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1 Introduction to real-time systems

This is a course that will introduce various computer structures and real-time systems. The topics this course will look at
are

1. describing real-time systems,

2. considering appropriate programming languages for real-time, embedded and operating systems,
3. looking at the organization of a computer,

4. describing static memory allocation,

5. describing dynamic memory allocation, specifically those appropriate for real-time systems,
6. explaining threads and tasks,

7. scheduling these tasks,

8. dealing with hardware interrupts,

9. synchronizing the execution of tasks,

10. generalizing synchronization to resource management,
11. avoiding deadlock,

12. facilitating inter-task communication,

13. creating systems that are fault tolerant,

14. describing operating systems,

15. simulating the execution of real-time systems,

16. verifying that correctness of systems,

17. dealing with file management,

18. efficient data management,

19. considering issues with virtual memory and caching,
20. digital signal processing,

21. an introduction to digital control theory,

22. security, and

23. looking at what is ahead.

We will begin with our introduction by

describing what a real-time system is,

looking at a case study of anti-lock braking systems,

describing the components of a real-time system, including the environment, hardware and software, and
reviewing a brief history of real-time systems.

HowppeE

We will begin by describing a real-time system.

1.1 What is a real-time system?

Most of the software you’ve used to date has been interactive: it responds to your commands. Interactive software is always
subject to delays. Surely you have experienced that feeling of waiting over a second for a word processor to respond to
you entering a single keystroke, or the mouse taking a split second longer to respond than would make it seamless. We
will define such systems as follows:

Definition: General-purpose systems (hardware and software) are tangible and intangible components of computer
systems where operations are not subject to performance constraints. There may be desirable response characteristics, but
there are no hard deadlines and no detrimental consequences other than perhaps poor quality of service if the response
times are unusually long.

In contrast with general-purpose systems, real-time systems are meant to monitor, interact with, control, or respond to the
physical environment. The interface is through sensors, communications systems, actuators, and other input and output
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devices. Under such circumstances, it is necessary to respond to incoming information in a timely manner. Delays may
prove dangerous or even catastrophic. Consequently, we will define a real-time system as one where

1. the time at which a response is delivered is as important as the correctness of that response, and
2. the consequences of a late response are just as hazardous as the consequences of an incorrect response.

Those requirements that describe how the system should respond to a given set of inputs (both from sensors and messages
received from communication systems) given the current state of the system and what the expected outputs (both signals
to actuators and messages sent through communication systems) and changes of state of the system are described as
functional requirements. Other requirements are collectively described as non-functional requirements, and these include
requirements concerning safety, performance and security, as described in Table 1

Table 1. Descriptions of non-functional requirements of real-time systems.

Non-functional

; Description
requirement

Example

This deals with operational responses
by the system that protect the system
prevent the system from coming into

Safety harm

It has been determined that an increase in engine temperature
can be dealt with by reducing the throttle if the increase is
detected within 5 s; consequently, if the temperature sensor
is checked at least once every 2.5 s, even in the worst case,
the temperature will not exceed a critical value for more than
5S.

The deals with either timing of
responses or throughput necessary to
protect the system from harm or other

Performance .
non-desirable outcomes.

It may be required that the fire-suppression system must be
activated within 10 ms of the detected light intensity of an
optical beam dropping below 95 %, or it may be required
that a drone must be able to accept and process ten inputs
from various sensors per second including the processing of
video frames.

The ability to protect the system from
harm resulting from design faults.
Fault tolerance

A quadcopter drone that is able to continue flying even if one
of its four engines fails would be more fault tolerant than one
that fails as soon as one of the engine fails. A drone that
immediately attempts to land safely in the event of an engine
failure and communicate its location would be failsafe.

The ability to protect the system from
harm  resulting  from  external

Robustness interference and perturbations.

Any communication between drones or other tasks is subject
to natural interference that may cause the received message
to differ from the message that was originally sent. A robust
system could detect and correct such introduced faults.

The ability to perform reasonably in an
environment with added load.

Scalability

If suppose ten drones cooperated on a task and require 1 ms/s
to communicate while performing the task. If all drones were
required to communicate with all other drones, one hundred
drones attempting a similar task would spend 10 ms/s
communicating; meanwhile, if the drones were divided into
ten groups of ten each with one drone designated as a leader,
after which only the leaders communicate, communication
may be reduced to as little as 2 ms/s.

This describes the operation of the
system to prevents the system from
intentional harm, including harm that
may cause the operation of the system to
be inconsistent with the intentions of the
user.

Security

One hundred drones performing a search-and-identify
mission of an escaped convict cannot be interfered with in
such a manner as to allow the non-detection of the convict
or an intentionally false identification of the location of the
individual. Similarly, one hundred drones engaged in a
performance at a public event cannot be redirected to cause
harm to the audience.




