // ...

 }

53

Introductory Laboratory

void clear()

Answers:

– The signatures match up, but now you are trying to assign to a member

variable in a read-only function:

 l-value specifies const object

– Again, the error message in g++ is actually more helpful:

 Array.h:37: error: assignment of data-member

 'Array::array_size' in read-only structure

The term read-only is synonymous with the
concept of const in C++

Incidentally, Stroustrup wanted to use the
keyword readonly in the first version of C++

54

Introductory Laboratory

void clear()

Question:

– What happens if you call a non-read-only member function from within a

read-only (const) member function?

 bool Array::empty() const {

 clear();

 return (size() == 0);

 }

55

Introductory Laboratory

void clear()

Answers:

– The error message in g++ is

 Array.h: In member function 'bool Array::empty() const':

 Array.h:178: error: passing 'const Array' as 'this‘

 argument of 'void Array::clear()' discards qualifiers

– You cannot call a non-read-only member function from a read-only

(const) member function

56

Introductory Laboratory

Updating the class

 Implement these functions…

57

Introductory Laboratory

Four statistical functions

 Finally, let us add four statistical functions:

 int sum() const;

 double average() const;

 double variance() const;

 double std_dev() const;

 These will return formulas where the sample standard deviation is

the square root of the variance

 

1

2

1

sample average

sample variance
1

n

k

k

n

k

k

a

a
n

a a

n





 










58

Introductory Laboratory

Four statistical functions

 Some provisos:

– The sum of an empty list is 0

– The sample average is not defined if the size is zero

– The sample variance and standard deviations are not defined if the size

is zero or one

 In both cases, we must notify the user

59

Introductory Laboratory

Four statistical functions

 Let’s declare a class
class exception {

 // empty class

};

class underflow : public exception {

 // empty class

};

 We can throw an instance of this exception:
double Array::average() const {

 if (empty()) {

 throw underflow();

 }

 // find the average

}

60

Introductory Laboratory

Four statistical functions

 The class underflow is defined in the file Exception.h found at

 http://ece.uwaterloo.ca/~dwharder/aads/Projects/src/

 Copy this file into the same directory as your Array.h file and then

include this header file into your project in Visual Studio

 At the top of the Array.h file, include the line:

 #include "Exception.h"

61

Introductory Laboratory

Four statistical functions

 The use of empty() is also better than

int Array::min() const {

 if (0 == array_size) {

 throw underflow();

 }

 // find the minimum entry

}

 Someone reading this must have to try to figure out the significance

of the Boolean check…

62

Introductory Laboratory

Four statistical functions

A function calling average() can try to catch the thrown exception:
double av;

Array info(10);

try {

 av= info.average();

} catch (underflow excpt) {

 // the array 'info' is empty--use a default value

 av = 0.0;

}

63

Introductory Laboratory

Four statistical functions

 In implementing these functions:

– Use sum() in average()

– Use average() in variance()

– Use variance() in std_dev()

 

1

2

1

sample average

sample variance
1

n

k

k

n

k

k

a

a
n

a a

n





 










64

Introductory Laboratory

Four statistical functions

Why can’t we use the following implementation?

 double Array::average() const {

 if (empty()) {

 throw underflow();

 }

 // The average is the sum of the entries divided by the size

 return sum()/size();

 }

1sample average

n

k

k

a

a
n

 


65

Introductory Laboratory

Four statistical functions

Answer: the division operator sees two integers

 double Array::average() const {

 if (empty()) {

 throw underflow();

 }

 // The average is the sum of the entries divided by the size

 return sum()/size();

 }

1sample average

n

k

k

a

a
n

 


It will use integer division before converting the result into a double

66

Introductory Laboratory

Four statistical functions

Solution: tell the complier you want to convert each to a double

 double Array::average() const {

 if (empty()) {

 throw underflow();

 }

 // The average is the sum of the entries divided by the size

 return static_cast<double>(sum()) /

 static_cast<double>(size());

 }

1sample average

n

k

k

a

a
n

 


Now the compiler will use double-precision floating-point division

67

Introductory Laboratory

Four statistical functions

Why can’t we use the following implementation?

 double Array::variance() const {

 if (size() <= 1) {

 throw underflow();

 }

 double av = average();

 double ssdiff = 0.0;

 for (int i = 0; i < size(); ++i) {

 ssdiff += (internal_array[i] - av)^2;

 }

 return ssdiff/(size() - 1);

 }

 
2

1sample variance
1

n

k

k

a a

n










68

Introductory Laboratory

Four statistical functions

Answer: ^ is the binary exclusive-or (xor) operator

 double Array::variance() const {

 if (size() <= 1) {

 throw underflow();

 }

 double av = average();

 double ssdiff = 0.0;

 for (int i = 0; i < size(); ++i) {

 ssdiff += (internal_array[i] - av)^2;

 }

 return ssdiff/(size() - 1);

