
Introduction!
uVision has powerful tools for debugging and developing C and Assembly code. For debugging
a code, one can either simulate it on the IDE’s simulator or execute the code directly on ta Keil
board. As the following figure shows, uVision can simulates a microcontroller architecture and
execute all instructions just like the real one. uVision also can communicate with the debugging
chip through interfaces like JTAG or Cortex debug. !

The hardware simulator shipped with uVision is a powerful simulator that you can emulate the
code on almost every Cortex/Arm chips and their peripherals. The code can be tested and
debugged without even using the actual hardware environment such as MC1700 Keil board.
The simulator provides a precise clock sequence which can be trusted like the actual hardware.
However, the clock runs much slower compared the real environment. On other hand, the
uVision connects to debugging ports via JTag or Cortex debug 10/20 pins and provides all on
the fly debugging facilities such as break points, watch points, register/memory monitoring, and
peripheral emulator. One of the USB wires, usually the black one, that connects the Keil port to
PC is for flashing and debugging.!!
How to setup the debugger !

Keil uVision development story (Adapted from (Valvano, 2014a))

The uVision debugger can be configured to Simulator or Target debugger. To choose one,
select to Options for Target and Debug tab when the developing mode is active. As
depicted in the following figure, many options can be set for either modes. To debug the target
flashed program, click on the Use radio button and pick ULINK2/ME Cortex Deubgger option. !
!

!
!
Once the code is successfully built, the debugging mode is started by clicking on its icon . As,
the following figure shows, many futures become accessible in the debugging mode. Such
features are enabled or disabled with Debug menu. By default, you can see the Registers’
content, Disassembly code, Call stack, and Variable content. To perform a debugging session,
you may run it ,stop it ,or reset it .!!!!

Getting Started: Creating Applications with µVision 113

Configuring the Debugger
 Choose Target Options – from the Build Toolbar and select the Debug

tab

Alternatively, you can use
the Project – Options for
Target Menu, to open this
dialog.

Check the Use radio button
and select the appropriate
debug interface.

Control Description
Settings Opens the configuration dialog for the simulation driver or the

Advanced GDI target driver
Load Application at Startup Loads the application program when you start the debugger
Limit Speed to Real-Time Limit simulation speed to real-time such that the simulation does

not run faster than the target hardware
Run to main() Program execution halts at the main C function. When not set,

the program will stop at an implicit breakpoint ahead of the main
function

Initialization File Specifies a command script file which is read and executed
when you start the debugger, before program execution is
started

Breakpoints Restores breakpoint settings from the prior debug session
Watchpoints & PA Restores watchpoints and Performance Analyzer settings from

the prior debug session
Memory Display Restores memory display settings from the prior debug session
Toolbox Restores toolbox buttons from the prior debug session
CPU DLL Specifies the instruction set DLL for the simulator. Do not

modify this setting.
Driver DLL Specifies the instruction set DLL for the target debugger. Do not

modify this setting.
Dialog DLL Specifies the peripheral dialog DLL for the simulator or target

debugger. Do not modify this setting.

 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and µVision www.keil.com

6

3) Compiling Demo.c and the other source files:

1. Click on the Rebuild icon to compile the sources. Must compile and link with no errors or warnings.

2. Enter Debug mode by clicking on its icon.

3. Start the program by clicking on the RUN icon.
4. Note: you can stop the program with the STOP icon. Leave it running.

Tip: You are currently using the simulator therefore you do not need to use the Load icon to program any memory. This
is also true if you are running in RAM in a real target and have configured this properly. You enter debug mode directly.

If you want to run the program in Flash and have configured it properly, you will need to use the Load icon or have the
Update Target before Debugging selected in the Flash programmer configuration window before entering debug mode.

4) µVision Features useful to view and control RTX operation:
A) Watch window:
We will use the watch window to monitor the two global variables we created: counta and countb.