Other non-functional requirements may include availability, configurability and regulatory compliance. Real-time systems
are not meant to be fast, per se; instead, they should be just fast enough to ensure that all functional requirements and non-
functional requirements including, but not limited to, performance requirements.

Some examples of real time systems include:

1. transportation: control systems for and traffic control of vehicles, ships, aircraft and spacecraft;

2. military: weapons system, tracking and communications;

3. industrial processes: control for production including energy, chemical and manufacturing using robotics;

4. medical: patient monitoring, defibrillation and radiation therapy;

5. telecommunications: telephone, radio, television, satellite, video telephony, digital cinema and computer
networks;

6. household: monitoring and control of appliances; and

7. building management: security, heating, ventilation, air conditioning and lighting.

We will look at anti-lock braking systems as a case study of both hardware and software real-time systems. However, as
time is a central component of any real-time system, we will quickly first define time and embedded systems.

1.1.1 What is time?

Time is a natural phenomenon where one “second” is

the duration of 9192631770 periods of the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium 133 atom at rest at a temperature of 0 K,

as defined by the Bureau international des poids et mesures. With the exception of the kilogram, all other units are defined
relative to the second. Atomic clocks are used to measure time, and coordinated universal time (UTC) is an international
standard for time. Your systems will, however, be using quartz clocks, where a quartz crystal is carved to vibrate at 2'° Hz
= 32768 Hz when an electric field is placed across it. A 5-bit digital counter will overflow once per second as it counts the
oscillations. With 86400 s/day, such clocks tend to drift less than 1 s/day and therefore different systems will have different
times even if they start synchronized (more expensive crystals will have less drift). In the chapter on fault tolerance and
robustness, we will look at techniques for synchronizing clocks between systems.

1.1.2 What are embedded systems?
Elicia White definition of an embedded system is

a computerized system that is purpose-built for its application.

The purpose-built includes both hardware and software components. Software for embedded systems is usually written on
general-purpose computers running integrated development environments (IDEs) using cross-compilers: compilers that
produce machine instructions for processors other than the processor running the IDE. An embedded system should usually
be considered an object within a larger system. The embedded system should have well defined functionality that allows
it to be replaced by another system that adheres to the same specification.

The challenges of writing applications for embedded systems include constraints such as

cost,

correctness (the system must be close to error free),

main memory availability (random-access memory or RAM),

code size restrictions (read-only memory (ROM) or flash memory),
processor speed,

power consumption, and

available peripherals.
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As you have seen in your study of algorithms and data structures, there is often a trade-off between speed and memory;
for example, a doubly linked list requires ®(n) more memory, but allows many O(n) run-time operations in a singly linked
list to now run in ®(1) time. Similarly, trade-offs can be made between the above constraints. Other concerns with
developing applications on embedded systems include

1. uncertainty as to whether issues are software or hardware,
2. the possibility of software errors causing damage to hardware, and
3. the systems tend to be remote; that is, access and maintenance (including upgrades) tend to be non-trivial issues.

None of these are concerns with software development for general-purpose processors.

1.2 Case study: anti-lock braking system

From physics, you may recall that static friction is stronger than dynamic friction. When trying to stop a vehicle in a very
short distance or on a slippery surface, it is possible for the wheels to lock and stop rotating. When this happens, the vehicle
begins to skid (dynamic friction) and loses traction. This also means the driver no longer has control over the vehicle—a
dangerous situation. If the wheels do not lock up, the driver will not only have control while stopping, but the vehicle will
also stop in a shorter distance.

A skilled driver can ascertain the maximum amount of brake force that can be safely applied without causing a skid. This
technique is called threshold braking. It is a very difficult technique to learn and use, especially in a situation where
emergency braking is needed.

Anti-lock braking systems (ABss) were first developed in the late 1920s for aircraft as a mechanism for preventing skidding
during landings, as skidding will significantly reduce the lifetime of the tires and skidding in wet conditions can lead to
dangerous situations. While threshold braking is possible in smaller systems such as automobiles, it is exceptionally
difficult in aircraft. The entire ABS was hydraulic using a flywheel and valve that would under differential spin cause
pressure to bleed from the brakes, allowing the wheels to unlock but continue to apply a braking force.

In 1958, an anti-lock brake was built for a motorcycle where it reduced stopping distances on slippery surfaces by as much
as 30 %. In the 1960s, such a system was built for automobiles. In both cases, the product never went into mass production.