 }

 
2

1sample variance
1

n

k

k

a a

n










69

Introductory Laboratory

Four statistical functions

Solution: explicitly perform the squaring

 double Array::variance() const {

 if (size() <= 1) {

 throw underflow();

 }

 double av = average();

 double ssdiff = 0.0;

 for (int i = 0; i < size(); ++i) {

 ssdiff += (internal_array[i] - av)*(internal_array[i] - av);

 }

 return ssdiff/(size() - 1);

 }

 
2

1sample variance
1

n

k

k

a a

n










70

Introductory Laboratory

Four statistical functions

Note: the compiler knows that ssdiff is of type double

 double Array::variance() const {

 if (size() <= 1) {

 throw underflow();

 }

 double av = average();

 double ssdiff = 0.0;

 for (int i = 0; i < size(); ++i) {

 ssdiff += (internal_array[i] - av)*(internal_array[i] - av);

 }

 return ssdiff/(size() - 1);

 }

 
2

1sample variance
1

n

k

k

a a

n










the compiler calculates size() - 1 and converts the result to a double

71

Introductory Laboratory

Four statistical functions

In calculating the standard deviation, we must now include the

cmath library

 #include <cmath>

The square root function is within the std namespace

As we have already written a function to calculate the variance, we

should simply call this function

– It already throws an exception if the size is less than two

72

Introductory Laboratory

Updating main()

 Now, update your main() function to print the results of some of the

other functions

– First, add a few more integers and then print the output of some of the

other functions that we have just written

73

Introductory Laboratory

Memory deallocation

 One issue we haven’t addressed is memory deallocation

– The constructor made an explicit request to the operating system for

some memory using the new operator

– The new operator returns the address of the first location allocated

– The operating system will keep that memory allocated until that same

address is returned using the delete command

74

Introductory Laboratory

Memory deallocation

 What happens here?
void f() {

 Array a(100);

 // do nothing else...

}

int main() {

 for (int i = 0; i < 10000; ++i) {

 f();

 }

 return 0;

}
This is said to form a memory leak

75

Introductory Laboratory

Memory deallocation

 When a local variable goes out of scope, the memory allocated for it

on the call stack gets reused

– Unfortunately, in the constructor, a call to the new operator was made

• That memory has not been deallocated

– We need to also deallocate that additional memory when the object

goes out of scope

76

Introductory Laboratory

Memory deallocation

 To perform this clean-up, C++ uses a member function called the

destructor:

class Array {

 private:

 // private member variables and private member functions

 public:

 Array(int = 10);

 ~Array();

77

Introductory Laboratory

Memory deallocation

 The implementation deletes the contents of the array:
// Constructor

Array::Array(int n):

array_capacity(std::max(1, n)),

internal_array(new int[array_capacity]),

array_size(0) {

 // does nothing

}

// Destructor

// - deallocate the memory for the array

Array::~Array() {

 delete [] internal_array;

}

78

Introductory Laboratory

Memory deallocation

 Note:

– If the memory was allocated with

 Class *ptr = new Class(args...);

 you must call

 delete ptr;

– If the memory was allocated with

 Class *ptr = new Class[ARRAY_SIZE];

 you must call

 delete [] ptr;

79

Introductory Laboratory

Accessing an entry

 So, we’re storing objects in an array—but we can’t get at them

– We’ve added 20 things into an array; how do we access the 15th?

 It might be reasonable to write some sort of ‘at’ function:

int Array::at(int n) const {

 if (n < 0 || n >= size()) {

 throw out_of_range();

 }

 return internal_array[n];

}

80

Introductory Laboratory

Accessing an entry

 Thus, our code might look something like:
for (int i = 0; i < info.size(); ++i) {

 cout << info.at(i) << " " << endl;

}

 This works…but wouldn’t it be nice if you could do the following?
for (int i = 0; i < info.size(); ++i) {

 cout << info[i] << " " << endl;

}

 Problem: indexing only works on C++ arrays, and info is an

instance of the Array class

81

Introductory Laboratory

Operator overloading

 Solution: let the compiler know what to do if you call info[15]

int Array::operator[](int n) const {

 return internal_array[n];

 }

 Now, if the user ever calls info[i], it will call the above function

with the argument i

– Essentially, info[i] is identical to info.operator[](i)

– Think of operator[] as the name of a function that happens to be

called if the user ever calls info[i]

82

Introductory Laboratory

Further functionality

 Now we’re going to go more into the gory details of C++

– Swapping two instances of the Array class

 Array a(3), b(5);

 b.append(52);

 // now swap 'a' and 'b' so that 'a' is of size 5
 // and holds the entry 52, and

 // 'b' is empty and size 3

– Creating a copy of an instance of the Array class

 Array a(5);
 a.append(35);
 a.append(42);
 Array b(a); // make b a copy of 'a'