1. Open a Watch window if it is not already open: open View/Watch Window and select Watch 1.
2. Locate counta in Demo.c and block it using the mouse. Click on counta and drag it into Watch 1 and release.
3. Similarly, drag countb into Watch 1.
4. The values of counta and countb will alternatively increment as

each of its respective task runs as shown here:
5. Double-click on counta or countb while it is incrementing. Enter 0

and press the Enter key. You can modify Watch or Memory
window values on the fly without stealing any CPU cycles. This
works with the simulator or on a real Cortex-M target processor.

Note: We are using the simulator here. On my computer the tasks change
state every 5 or 6 seconds. This helps us view RTX in slow motion. On a real target RTX will run much faster.
B) Memory window:

1. Open Memory 1 (if not already open) by selecting View/Memory windows and select Memory 1.
2. Drag counta into this Memory window (or enter it manually).
3. Note the value in counta is used to point to a physical memory address.

This is useful working with pointers.
4. Add and ampersand “&” in front of counta and now you will see the

contents of the variable counta.
5. Right click in the Memory window and select Unsigned and then

Long.
6. Now counta is displayed as a 32 bit number and so is countb since it is adjacent in memory to counta.

C) Hardware Breakpoints: (there are usually 6 on a Cortex-M3)
1. Set a hardware breakpoint by double-clicking next to the line incrementing counta in Demo.c. This will create a red

box as shown here and presently the program will stop here once Task1 starts to run.
The yellow arrow is the Program Counter contents.

2. Click on RUN several times and note counta increments each time.
3. Remove this breakpoint and set one on countb++. Click on RUN and note the

program will stop once Task2 runs.
4. Remove this breakpoint and click on RUN.

TIP: You can add variables to the Watch and Memory windows while the program is running. You can also set breakpoints
“on the fly” as well as many other µVision features. This is also true when using a real target processor.

 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and µVision www.keil.com

6

3) Compiling Demo.c and the other source files:

1. Click on the Rebuild icon to compile the sources. Must compile and link with no errors or warnings.

2. Enter Debug mode by clicking on its icon.

3. Start the program by clicking on the RUN icon.
4. Note: you can stop the program with the STOP icon. Leave it running.

Tip: You are currently using the simulator therefore you do not need to use the Load icon to program any memory. This
is also true if you are running in RAM in a real target and have configured this properly. You enter debug mode directly.

If you want to run the program in Flash and have configured it properly, you will need to use the Load icon or have the
Update Target before Debugging selected in the Flash programmer configuration window before entering debug mode.

4) µVision Features useful to view and control RTX operation:
A) Watch window:
We will use the watch window to monitor the two global variables we created: counta and countb.

1. Open a Watch window if it is not already open: open View/Watch Window and select Watch 1.
2. Locate counta in Demo.c and block it using the mouse. Click on counta and drag it into Watch 1 and release.
3. Similarly, drag countb into Watch 1.
4. The values of counta and countb will alternatively increment as

each of its respective task runs as shown here:
5. Double-click on counta or countb while it is incrementing. Enter 0

and press the Enter key. You can modify Watch or Memory
window values on the fly without stealing any CPU cycles. This
works with the simulator or on a real Cortex-M target processor.

Note: We are using the simulator here. On my computer the tasks change
state every 5 or 6 seconds. This helps us view RTX in slow motion. On a real target RTX will run much faster.
B) Memory window:

1. Open Memory 1 (if not already open) by selecting View/Memory windows and select Memory 1.
2. Drag counta into this Memory window (or enter it manually).
3. Note the value in counta is used to point to a physical memory address.

This is useful working with pointers.
4. Add and ampersand “&” in front of counta and now you will see the

contents of the variable counta.
5. Right click in the Memory window and select Unsigned and then

Long.
6. Now counta is displayed as a 32 bit number and so is countb since it is adjacent in memory to counta.

C) Hardware Breakpoints: (there are usually 6 on a Cortex-M3)
1. Set a hardware breakpoint by double-clicking next to the line incrementing counta in Demo.c. This will create a red

box as shown here and presently the program will stop here once Task1 starts to run.
The yellow arrow is the Program Counter contents.

