Introduction

uVision has powerful tools for debugging and developing C and Assembly code. For debugging
a code, one can either simulate it on the IDE’s simulator or execute the code directly on ta Keil
board. As the following figure shows, uVision can simulates a microcontroller architecture and
execute all instructions just like the real one. uVision also can communicate with the debugging
chip through interfaces like JTAG or Cortex debug.

Editor
LPC1768
C
#include<LPC1768. h> Debug System = Cortex-M3 Core |7
int main(){
SystemInit();
while(1){
. Memory 1
}
}
I0 -

Build Targc'g3 o

Simulator
Cortex-M3 Core [T
ox Object Mode Start chuggin; Session via simulation
Memory M
I0 =

Keil uVision development story (Adapted from (Valvano, 2014a))

The hardware simulator shipped with uVision is a powerful simulator that you can emulate the
code on almost every Cortex/Arm chips and their peripherals. The code can be tested and
debugged without even using the actual hardware environment such as MC1700 Keil board.
The simulator provides a precise clock sequence which can be trusted like the actual hardware.
However, the clock runs much slower compared the real environment. On other hand, the
uVision connects to debugging ports via JTag or Cortex debug 10/20 pins and provides all on
the fly debugging facilities such as break points, watch points, register/memory monitoring, and
peripheral emulator. One of the USB wires, usually the black one, that connects the Keil port to
PC is for flashing and debugging.

How to setup the debugger

The uVision debugger can be configured to Simulator or Target debugger. To choose one,
select to £< Options for Target and Debug tab when the developing mode is active. As
depicted in the following figure, many options can be set for either modes. To debug the target
flashed program, click on the Use radio button and pick ULINK2/ME Cortex Deubgger option.

e ~

Options for Target 'LPC1768 Flash’ (=]

Device | Target [Output | Listing | User] C/CH-] Asm | Linker Debug | Utilties |

" Use Simulator Settings * Use: |ULINK2/ME Cortex Debugger LI Settings |

™ Limit Speed to Real-Time

[V Load Application at Startup [V Runto main() [V Load Application at Startup [V Run to main()
Initialization File: Initialization File:
Restore Debug Session Settings Restore Debug Session Settings

[V Breakpoints [V Toolbox [V Breakpoints [V Toolbox

[V Watch Windows & Perfformance Analyzer [V Watch Windows [='I'

[V Memory Display [V Memory Display
CPU DLL: Parameter: Driver DLL: Parameter:
ISARMCM&DLL I-MPU |SARMCM34DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
[DARMP1.DLL [pLPC1768 |TARMP1.DLL |pLPC1768

| 0K I | Cancel | | Defaults | Help

The debugging session option

Once the code is successfully built, the debugging mode is started by clicking on its icon @ . As,
the following figure shows, many futures become accessible in the debugging mode. Such
features are enabled or disabled with Debug menu. By default, you can see the Registers’
content, Disassembly code, Call stack, and Variable content. To perform a debugging session,
you may run it [£|l,stop it €9 ,or reset it Bar .

\4 E\Proji i inky: uvproj - pVisiond
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NS s od | | ® | JE | @ wino
glEolnee o OEEEEIEI2- 8- 3-8 x-
Registers 2 Disassembly 2 B
Register Voo 35: int main (void) { -
TG 11BC B508 PUSH (r3,1r)]
=0 B:0000116D 36: uint32_t ad_a:;g =0;
R1 010000238 OxOOOSI-JLBE 2400 MOVS r4,#0x00)
2 G:00000000 ;: uintl6_t ad_val = 0, ad_val_ = OXFFFF;
I o Dﬂﬂﬂﬂ 0: OOGEJ'L:LCO 2500 MOVS 5,#0x00
i 2 OXOOOOIICZ F64F76FF MOVW rél OXFFFF
RS 0:0000327C x00902 OEE 6, $0x . ’
R6 600000000 39: Lm:gm:u,) /* LED Initialization /
& 600000000 0x000011C6 F7FEFFFS BL.W LED_Init (0x000001B4)
g oD 0: ooégilcnsis?;?;;;)'m W SER Ini (0x00000134) g & ¥,
R9 00000000 |, P : nie (Ox <
R10 000000000 —
R11 x00000000 [] Abstract.tt Serial.c [#] LED.c RQ.c Blinky.c ADC.c Retarget.c startup_LPC17x0cs v X
R12
23 =
R13(SP) (x10000238 s e g
TS 2: e _FI 1 /* Font index 16x24 %
RI5(C) (x000011BC . o
- e ;5 char text[10];
iy 28 /+ Import external variables from IRQ.c file */
e 29 extern uintg t clock_1s; M
= Intemal = £ =
Mode Thread L
31 =
Priviege Priviieged 20/
Stack MSP
33 Main Program
States 5358 b . o —
Sec 000057644 Y35 Blint main (void) {
36 uint32_t ad_avg = 0:
37 uintl6_t ad_val = 0, ad_val_ = OxFFFF;
38
39 LED_Init(); /* LED Initialization w/
40 SER_Init(); /* UART Initialization =/
41 | ADC Init(): /* ADC Initialization */
42
43 [J#ifdef _ USE_LCD
44 GLCD_Init(): /* Initialize graphical LCD /
45 -
[project | = Registers < I | »
Command 1 [@ CallStack - Locals 1B
##*%* Restricted Version with 32768 Byte Code Size Limit Il Name Location/Value Type
*** Currently used: 12964 Bytes (39%) -
2 % main 0x000011BC intfQ
1A ‘led 3 @ ad_avg <not in scope> auto - unsigned int
¥ @ ad_val <not in scope> auto - unsigned short
il ¥ @ ad_val_ <not in scope> auto - unsigned short
>
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE | §call Stack + Loals [Waten 1 | M Memory 1
Simulation 11:0.00037644 sec L35 C:1 CAP NUM SCRL OVR RAW