– Assigning an instance of the Array class to a variable already storing

 Array a(5);
 a.append(35);
 Array b(7);
 b.append(42);

 a = b; // 'a' is now of size 7 containing 42 while the array
 // of size 5 with 35 is gone

83

Introductory Laboratory

Swapping two instances

 Suppose we want to swap the contents of two variables storing
instances of our Array class

– We want to swap all of the member variables

– We can use the std::swap function

void Array::swap(Array &other) {

 std::swap(array_capacity, other.array_capacity);

 std::swap(internal_array, other.internal_array);

 std::swap(array_size, other.array_size);

}

– Note that we must use pass-by-reference: we want to swap the

argument that is being passed with this object

84

Introductory Laboratory

Swapping two instances

 Now we can call:

 Array a(3), b(5);

 a.append(54);

 a.append(25);

 a.append(37);

 b.append(92);

 b.append(82);

 a.swap(b);

85

Introductory Laboratory

Making a copy

 Recall that for swap, we used pass-by-reference

– What happens if we pass an object by value?

– Answer: by default, a new instance is created and its member variables

are assigned the member variables of the argument

– This may be okay for a complex number class, but does it work with the

Array class?

 What happens here?

void f(Array second) {

 // do something

}

int main() {
 Array first(5);
 first.append(13);
 first.append(17);
 first.append(39);
 first.append(666);

 f(first);

 return 0;
}

86

Introductory Laboratory

Making a copy

 Having executed the first five statements, this is our state:

int main() {
 Array first(6);
 first.append(13);
 first.append(17);
 first.append(39);
 first.append(666);

 f(first);

 cout << first[0];

 return 0;
}

0x000b3820
0x000b3824
0x000b3828
0x000b382c
0x000b3830
0x000b3834

13
17
39
666
?
?

first

array_capacity 6
internal_array 0x000b3820
array_size 4

87

Introductory Laboratory

Making a copy

 Calling f, a new Array is allocated on the stack and all member

variables are copied over—including the array
int main() {
 Array first(6);
 first.append(13);
 first.append(17);
 first.append(39);
 first.append(666);

 f(first);

 cout << first[0];

 return 0;
}

0x000b3820
0x000b3824
0x000b3828
0x000b382c
0x000b3830
0x000b3834

13
17
39
666
?
? void f(Array second) {

 // do something
}

second

array_capacity 6
internal_array 0x000b3820
array_size 4

first

array_capacity 6
internal_array 0x000b3820
array_size 4

88

Introductory Laboratory

Making a copy

 When f returns, the destructor is called on the instance second

– This deallocates the memory of the array
int main() {
 Array first(6);
 first.append(13);
 first.append(17);
 first.append(39);
 first.append(666);

 f(first);

 cout << first[0];

 return 0;
}

0x000b3820
0x000b3824
0x000b3828
0x000b382c
0x000b3830
0x000b3834

13
17
39
666
?
? void f(Array second) {

 // do something
}

second

array_capacity 6
internal_array 0x000b3820
array_size 4

first

array_capacity 6
internal_array 0x000b3820
array_size 4

89

Introductory Laboratory

Making a copy

 Now first is referring still to memory that has been deallocated!

int main() {
 Array first(6);
 first.append(13);
 first.append(17);
 first.append(39);
 first.append(666);

 f(first);

 cout << first[0];

 return 0;
}

0x000b3820
0x000b3824
0x000b3828
0x000b382c
0x000b3830
0x000b3834

13
17
39
666
?
? void f(Array second) {

 // do something
}

second

array_capacity 6
internal_array 0x000b3820
array_size 4

first

array_capacity 6
internal_array 0x000b3820
array_size 4

90

Introductory Laboratory

Making a copy

 When the values of the member variables are all simply copied over,

this is said to be a shallow copy

second

array_capacity 6
internal_array 0x000b3820
array_size 4

first

array_capacity 6
internal_array 0x000b3820
array_size 4

0x000b3820
0x000b3824
0x000b3828
0x000b382c
0x000b3830
0x000b3834

13
17
39
666
?
?

91

Introductory Laboratory

Making a copy

 What we require is that the copy allocates memory for a new array

and copies over the values

– This is called a deep copy

second

array_capacity 6
internal_array 0x00176a48
array_size 4

first

array_capacity 6
internal_array 0x000b3820
array_size 4

0x000b3820
0x000b3824
0x000b3828
0x000b382c
0x000b3830
0x000b3834

13
17
39
666
?
?

0x00176a48
0x00176a4c
0x00176a50
0x00176a54
0x00176a58
0x00176a5c

13
17
39
666
?
?

92

Introductory Laboratory

Making a copy

 We then need to copy over the values from the first array

– Now, when the function exits, the object second is destroyed and its

copy of the array is deleted

– The array allocated to first is unaffected

second

array_capacity 6
internal_array 0x00176a48
array_size 4

first

array_capacity 6
internal_array 0x000b3820
array_size 4

0x000b3820
0x000b3824
0x000b3828
0x000b382c
0x000b3830
0x000b3834

13
17
39
666
?
?