2. Click on RUN several times and note counta increments each time.
3. Remove this breakpoint and set one on countb++. Click on RUN and note the

program will stop once Task2 runs.
4. Remove this breakpoint and click on RUN.

TIP: You can add variables to the Watch and Memory windows while the program is running. You can also set breakpoints
“on the fly” as well as many other µVision features. This is also true when using a real target processor.

 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and µVision www.keil.com

7

D) Watchpoints: (also called Access Breaks)
It is possible to stop the program when a variable equals a user specified value. This is very useful during debugging.

1. Stop the program by clicking on the STOP icon.
2. Open Debug/Breakpoints or press Ctrl-B.
3. Enter “counta == 0x3200”, and select “Write” as shown here.

Click on Define to move the Watchpoint to the upper area. Click
Close.

4. Set counta = 0x0 in the watch window. Click on RUN.
5. Presently the processor will stop when count equals 0x3200.
6. Open the Breakpoint window and select Kill All to remove the

Watchpoint. Select Close.
7. Click on RUN for the next example.

E) Performance Analyzer:
The Performance Analyzer (PA) tells you where your program is spending its time. This can alert you to “time hogs”. PA is
available only with the Keil Simulator or the ULINKpro adapter with an ETM trace equipped processor such as LPC1768.

1. Select View/Analysis Windows and select Performance Analyzer.
2. Open Demo + and then the next Demo + to see the window displayed here:
3. If you select Functions in the

Show: box, Task1 and Task2
are treated as functions.

4. With Show: set to Modules,
stop the processor and click

on the RESET icon.
5. Click on RUN and watch the

changes as various modules
are run. Note the various
statistics gathered.

F) Execution Profiling (EP):
Execution Profiling displays how many times a function has been called or the total time spent in the function. EP works
with the simulator or with the ULINKpro with an ETM trace equipped processor such as LPC1768 or many STM32 parts.

1. Select Debug and select Execution profiling and either Show Times or Show Calls. An extra column opens in the
source and disassembly window as shown to the right:

2. Hold the cursor over a time or a call and a display window appears
showing both calls and times as shown here:

TIP: You can group times or calls by blocking the source text of interest.
Right click on this block and select Outlining. Various options are provided in this menu to configure this feature.

The debugging session option

 Copyright © 2010 ARM Ltd. All rights reserved

The Keil RTX Real Time Operating System and µVision www.keil.com

6

3) Compiling Demo.c and the other source files:

1. Click on the Rebuild icon to compile the sources. Must compile and link with no errors or warnings.

2. Enter Debug mode by clicking on its icon.

3. Start the program by clicking on the RUN icon.
4. Note: you can stop the program with the STOP icon. Leave it running.

Tip: You are currently using the simulator therefore you do not need to use the Load icon to program any memory. This
is also true if you are running in RAM in a real target and have configured this properly. You enter debug mode directly.

If you want to run the program in Flash and have configured it properly, you will need to use the Load icon or have the
Update Target before Debugging selected in the Flash programmer configuration window before entering debug mode.

4) µVision Features useful to view and control RTX operation:
A) Watch window:
We will use the watch window to monitor the two global variables we created: counta and countb.

1. Open a Watch window if it is not already open: open View/Watch Window and select Watch 1.
2. Locate counta in Demo.c and block it using the mouse. Click on counta and drag it into Watch 1 and release.
3. Similarly, drag countb into Watch 1.
4. The values of counta and countb will alternatively increment as

each of its respective task runs as shown here:
5. Double-click on counta or countb while it is incrementing. Enter 0

and press the Enter key. You can modify Watch or Memory
window values on the fly without stealing any CPU cycles. This
works with the simulator or on a real Cortex-M target processor.

Note: We are using the simulator here. On my computer the tasks change
state every 5 or 6 seconds. This helps us view RTX in slow motion. On a real target RTX will run much faster.
B) Memory window:

1. Open Memory 1 (if not already open) by selecting View/Memory windows and select Memory 1.
2. Drag counta into this Memory window (or enter it manually).
3. Note the value in counta is used to point to a physical memory address.