Debugging Window

The uVision has many useful features for debugging CMSIS and RTX based codes(Keil.com.
(n.d.)):

1. Register Window

2. Call stack

3. Watch window

4. Memory window

5. Hardware Breakpoints
6. Watchpoints

7. Performance Analyzer

8. Execution Profiling (EP)

9. RTX Tasks and System window
10. RTX Event Viewer

11. UART Window

12. Code Coverage

13. Peripheral Window

14. Tool Box.

Watch window

Using the watch window, one can see the content of any variable at any time. To watch a
variable content, you may select the variable, right click on the selected name, and choose add
to watch1. The content of the variable becomes visible whenever the variable is alive in the
current trace.

Watch 1 o 3
Name Value Type

v ad_avg 0x00000201 unsigned int

v ad_val 0x0000 unsigned short

<Enter expression>

&0 Call Stack + Locals | Watch 1 | B Memory 1

A watch windows

Hardware Breakpoints

During a debugging session, one usually wants to break the current execution and check the
variables’ content at a particular point (Keil.com. (n.d.)). Breakpoints are very useful feature in
all debugging tools and IDEs such as Eclipse, Visual Studio, and GDB. uVision supports
execution, read/write access, and complex breakpoint. An execution breakpoint can be places
at any executable line of Assembly or C code. To place a breakpoint find the line you want to

stop on, just go to Debug menu and select Insert/Remove Breakpoint. A red circle on the left

nky-Keil\Blinky.uvproj - pVisiond

Flash Peripherals Tools SVCS Window Help

ﬁ| @)| start/Stop Debug Session Ctrl+F5 | # wino o 3 e ‘| °® S & I‘ 2
|4 <;§|R°5‘?ResetCPU Evﬂvv‘x“v
» B Run Fs
& stop) it /* AD value changed */
i) 0,r5,r6
+} Ste F11 2

woo |53 Stee %x000012D0
022 | {}* Step Over F10
JBO | {}* Step Out Ctrl=F11 ke, =5
1014 .
1201 {} Runto CursorLine Ctri+F10 §304X", ad val): /* format text for print out */
000 o> Show Next Statement

2,r5
3000 et
008 Breakpoints... ctri+B f1,{pc}+4 ; @0x0000135C

0 c,#188 ; @0x00001364
000 @ Insert/Remove Breakpoint Fa E)S[Sr,i')cfsﬁ (OXSOOOlSOP\
;1328 Enable/Disable Breakpoint Ctrl=F9
000 (9 Disable All Breakpoints [] RQ.c (] Blinky.c [¥] ADC.c [#] Retarget.c [] startup LPC17xxs [£] GLCD_SPILPC1700.c
JF8 | % Kill All Breakpoints Ctrl=Shift=F9
)230. /* If conversion has finished w/f
10D7 0S Support »
129A

Xec 0 0 g »

3000 Execution Profiling L E - ’

Memory Map...

Inline Assembly... 0x10) { /*

Function Editor (Open Ini File)...

Debug Settings...

696 72 T

558 ‘}73 if (ad_val ~ ad val_) { /* AD value changed Wi
74 ad_val = ad val;
75

Insert/Removing a Breakpoint

side of the intended code shows the breakpoint is successfully placed and the execution is
stopped while the program counter is passing by. Breakpoints can be disables or removed via
Debug menu.

Once an execution is paused on an statement, the processing unit stopped and the program
counter does not proceed to the next statement, so one can see the call stack content, registers
values, watched variables, and port values. Like any other debugger, one can Step Into

{*statement, Step Over {}*the next statement, Step Out {¥from the next statement, or
Run To Cursor Line "i}. The execution trace can also be continued using Run command, or to
be terminated using Stop command.