0x00176a48
0x00176a4c
0x00176a50
0x00176a54
0x00176a58
0x00176a5c

13
17
39
666
?
?

93

Introductory Laboratory

Making a copy

 The copy constructor must create a new array and copy over all the

values

– The default copy constructor (a shallow copy) is identical to

Array::Array(Array const &other):

array_capacity(other.array_capacity),

internal_array(other.internal_array),

array_size(other.array_size) {

 // empty

}

94

Introductory Laboratory

Making a copy

 Instead, we require a deep copy

– We must allocate memory for an array and copy the values over

Array::Array(Array const &other):

array_capacity(other.array_capacity),

internal_array(new int[array_capacity]),

array_size(other.array_size) {

 // copy over the values from one array to the other

 for (int i = 0; i < size(); ++i) {

 internal_array[i] = other.internal_array[i];

 }

}

95

Introductory Laboratory

Pass by value

 When an instance of a class is passed-by-value, if a copy

constructor is declared, it will be called

– Example:

int init(Array data, ...) {

 // 'data' is passed-by-value and, because a

 // copy constructor is declared, it will be

 // initialized with the first argument of init(...)

 // passed as the argument to the copy constructor

 // Append 42 to the copy

 data.append(42);

 return 0;

 // Just before the function returns,

 // the destructor is called on 'data'

}

96

Introductory Laboratory

Pass by reference

 With pass-by-reference, no copy is made

– Example:

int init(Array &data, ...) {

 // Here, the parameter 'data' refers to the original

 // first argument passed to the init(...) function

 // Append 42 to the original argument

 data.append(42);

 return 0;

 // No destructor is called on 'data'

 // the original continues to exist

}

97

Introductory Laboratory

Pass by constant reference

 With pass-by-constant-reference, no copy is made but also, the
function init(…) can only call accessors of the Array class

– Example:

int init(Array const &data, ...) {

 // Here, the parameter 'data' refers to the original

 // first argument passed to the init(...) function

 // We can call data.size(), data.sum(), data.average(), etc.,

 // but we cannot call data.append(…) or data.clear()

 return 0;

 // No destructor is called on 'data'

 // the original continues to exist

}

98

Introductory Laboratory

Assigning an object

 What happens if we execute the following?

 We must:

– Delete the memory allocated to a

– Create a copy of b

 This can be done with:

Array &Array::operator=(Array rhs) {

 swap(rhs);

 return *this;

}

Array a(3);
a.append(35);
Array b(5);
b.append(42);
a = b;

99

Introductory Laboratory

Assigning an object

 What happens here is really slick:

b

array_capacity 5
internal_array 0x00176a48
array_size 1

a

array_capacity 3
internal_array 0x000b3820
array_size 2

0x000b3820
0x000b3824
0x000b3828

35
75
?

0x00176a48
0x00176a4c
0x00176a50
0x00176a54
0x00176a58

42
?
?
?
?

Array &Array::operator=(Array rhs) {
 swap(rhs);
 return *this;
}

Array a(3);
a.append(35);
a.append(75);
Array b(5);
b.append(42);
a = b;

100

Introductory Laboratory

Assigning an object

 When operator= is called on a, b is the argument

– The copy constructor is called and b is passed by value as rhs

Array &Array::operator=(Array rhs) {
 swap(rhs);
 return *this;
}

Array a(3);
a.append(35);
a.append(75);
Array b(5);
b.append(42);
a = b;

b

array_capacity 5
internal_array 0x00176a48
array_size 1

a

array_capacity 3
internal_array 0x000b3820
array_size 2

rhs

array_capacity 5
internal_array 0x005b9a04
array_size 1

0x005b9a04
0x005b9a08
0x005b9a0c
0x005b9a10
0x005b9a14

42
?
?
?
?

0x000b3820
0x000b3824
0x000b3828

35
75
?

0x00176a48
0x00176a4c
0x00176a50
0x00176a54
0x00176a58

42
?
?
?
?

101

Introductory Laboratory

Assigning an object

 Next, we swap the member variables of a and rhs

Array &Array::operator=(Array rhs) {
 swap(rhs);
 return *this;
}

b

array_capacity 5
internal_array 0x00176a48
array_size 1

a

array_capacity 5
internal_array 0x005b9a04
array_size 1

rhs

array_capacity 3
internal_array 0x000b3820
array_size 2

0x000b3820
0x000b3824
0x000b3828

35
75
?

0x00176a48
0x00176a4c
0x00176a50
0x00176a54
0x00176a58

42
?
?
?
?

0x005b9a04
0x005b9a08
0x005b9a0c
0x005b9a10
0x005b9a14

42
?
?
?
?