This is useful working with pointers.
4. Add and ampersand “&” in front of counta and now you will see the

contents of the variable counta.
5. Right click in the Memory window and select Unsigned and then

Long.
6. Now counta is displayed as a 32 bit number and so is countb since it is adjacent in memory to counta.

C) Hardware Breakpoints: (there are usually 6 on a Cortex-M3)
1. Set a hardware breakpoint by double-clicking next to the line incrementing counta in Demo.c. This will create a red

box as shown here and presently the program will stop here once Task1 starts to run.
The yellow arrow is the Program Counter contents.

2. Click on RUN several times and note counta increments each time.
3. Remove this breakpoint and set one on countb++. Click on RUN and note the

program will stop once Task2 runs.
4. Remove this breakpoint and click on RUN.

TIP: You can add variables to the Watch and Memory windows while the program is running. You can also set breakpoints
“on the fly” as well as many other µVision features. This is also true when using a real target processor.

!!

!
The uVision has many useful features for debugging CMSIS and RTX based codes(Keil.com.
(n.d.)):!
1. Register Window!
2. Call stack!
3. Watch window!
4. Memory window!
5. Hardware Breakpoints!
6. Watchpoints!
7. Performance Analyzer!
8. Execution Profiling (EP)!
9. RTX Tasks and System window!
10. RTX Event Viewer!
11. UART Window!
12. Code Coverage!
13. Peripheral Window!

Debugging Window

14. Tool Box.!!!
Watch window!
Using the watch window, one can see the content of any variable at any time. To watch a
variable content, you may select the variable, right click on the selected name, and choose add
to watch1. The content of the variable becomes visible whenever the variable is alive in the
current trace.!
!

!
Hardware Breakpoints!
During a debugging session, one usually wants to break the current execution and check the
variables’ content at a particular point (Keil.com. (n.d.)). Breakpoints are very useful feature in
all debugging tools and IDEs such as Eclipse, Visual Studio, and GDB. uVision supports
execution, read/write access, and complex breakpoint. An execution breakpoint can be places
at any executable line of Assembly or C code. To place a breakpoint find the line you want to

A watch windows

stop on, just go to Debug menu and select Insert/Remove Breakpoint. A red circle on the left

side of the intended code shows the breakpoint is successfully placed and the execution is
stopped while the program counter is passing by. Breakpoints can be disables or removed via
Debug menu. !!!!
Once an execution is paused on an statement, the processing unit stopped and the program
counter does not proceed to the next statement, so one can see the call stack content, registers’
values, watched variables, and port values. Like any other debugger, one can Step Into

statement, Step Over the next statement, Step Out from the next statement, or
Run To Cursor Line . The execution trace can also be continued using Run command, or to
be terminated using Stop command.!
!
Viewing Memory Contents!
From the Debug Toolbar or View menu, one can activate the Memory window showing the
memory content at each memory address. The memory content could be shown in Hex or Dec.
Given an address location, the memory window shows the byte or words around with respect to

130 Chapter 9. Example Programs

Using the Serial Interface

 Open the serial UART Window from the View Menu or the Debug
Toolbar to view the output

Before you start running the
“Measure” program, open the
Serial Window so that you can
enter commands and view the
program output.

Running the Program
Use the step-buttons to execute code commands individually. If the Disassembly
Window is the active window, the debugger steps through assembler instructions
rather than through the source code.

 The current instruction or high-level statement (the one about to execute)
is marked with a yellow arrow. Each time you step, the arrow moves to
reflect the new current instruction line.

 Use the Run command from the Debug Toolbar or Debug Menu to start
debugging the program

 Use the Stop command to halt program execution or press the Esc key
while in the Command Window

 Use the Step Into command from the Debug Toolbar or Debug Menu
to step through the program and into function calls

 Use the Step Over command from the Debug Toolbar or Debug Menu
to step through the program and over a function call

 Use the Step Out command from the Debug Toolbar or Debug Menu to
step out of the current function

 Use the Run To Cursor Line command from the Debug Toolbar or
Debug Menu to run the program to the line you just highlighted

130 Chapter 9. Example Programs

Using the Serial Interface

 Open the serial UART Window from the View Menu or the Debug
Toolbar to view the output

Before you start running the
“Measure” program, open the
Serial Window so that you can
enter commands and view the
program output.