)

Viewing Memory Contents

From the Debug Toolbar or View menu, one can activate the Memory window ~ showing the
memory content at each memory address. The memory content could be shown in Hex or Dec.
Given an address location, the memory window shows the byte or words around with respect to

what data format is asked. As shown in the following figure, by right clicking in memory window
one can select her intended format.

xd L v | Decimal
Unsigned >
: print out wi Signed y =
Ascii
Float
i e I 1| &
t bargraph is 10 bit Double
| Modify Memory at 0x00000014 »
Memory 1 Set Breakpoint at 0x00000014 o @
Address: fadval | Addadalto.. » =
(4
0x00000000 C Set Tracepoint at "*(unsigned int*)0x00000014"... » P0000237
0x00000014: ¢ 239 UUUUUUUZET 2UZ6529862 UUUUUUUUUUTUo00000000

0x00000028: 0000000000 0000000243 0000000245 0000000000 0000000247
0x0000003C: 0000000609 0000000251 0000000251 0000000251 0000000251
0x00000050: 0000000251 0000000251 0000000251 0000000251 0000000251
0x00000064: 0000000251 0000000251 0000000251 0000000251 0000000251

0x00000078: 0000000251 0000000251 0000000251 0000000251 0000000251 e
@ Call Stack + Locals | Watch 1 | [Memory 1 |
ULINK2/ME Cortex Debugger t1:1.46521756 sec L73 C15 CAP NUM SCRL OVR R/W

A memory window

Using Peripheral Windows

Using the uVision debugger, one can monitor and change the memory locations regarding each
peripheral in its Window. The Peripherals menu provides a separate access to 1/0 and serial
ports, A/D convertors, interrupts, times and chip specific peripherals (Keil.com. (n.d.)). The
following figure representing the General Purpose Input/Output 0 (GPIO 0) window shows the
value of each memory location related to general purpose I/O ports.

General Purpose Input/Output 0 (GPIO 0) - Fast Interface
—GPIOD

31 Bts 24 23 Bts 16 15 Bits 0

FIODDIR: [B0000000 P I P I P T T For e

| FIOOMASK:[0<00000000 1T T T T [T T T T T 7T [TTTTTTT FTrrTTTT
FIOOSET: [R000002C0 [T T T T T T T [TTTTTTT [TTTT TR FRITTTTT
FIOOCLR: [000000000 1T T T T I T T T T [T T rTTrrrTT
FIOOPIN: [&IDFF8DFF [T T o v PRI FTTT R FRRRRRRT

>

GPIO port window

Debugging Procedure

So far we have seen many debugging tools that uVision provides, but how can we use them
and why do we basically them? To answer these types of questions, first we need to see what is
debugging. Practitioners and researchers do not agree on a unique definition about debugging.
Many terms, such as program testing, diagnosis, tracing, or profiling, are interchangeably
interpreted as debugging or as part of a debugging procedure. Researchers define the
debugging is an activity of localization, understating, and correcting faults. Therefore, to debug a
code, one has to first localize the fault. In a large software project with millions lines of code and
source files, it would be very hard or even impossible to check them all. Knowing the fault, one
has to first narrow down her search for fixing a fault. Modular programming helps us in this
matter, because we can easily review a limited number of modules related to the fault. Lack of
understating the root of the fault can end up a fix only correcting the symptoms, yet not the
actual problem. Therefore, once one localized parts of a code involving a fault, next she should
figure out an actual reason. The fixing is the last step of debugging procedure, and there has to
be ensured the issue is mitigated and no new issue appears.

Testing

Debugging is started once a fault is revealed. One way for revealing and modelling faults is
software testing. A test-case is a pair of input and output of a software. If what she gets as an
output differs from her expectation, a fault was occurred. A test-case, as a scenario of an
execution, can be functional or non-functional.

Functional test-cases check whether the output is expected for the user. For example, a
program computing square root is expected to return 2 when 4 is inputed. Non-functional test-
cases examine the quality of a given software system. Unlike many non-functional properties,
Performance is an important non-functional property that could be straightforwardly tested.
Measuring the elapsed time, the number of finishing tasks in a unit of time, and the number of
concurrent clients are some candidates for test performance in any software systems. Real-time
systems have a strict restriction on time performance: a particular number of tasks have to be
done a certain amount of time.

Also, A Test-case has to be reproducible. A failed test-cases, as a specification of a fault, has to
always make the same output no matter how many times it executed. Making reproducible test-
cases for concurrent software systems could be very hard and might be impossible. So, one
may need to simulate the same situation within a test-case.