Array a(3);
a.append(35);
a.append(75);
Array b(5);
b.append(42);
a = b;

102

Introductory Laboratory

Assigning an object

 Now, when operator= exits, the object rhs is destroyed

Array &Array::operator=(Array rhs) {
 swap(rhs);
 return *this;
}

b

array_capacity 5
internal_array 0x00176a48
array_size 1

a

array_capacity 5
internal_array 0x005b9a04
array_size 1

rhs

array_capacity 3
internal_array 0x000b3820
array_size 2

0x000b3820
0x000b3824
0x000b3828

35
75
?

0x00176a48
0x00176a4c
0x00176a50
0x00176a54
0x00176a58

42
?
?
?
?

0x005b9a04
0x005b9a08
0x005b9a0c
0x005b9a10
0x005b9a14

42
?
?
?
?

Array a(3);
a.append(35);
a.append(75);
Array b(5);
b.append(42);
a = b;

103

Introductory Laboratory

Assigning an object

 a is now a deep copy of b and the old memory is cleaned up

Array &Array::operator=(Array rhs) {
 swap(rhs);
 return *this;
}

b

array_capacity 5
internal_array 0x00176a48
array_size 1

a

array_capacity 5
internal_array 0x005b9a04
array_size 1

0x00176a48
0x00176a4c
0x00176a50
0x00176a54
0x00176a58

42
?
?
?
?

0x005b9a04
0x005b9a08
0x005b9a0c
0x005b9a10
0x005b9a14

42
?
?
?
?

Array a(3);
a.append(35);
a.append(75);
Array b(5);
b.append(42);
a = b;

104

Introductory Laboratory

Printing an array

 What happens if we try to print an instance of an Array class?
 Array a(5);

 a.append(35);
 a.append(42);

 std::cout << a << std::endl;

 This will result in a compile-time error—how do you print an array?

 We can, however, define a function that says how to print an array

– We must declare this function to be a friend of our class

– This function must then describe how to print the array

105

Introductory Laboratory

Printing an array

 We must declare the function to be a friend
class Array {

 // private and public member functions and variables

 // A friend to print the array

 friend std::ostream &operator<<(std::ostream &, Array const &);

};

106

Introductory Laboratory

Printing an array

 That function must now print the object…
std::ostream &operator<<(std::ostream &out, Array const ¶) {

 if (para.empty()) {

 out << "-";

 } else {

 out << para.internal_array[0];

 }

 for (int i = 1; i < para.size(); ++i) {

 out << " " << para.internal_array[i];

 }

 for (int i = para.size(); i < para.capacity(); ++i) {

 out << " -";

 }

 return out;

}

Here, we print out those items that were appended
and for everything else (up to the capacity), we
print a hyphen

107

Introductory Laboratory

Update

 It’s 5:30, you’ve just finished your implementation of Array

– Your boss walks up and says “I need an array of doubles, now!”

The Office (U.S. TV series), NBC Universal Television

108

Introductory Laboratory

Update

 Your first thought:

109

Introductory Laboratory

Update

 Then you realize this might not be a good idea…
 // A friend to prdouble the array

 friend std::ostream &operator<<(std::ostream &, Array const &);

 double Array::size() const {

 return array_size;

 }

 double Array::variance() const {

 if (size() <= 1) {

 throw underflow();

 }

 double av = average();

 double ssdiff = 0;

 for (double i = 0; i < size(); ++i) {

 ssdiff += (internal_array[i] - av)*(internal_array[i] - av);

 }

 return ssdiff/(size() - 1);

 }

110

Introductory Laboratory

Templates

 Instead of using an array of int, let’s just define an arbitrary symbol

#include <algorithm>

class Array {
 private:
 int array_capacity;
 Type *internal_array;
 int array_size;

 public:
 Array(int = 10);
 int size() const;
 bool append(Type);
 // etc.
};

Array::Array(int n):

array_capacity(std::max(1, n)),
internal_array(new Type[array_capacity]),
array_size(0) {
 // does nothing
}

int Array::size() const {
 return array_size;
}

bool Array::append(Type obj) {
 if (full()) {
 return false;
 }

 // currently, entries 0, ..., array_size – 1
 // are occupied
 internal_array[array_size] = obj;
 ++array_size;
 return true;
}

111

Introductory Laboratory

Templates

 Now, you can do your own find-and-replace of the type whenever
you need a new Array structure

 On the other hand,

 if this is so obvious, why can’t C++ do this for you????