Running the Program
Use the step-buttons to execute code commands individually. If the Disassembly
Window is the active window, the debugger steps through assembler instructions
rather than through the source code.

 The current instruction or high-level statement (the one about to execute)
is marked with a yellow arrow. Each time you step, the arrow moves to
reflect the new current instruction line.

 Use the Run command from the Debug Toolbar or Debug Menu to start
debugging the program

 Use the Stop command to halt program execution or press the Esc key
while in the Command Window

 Use the Step Into command from the Debug Toolbar or Debug Menu
to step through the program and into function calls

 Use the Step Over command from the Debug Toolbar or Debug Menu
to step through the program and over a function call

 Use the Step Out command from the Debug Toolbar or Debug Menu to
step out of the current function

 Use the Run To Cursor Line command from the Debug Toolbar or
Debug Menu to run the program to the line you just highlighted

130 Chapter 9. Example Programs

Using the Serial Interface

 Open the serial UART Window from the View Menu or the Debug
Toolbar to view the output

Before you start running the
“Measure” program, open the
Serial Window so that you can
enter commands and view the
program output.

Running the Program
Use the step-buttons to execute code commands individually. If the Disassembly
Window is the active window, the debugger steps through assembler instructions
rather than through the source code.

 The current instruction or high-level statement (the one about to execute)
is marked with a yellow arrow. Each time you step, the arrow moves to
reflect the new current instruction line.

 Use the Run command from the Debug Toolbar or Debug Menu to start
debugging the program

 Use the Stop command to halt program execution or press the Esc key
while in the Command Window

 Use the Step Into command from the Debug Toolbar or Debug Menu
to step through the program and into function calls

 Use the Step Over command from the Debug Toolbar or Debug Menu
to step through the program and over a function call

 Use the Step Out command from the Debug Toolbar or Debug Menu to
step out of the current function

 Use the Run To Cursor Line command from the Debug Toolbar or
Debug Menu to run the program to the line you just highlighted

130 Chapter 9. Example Programs

Using the Serial Interface

 Open the serial UART Window from the View Menu or the Debug
Toolbar to view the output

Before you start running the
“Measure” program, open the
Serial Window so that you can
enter commands and view the
program output.

Running the Program
Use the step-buttons to execute code commands individually. If the Disassembly
Window is the active window, the debugger steps through assembler instructions
rather than through the source code.

 The current instruction or high-level statement (the one about to execute)
is marked with a yellow arrow. Each time you step, the arrow moves to
reflect the new current instruction line.

 Use the Run command from the Debug Toolbar or Debug Menu to start
debugging the program

 Use the Stop command to halt program execution or press the Esc key
while in the Command Window

 Use the Step Into command from the Debug Toolbar or Debug Menu
to step through the program and into function calls

 Use the Step Over command from the Debug Toolbar or Debug Menu
to step through the program and over a function call

 Use the Step Out command from the Debug Toolbar or Debug Menu to
step out of the current function

 Use the Run To Cursor Line command from the Debug Toolbar or
Debug Menu to run the program to the line you just highlighted

Getting Started: Creating Applications with µVision 133

Using Breakpoints
µVision supports execution, access, and complex breakpoints. The following
example shows how to create a breakpoint that is triggered when the value 3 is
written to current.time.sec.

Open the Breakpoints dialog from
the Debug – Breakpoints Menu.
Enter the Expression
current.time.sec==3 and
select the Write check box. This
specifies the breakpoint to trigger
when the program writes the value
3 to current.time.sec. Click
the Define Button to set the
breakpoint. Double-click any
breakpoint definition to redefine it.
Reset the CPU to test the breakpoint, which will trigger and halt program
execution when the number 3 is written to current.time.sec. The program
counter line of the Debug Window marks the position where the breakpoint
triggered.