Functional debugging

Given a test-case revealing a fault in functionality of a software, one has to first localize the
debugging area and try to understand the potential reasons. Debugging a fault can be done
using static or dynamic information. The static debugging is performed using the code without
considering any execution traces. As an example, when one debugs a fault in a multiplication

operator of a calculator program, she only works on the modules calculating the multiplication
operator and the rest can be safely ignored. The complexity of using programming structures,
such as loop or if statements, makes the static diagnosis really hard or impossible in some
cases. Debugging, on other hand, can use dynamic traces of a program execution. Any test-
case represents one execution trace of a given program, where as the code execution the test-
case may involve much more than one trace. Once a faulty trace is found, the localization and
understating become focused and much easier.

There are couple of techniques to find the appropriate execution traces. Some may need to
instrumenting the code and others use the debugging tools. Some techniques are useful for
basic faults and others for more complex ones.

Tracing the code step-by-step. uVision Debugger, like many other modern debugger, provides
facilities for executing the code line-by-line. After executing each statement, one may see the
contents of stack, memory location, registers, variables, and ports and check how the statement
affects on them. The single step tracing gives very detailed information, but becomes
cumbersome or infeasible debugging for repetitive and long traces.

Breakpoints. Instead of stepping into every statement, one can use breakpoints to trap the
execution on some particular lines. Once the program execution is stopped at a line, all the
execution information becomes visible for checking or even changing. Breakpoints are very
powerful debugging tool that are used to stop the execution on specific statement or specific
condition. For example, one might set a conditional breakpoint to pause the execution if a
variable is read or written in.

Instrumenting with printf. Using printf statements is probably the most dominant and effective
debugging technique that is used by programmers(Valvano, J. (2014b)). For debugging a fault,
a programmer instruments the code by placing printf statement in particular locations to see
how variables are changed during a test-case execution. Clearly, debugging with printf
statements only requires a compiler and does not need any debugging tool. The problem with
using printf statements in realtime systems is that the print command may not be always
available. Moreover, instrumenting the code with printf statements is not repetitive and some
statements have to be changed from one test-case to another one.

Instrumenting with dumping in caching. One issue with previous techniques is time
constraints unusually enforced in realtime systems. For example, in a realtime software system
processing external events in a certain amount of time, stopping the execution or wasting clocks
for printing could cause the event is lost because of another event arrival. In this situation, one
can define an array, usually a large one, and dump the debugging data in it. When the trace is
finished, the array can be printed or checked with memory window. This instrumenting
technique puts a minimum overhead compared to printf.

Performance debugging

A Realtime system has to finish a task in a certain amount time, otherwise everything might fail
although the system eventually carry out its functions. Performance debugging plays very
important role in realtime systems and definitely is harder than functional debugging. Three
popular techniques are used for performance debugging(Valvano, J. (2014b)):

Counting statements’ bus cycles. The code , in C or Assembly, is eventually transformed to
machine instructions to be executed on a microcontroller. Every machine instruction is
executed within certain number of clocks. So, collecting the number of clocks for all instructions
of a program gives the execution time. Although this technique gives the most accurate elapsed
time and does not make any overhead, but is just practical for small programs with no branches.
Modern microcontrollers employ techniques, such as pipelines, Interrupts, and multitasking, to
execute more tasks in less time.

Instrumenting the code with time counter. Cortex-M3 provides a timer helping operating
system to carry out scheduling tasks in task-management. Systick (Yiu, J. (2010)) is a 24-bit
down counter that is used to generate interrupts or timing measurement. The counter puts a
minimum instrumentation overhead (Valvano, J. (2014b)).

Monitoring ports. This technique uses external monitoring and measurement tools, such as an
oscilloscope, for performance debugging. In this technique, the output ports are monitored for
any signal changes. The time between two signals is computed as an elapsed time. For
example, one can instrument the code by putting two statements for turning on and off an L.E.D.
before and after a code block, and monitor the L.E.D.’s GPIO port. The time that the L.E.D.
stayed on is measured as the execution time of the code block. Compared to instrumenting with
a time counter, this technique can measure time more that 24-bit clock. uVision provides Logic
Analyzer to monitor the content of global and static variables. This feature is enabled in
Simulation mode and target mode with ULINK Pro connection.

References

Valvano, J. (2014a). Embedded systems: Introduction to ARM Cortex-M
microcontrollers. (5th ed.). S. 1.: Jonathan W. Valvano.

Keil.com. (n.d.). Getting Started Creating Applications with uVision®4.
Valvano, J. (2014b). Embedded systems: Real-time operating systems for the
ARM® cortex-M microcontrollers. (2nd ed., Vol. 3). Texas: Jonathan W. Valvano.
Yiu, J. (2010). Definitive guide to the ARM Cortex-M3. Amsterdam: Newnes.