112

Introductory Laboratory

Templates

 Fortunately, it can, with a concept called templates

 All you have to do is tell the compiler that Type is meant to be

dictated by the programmer using the array class

113

Introductory Laboratory

Templates

 Instead of using an array of int, let’s just define an arbitrary type
#ifndef ARRAY_H
#define ARRAY_H

#include <algorithm>

template <typename Type>
class Array {
 private:
 int array_capacity;
 Type *internal_array;
 int array_size;

 public:
 Array(int = 10);
 int size() const;
 bool append(Type);
 // etc.
};

template <typename Type>
Array<Type>::Array(int n):
array_capacity(std::max(1, n)),
internal_array(new Type[array_capacity]),
array_size(0) {
 // does nothing
}

template <typename Type>
int Array<Type>::size() const {
 return array_size;
}

template <typename Type>
bool Array<Type>::append(Type obj) {
 if (full()) {
 return false;
 }

 // currently, entries 0, ..., array_size – 1
 // are occupied
 internal_array[array_size] = obj;
 ++array_size;
 return true;
}

114

Introductory Laboratory

Templates

 Note that template <typename Type> is simply a modifier for each

structure, be it a function or class

– Just like it is necessary that each function have a return type, any

function or class declaration or definition must be prefixed by this

statement if the structure uses templates

115

Introductory Laboratory

Templates

 There is just one subtlety with friends:
template <typename Type>
class Array {
 // private and public member variables and member functions
 // Friends
 template <typename T>
 friend std::ostream &operator<<(std::ostream &, Array<T> const &);
};

template <typename T>
std::ostream &operator<<(std::ostream &out, Array<T> const &rhs) {
 if (rhs.empty()) {
 out << "-";
 } else {
 out << rhs.internal_array[0];
 }

 for (int i = 1; i < rhs.size(); ++i) {
 out << " " << rhs.internal_array[i];
 }

 for (int i = rhs.size(); i < rhs.capacity(); ++i) {
 out << " -";
 }

 return out;
}

116

Introductory Laboratory

Templates

 Now, in the main function, we would specify the type of the array:

#include <iostream>

#include "Array.h"

int main() {

 // Create an array of size 10

 Array<int> info(10);

 std::cout << "The size of the array is " << info.size() << std::endl;

 info.append(42);

 info.append(91);

 info.append(35);

 info.append(83);

 std::cout << "The size of the array is now " << info.size() << std::endl;

 std::cout << "The average and variance are " << info.average()

 << " and " << info.variance() << std::endl;

 return 0;

}

117

Introductory Laboratory

Templates

 If we had an array of doubles:

#include <iostream>

#include "Array.h"

int main() {

 // Create an array of size 10

 Array<double> info(10);

 std::cout << "The size of the array is " << info.size() << std::endl;

 info.append(42.52);

 info.append(91.41);

 info.append(35.91);

 info.append(83.19);

 std::cout << "The size of the array is now " << info.size() << std::endl;

 std::cout << "The average and variance are " << info.average()

 << " and " << info.variance() << std::endl;

 return 0;

}

118

Introductory Laboratory

Testing

 Our testing environment includes a program called a driver and we

provide numerous testing input

 The driver instantiates an instance of the data structure and the

testing input indicates how to manipulate it

 We provide one set of test cases—you will need to generate your

own test cases, as well

119

Introductory Laboratory

Testing

 The testing environment is made up of:

Feature Sample names Description

Testing
environment

Array_tester.h
The testing environment, framework,
and interpreter

Testing
executable

Array_driver.cpp
Contains an executable which sets up
the testing environment

Test inputs int.in.txt double.in.txt The input commands

Test outputs int.out.txt double.out.txt The expected output

120

Introductory Laboratory

Testing

 Download Array_tester.h and Array_driver.cpp from

 http://ece.uwaterloo.ca/~dwharder/aads/Projects/src/

 and download Tester.h and ece250.h from

 http://ece.uwaterloo.ca/~dwharder/aads/Projects/src/

 Place them all in the same directory as Array.h

– Right-click on Header Files, select Add→Existing Item… and select the

header (.h) files Array_tester.h, Tester.h and ece250.h

– Right-click on Source Files, select Add→Existing Item… and select the
C++ (.cpp) file Array_driver.cpp

121

Introductory Laboratory

Testing

 Warning!

 IDEs such as Visual Studio, Eclipse, etc., only allow any one

project to have exactly ONE source file that contains an

int main()

 function

 You must right-click on main.cpp under Source Files and

select Exclude From Project

 You will forget this and you will run into a frustrating error!!!!

122

Introductory Laboratory

Testing

 Now when build your project, it will, again create an executable, but
now we have pass the file int.in.txt as input

 Open a Command-line Window

– The easiest way is to type cmd and press Enter in the Start menu:

cmd

123

Introductory Laboratory

Testing

 This launches a Command-line Window

 Change directory (cd) into the directory containing your source files:

C:\Users\dwharder\Documents\Visual Studio 2008\Projects\Lab0

124

Introductory Laboratory

Testing

 In the Debug sub-directory, there is an executable Lab0.exe

 When you execute this function, you are met with a prompt

 > Lab0.exe int

 1 %

 You can now type in various commands

 Note: the command-line argument int indicates we should be

generating Array<int>

– Alternatively, if you want Array<double>, use
> Lab0.exe double

125

Introductory Laboratory

Testing

 Two possible commands:

 new

 new: n

 When you execute this function, you are met with a prompt

 > Lab0.exe int

 1 % new: 3

 Okay

 2 %

 This creates a new instance of your Array class with the value 3

passed to the constructor

– The same as calling Array *object = new Array(3);