Viewing Memory Contents

 Use the Memory Window command from the Debug Toolbar or View
Menu to display the memory content

Use the Lock/Freeze icon to prevent values from refreshing

µVision displays memory in
various formats and reserves four
distinct Memory Windows.

Define the starting Address to
view the content, or drag and drop
objects from the Symbols
Window into the Memory
Window.

Open the Context Menu to
change formats, modify memory, or set breakpoints.

Insert/Removing a Breakpoint

what data format is asked. As shown in the following figure, by right clicking in memory window
one can select her intended format. !

!
Using Peripheral Windows!
Using the uVision debugger, one can monitor and change the memory locations regarding each
peripheral in its Window. The Peripherals menu provides a separate access to I/O and serial
ports, A/D convertors, interrupts, times and chip specific peripherals (Keil.com. (n.d.)). The
following figure representing the General Purpose Input/Output 0 (GPIO 0) window shows the
value of each memory location related to general purpose I/O ports.!!
!

!

A memory window

GPIO port window

!
Debugging Procedure!
So far we have seen many debugging tools that uVision provides, but how can we use them
and why do we basically them? To answer these types of questions, first we need to see what is
debugging. Practitioners and researchers do not agree on a unique definition about debugging.
Many terms, such as program testing, diagnosis, tracing, or profiling, are interchangeably
interpreted as debugging or as part of a debugging procedure. Researchers define the
debugging is an activity of localization, understating, and correcting faults. Therefore, to debug a
code, one has to first localize the fault. In a large software project with millions lines of code and
source files, it would be very hard or even impossible to check them all. Knowing the fault, one
has to first narrow down her search for fixing a fault. Modular programming helps us in this
matter, because we can easily review a limited number of modules related to the fault. Lack of
understating the root of the fault can end up a fix only correcting the symptoms, yet not the
actual problem. Therefore, once one localized parts of a code involving a fault, next she should
figure out an actual reason. The fixing is the last step of debugging procedure, and there has to
be ensured the issue is mitigated and no new issue appears. !!
Testing!
Debugging is started once a fault is revealed. One way for revealing and modelling faults is
software testing. A test-case is a pair of input and output of a software. If what she gets as an
output differs from her expectation, a fault was occurred. A test-case, as a scenario of an
execution, can be functional or non-functional.!
Functional test-cases check whether the output is expected for the user. For example, a
program computing square root is expected to return 2 when 4 is inputed. Non-functional test-
cases examine the quality of a given software system. Unlike many non-functional properties,
Performance is an important non-functional property that could be straightforwardly tested.
Measuring the elapsed time, the number of finishing tasks in a unit of time, and the number of
concurrent clients are some candidates for test performance in any software systems. Real-time
systems have a strict restriction on time performance: a particular number of tasks have to be
done a certain amount of time. !
Also, A Test-case has to be reproducible. A failed test-cases, as a specification of a fault, has to
always make the same output no matter how many times it executed. Making reproducible test-
cases for concurrent software systems could be very hard and might be impossible. So, one
may need to simulate the same situation within a test-case. !!
Functional debugging!
Given a test-case revealing a fault in functionality of a software, one has to first localize the
debugging area and try to understand the potential reasons. Debugging a fault can be done
using static or dynamic information. The static debugging is performed using the code without
considering any execution traces. As an example, when one debugs a fault in a multiplication