126

Introductory Laboratory

Testing

 Two other commands are:

 size n

 capacity n

 You can check that

 2 % size 0

 Okay

 3 % capacity 3

 Okay

 4 % These test:
 object->size() == 0
 object->capacity() == 3

127

Introductory Laboratory

Testing

 Another command is

 append n b

 You can check that

 4 % append 42 1

 Okay

 5 % append 37 1

 Okay

 6 % append 51 1

 Okay

 7 % append 68 0

 Okay

 8 %

These test:
 object->append(42) == 1
 object->append(37) == 1
 object->append(51) == 1
 object->append(68) == 0
Recall that 1 is true and 0 is false…

128

Introductory Laboratory

Testing

 Other examples:

 at i n

 at! i

 You can check that

 8 % at 1 37

 Okay

 9 % at 2 51

 Okay

 10 % at! 3

 Okay

 11 %

These test:
 (*object)[1] == 37
 (*object)[2] == 51
and that (*object)[3] throws an

exception

129

Introductory Laboratory

Testing

 We can end with

 11 % delete

 Okay

 12 % details

 SUMMARY OF MEMORY ALLOCATION:

 Memory allocated: 64

 Memory deallocated: 64

 INDIVIDUAL REPORT OF MEMORY ALLOCATION:

 Address Using Deleted Bytes

 0x49860a0 new Y 24

 0x49860d0 new[] Y 12

 13 % exit

 Finishing Test Run

 >

The first calls
 delete object;

130

Introductory Laboratory

Testing

 A list of all possible commands is always found at the top of the
Array_tester.h file in the comments

 * new new Array() create a new array with default capacity

 * new: n new Array(n) create a new array with capacity n

 * size n size the size equals n

 * capacity n capacity the capacity equals n

 * empty b empty empty() returns the Boolean value b

 * full b full full() returns the Boolean value b

 * sum n sum the sum of the entries is n

 * prod n prod the product of the entries is n

 * min n min the minimum entry is n

 * min! min an underflow exception is thrown

 * max n max the maximum entry is n

 * max! max an underflow exception is thrown

 * average d average the average of the entries is d

 * average! average an underflow exception is thrown

 * variance d variance the variance of the entries is d

 * variance! variance an underflow exception is thrown

 * std_dev d std_dev the standard deviation of the entries is d

 * std_dev! std_dev an underflow exception is thrown

 * at i m operator[] object[i] returns m

 * at! i operator[] object[i] throws an out_of_range

 * append n b append attempting to append n returns the Boolean value b

 * clear clear empties the array--always succeeds as a test

 * cout cout << Array print the Array (for testing only)

 * assign operator = assign this Array to a new Array object

 * summary prints the amount of memory allocated

 * minus the memory deallocated

 * details prints a detailed description of which

 * memory was allocated with details

 * !! use the previous command, e.g. 5 append 3

 * 6 !! 7 // same as append 7

 * !n use the command used in line n 7 append 7

 * 8 !7 9 // same as append 9

131

Introductory Laboratory

Testing

 If you ask for something incorrect, you get an error message:
 1 % new

 Okay

 2 % append 52 1

 Okay

 3 % at 0 53

 Failure in instance[0]: expecting the value '53' but got '52'

 Suppose you forgot to implement an error condition:
 4 % at! 1

 Failure in instance[1]: expecting to catch an exception but nothing

 was raised.

132

Introductory Laboratory

Testing

 Now, you could enter these commands over and over again, or you

could save these instructions in a text file and then redirect them as

input to the interpreter

– Our tests are provided to you as text files

– Move the provided .txt files to the project Debug directory

 At the command line, type:

 > Lab0.exe int < int.in.txt

 > type int.out.txt

 > Lab0.exe double < double.in.txt

 > type double.out.txt

 Your output should be identical to the corresponding *.out.txt

133

Introductory Laboratory

Testing

 Note: If your code does not work, you are welcome to examine the

sample solution at

 http://ece.uwaterloo.ca/~dwharder/aads/Projects/0/src/Array.h

 The solution contains what would be reasonably considered to be

the minimum amount of acceptable comments

 Note: If you do not make a serious attempt to write your own

implementation before you check the solution, you will have wasted

your time… 

– It would be much better for you and your friends if you asked your

friends for help…

134

Introductory Laboratory

Going back to ecelinux

 So, now we must try compiling this in Unix

– First, we must move the files over

 To copy files between operating

systems, we must use the

file-transfer protocol (ftp)