operator of a calculator program, she only works on the modules calculating the multiplication
operator and the rest can be safely ignored. The complexity of using programming structures,
such as loop or if statements, makes the static diagnosis really hard or impossible in some
cases. Debugging, on other hand, can use dynamic traces of a program execution. Any test-
case represents one execution trace of a given program, where as the code execution the test-
case may involve much more than one trace. Once a faulty trace is found, the localization and
understating become focused and much easier.!
There are couple of techniques to find the appropriate execution traces. Some may need to
instrumenting the code and others use the debugging tools. Some techniques are useful for
basic faults and others for more complex ones. !!
Tracing the code step-by-step. uVision Debugger, like many other modern debugger, provides
facilities for executing the code line-by-line. After executing each statement, one may see the
contents of stack, memory location, registers, variables, and ports and check how the statement
affects on them. The single step tracing gives very detailed information, but becomes
cumbersome or infeasible debugging for repetitive and long traces.!!
Breakpoints. Instead of stepping into every statement, one can use breakpoints to trap the
execution on some particular lines. Once the program execution is stopped at a line, all the
execution information becomes visible for checking or even changing. Breakpoints are very
powerful debugging tool that are used to stop the execution on specific statement or specific
condition. For example, one might set a conditional breakpoint to pause the execution if a
variable is read or written in.!!
Instrumenting with printf. Using printf statements is probably the most dominant and effective
debugging technique that is used by programmers(Valvano, J. (2014b)). For debugging a fault,
a programmer instruments the code by placing printf statement in particular locations to see
how variables are changed during a test-case execution. Clearly, debugging with printf
statements only requires a compiler and does not need any debugging tool. The problem with
using printf statements in realtime systems is that the print command may not be always
available. Moreover, instrumenting the code with printf statements is not repetitive and some
statements have to be changed from one test-case to another one.!!
Instrumenting with dumping in caching. One issue with previous techniques is time
constraints unusually enforced in realtime systems. For example, in a realtime software system
processing external events in a certain amount of time, stopping the execution or wasting clocks
for printing could cause the event is lost because of another event arrival. In this situation, one
can define an array, usually a large one, and dump the debugging data in it. When the trace is
finished, the array can be printed or checked with memory window. This instrumenting
technique puts a minimum overhead compared to printf.!!

!
Performance debugging!
A Realtime system has to finish a task in a certain amount time, otherwise everything might fail
although the system eventually carry out its functions. Performance debugging plays very
important role in realtime systems and definitely is harder than functional debugging. Three
popular techniques are used for performance debugging(Valvano, J. (2014b)):!!
Counting statements’ bus cycles. The code , in C or Assembly, is eventually transformed to
machine instructions to be executed on a microcontroller. Every machine instruction is
executed within certain number of clocks. So, collecting the number of clocks for all instructions
of a program gives the execution time. Although this technique gives the most accurate elapsed
time and does not make any overhead, but is just practical for small programs with no branches.
Modern microcontrollers employ techniques, such as pipelines, Interrupts, and multitasking, to
execute more tasks in less time. !!
Instrumenting the code with time counter. Cortex-M3 provides a timer helping operating
system to carry out scheduling tasks in task-management. Systick (Yiu, J. (2010)) is a 24-bit
down counter that is used to generate interrupts or timing measurement. The counter puts a
minimum instrumentation overhead (Valvano, J. (2014b)).!!
Monitoring ports. This technique uses external monitoring and measurement tools, such as an
oscilloscope, for performance debugging. In this technique, the output ports are monitored for
any signal changes. The time between two signals is computed as an elapsed time. For
example, one can instrument the code by putting two statements for turning on and off an L.E.D.
before and after a code block, and monitor the L.E.D.’s GPIO port. The time that the L.E.D.
stayed on is measured as the execution time of the code block. Compared to instrumenting with
a time counter, this technique can measure time more that 24-bit clock. uVision provides Logic
Analyzer to monitor the content of global and static variables. This feature is enabled in
Simulation mode and target mode with ULINK Pro connection.!

!
References!
Valvano, J. (2014a). Embedded systems: Introduction to ARM Cortex-M
microcontrollers. (5th ed.). S. l.: Jonathan W. Valvano.	

Keil.com. (n.d.). Getting Started Creating Applications with μVision®4.	

Valvano, J. (2014b). Embedded systems: Real-time operating systems for the
ARM® cortex-M microcontrollers. (2nd ed., Vol. 3). Texas: Jonathan W. Valvano.	

Yiu, J. (2010). Definitive guide to the ARM Cortex-M3. Amsterdam: Newnes.	