135

Introductory Laboratory

Going back to ecelinux

 The easiest is if you still have the SSh window open, just select the

ftp icon in the toolbar:

 This opens an SSh Secure File Transfer window

– Don’t worry about the left-hand local panel

– Navigate to ece250/lab0 in the right-hand remote panel

 Now you can open a Windows Explorer window and drag-and-drop

all of the .h, .cpp, and .txt files into the right-hand remote panel

136

Introductory Laboratory

Going back to ecelinux

 In your SSh shell, you can now see these files:

 $ pwd

 /home/dwharder/ece250/lab0

 $ ls

 a.out Array.h Array_driver.cpp

 Array_tester.h double.in.txt double.out.txt

 ece250.h hello.cpp int.in.txt
 int.out.txt Tester.h main.cpp

 $ g++ Array_driver.cpp

g++ will overwritten the a.out file

137

Introductory Laboratory

Going back to ecelinux

 We can test the files, too:

 $./a.out int < int.in.txt

 output...

 $ cat int.out.txt

 it should appear the same...

 If you want to be certain they’re the same, diff should have no

output:

 $./a.out int < int.in.txt > output.txt

 $ diff int.out.txt output.txt

 $

138

Introductory Laboratory

Project submission

 You are now ready to create your submission:

 $ tar –cvf uwuserid_p0.tar Array.h

 $ ls

 ... uwuserid_p0.tar ...

 $ gzip uwuserid_p0.tar

 $ ls

 ... uwuserid_p0.tar.gz ...

 You can now copy the files back to Windows by dragging and

dropping them from the right-hand panel in ftp to your Windows file

system

– You might have to refresh to

see the newly created file

139

Introductory Laboratory

Recursion

 Recursion is defined as when a the value of a function is defined in

terms of other values of the function

– The value of the function will be known for at least one point

 We will look at the factorial function and the Fibonacci numbers

140

Introductory Laboratory

Factorial function

 There are two definitions of the factorial function:

 Explicit:

 Recursive:

1

!
n

k

n k




 

1 0
!

1 ! 0

n
n

n n n


 

  

141

Introductory Laboratory

Factorial function

 In this case, the two implementations are:

double factorial(int n) {

 double result = 1;

 for (double i = 2; i <= n; ++i) {

 result *= i;

 }

 return result;

}

double factorial_r(int n) {

 if (n <= 1) {

 return 1;

 } else {

 return n*factorial_r(n - 1);

 }

}

142

Introductory Laboratory

Factorial function

 Why double and not int or long?

 231 – 1 = 2147483647

 13! = 6227020800

 263 – 1 = 9223372036854775807

 21! = 51090942171709440000

143

Introductory Laboratory

Fibonacci numbers

 There are two definitions of the Fibonacci numbers:

 Explicit:

 Recursive:

 
 

def 5 1

2

1

5 5

nn

F n









 

 
   

1 1,2

1 2 1

n
F n

F n F n n


 

   

144

Introductory Laboratory

Fibonacci numbers

 In this case, the two implementations are:

double fibonacci(int n) {

 double phi = (std::sqrt(5.0) + 1.0)/2.0;

 double result = (

 std::pow(phi, n) - std::pow(1.0 - phi, n)

)/std::sqrt(5.0);

 std::floor(result + 0.5);

}

double fibonacci_r(int n) {

 if (n <= 2) {

 return 1;

 } else {

 return fibonacci_r(n - 1) + fibonacci_r(n - 2);

 }

}

 
 1

5 5

nn

F n
 

 

145

Introductory Laboratory

Fibonacci numbers

 Why double and not int or long?

 231 – 1 = 2147483647

 F(47) = 2971215073

 263 – 1 = 9223372036854775807

 F(93) = 12200160415121876738

146

Introductory Laboratory

Trying it out…

 In this case, the two implementations are:
#include <iostream>

using namespace std;

int main() {

 // print 17 digits of precision in the output

 cout.precision(17);

 for (int i = 0; i <= 100; i += 1) {

 cout << "Explicit: " << i << "! = " << factorial(i) << endl;

 cout << "Recursive: " << i << "! = " << factorial_r(i) << endl;

 cout << "Explicit: F(" << i << ") = " << fibonacci(i) << endl;

 cout << "Recursive: F(" << i << ") = " << fibonacci_r(i) << endl;

 }

 return 0;

}

147

Introductory Laboratory

Trying it out…

 How long does this take for you to run?

148

Introductory Laboratory

Usage Notes

• These slides are made publicly available on the web for anyone to
use

• If you choose to use them, or a part thereof, for a course at another
institution, I ask only three things:

– that you inform me that you are using the slides,

– that you acknowledge my work, and

– that you alert me of any mistakes which I made or changes which you
make, and allow me the option of incorporating such changes (with an
acknowledgment) in my set of slides

 Sincerely,

 Douglas Wilhelm Harder, MMath

 dwharder@alumni.uwaterloo.ca