Computerized anti-lock braking systems were introduced by Chrysler in 1971 and it was an option available for many
luxury models for the next decade. It was first introduced as a standard feature in the 1985 Ford Scorpio, for which it was
awarded the European Car of the Year Award in 1986.

In addition to speed sensors and hydraulic valves, modern ABs interfaces with a central electronic control unit (Ecu). The
ECU is an embedded system comprised of a number of computer modules that control various aspects of the car. The Ecu
today includes one or more microcontrollers, a clock, memory, both analog and digital inputs, and output drivers, while
communication is usually through a CAN (controller area network) bus. 1S0 26262 Road vehicles—functional safety is a
standard that directs the development process of such modules.

Starting in late 2009, the National Highway Traffic Safety Administration (NHTSA) began receiving complaints concerning
brake problems on the Toyota Prius that manifested itself as a short delay in regenerative braking when hitting a bump;
consequently increasing the stopping distance. This was solved via a software update; however, it is not clear from the
literature as to whether it was a hardware bug, or if the necessary correction could be done in software.

Note that for the microcontroller of ABs, faster is not better. A design that meets the required specified deadlines is all that
is sufficient. Reliability is a much greater factor than performance. Once a design for a system such as ABS is developed,
unlike desktop or mobile computer programs, there will be no need to revisit the design every year. In fact, the incentives
point the other way: the system works and any change introduces the possibility of error.



1.3 Components of real-time systems

The defining characteristic of any real-time system are the timing requirements: not only must the system respond correctly
to inputs, it must do so within a specified amount of time. Such requirements can generally be categorized as either

1. absolute requirements where the response must occur at defined deadlines, and
2. relative requirements where the response must occur within a specified period of time following an event.

The consequences of failing to satisfy deadlines allows one to describe real-time systems as

1. hard real-time where failure to meet a deadline results in a failure and any response—even if correct—following
the deadline has no value,

2. firm real-time where failure to meet the occasional deadline will not result in a failure yet any response following
a deadline has no value, but such a failure will result in a degradation of quality of service, and

3. soft real-time where the value of a response drops following the passing of a deadline, but the response is not
wasted.

In the first two cases, if it can be determined a priori that the deadline will not be satisfied, it may be better to not even
begin to calculate the response. More complex real-time systems will likely consist of subsystems from each of these three
categories.

A real-time system is always interacting with the physical world, and a model of a real-time system, as described by Michal
A. Jackson, includes the system itself, the environment and the interface. Connecting the system and the environment are
input (e.g., sensors), output (e.g., actuators) and bi-directional flow of information (e.g., communication channels). These
components invariably are physical in nature and thus, while providing information to the system, they are also part of the
environment. This high-level approach is shown in Figure 1-1.

~.

Environment Interface  System
._________--o————'

./“\

Figure 1-1. A model of a real-time system.

The system and interface will usually be comprised of both hardware and software; however, the last may be excluded in
a purely mechanical or electrical system; however, this book will focus on those systems using a software-driven controller.
Never-the-less, many of the lessons you take out of this book will have analogous applications in either pure mechanical
or electro-mechanical systems. Reasons for using software to control real-time systems include:

1. the development costs are significantly lower (tools and developers are more readily available),
2. the software can be verified to be correct, and
3. maintenance can be easier as it may require only a software update.

The expense, however, is that the unit cost will be higher, as each unit will require a microcontroller and an appropriate
power source. Despite this additional cost, approximately 99 % of processors made today are for embedded systems, many
of which are real-time systems. We will discuss these three aspects next.

1.3.1 The environment

The environment that the real-time system is in is beyond the control of the engineer and it must, therefore, be modelled.
A real-time system can be tested in a simulated environment driven by the model and it can be validated to work under the
most extreme circumstances presented by the model. If the model, however, is inaccurate, any subsequent system may fail

(as the real situation may be more demanding than the model suggested) or be excessively expensive (scenarios the system
5



was set up to handle—costing developer time and possibly more expensive hardware—never occur). Modelling the
environment is beyond the scope of this text.

1.3.2 Real-time hardware

The hardware of a software-driven real-time system first must be predictable. While this is likely obvious for any
microprocessor, this also applies to sensors, actuators, other input and output devices, and communication systems.

Counter-intuitively, many of the advances in processor technology make it more difficult determine predictability:
instruction pipelining, branch prediction, virtual memory and caching pose serious challenges for determining the timing
behaviour of a system. These enhancements were designed to make the processor perform faster (under most
circumstances), not more predictably. We will discuss some of these in a later topic.

The hardware must also be reliable and fault tolerant as well as controller driven; that is, it must be able to interact with
the processor through a communication bus. Devices will require both polling and interrupt support. These concepts will
also be discussed in Chapter 8 of this book.

Devices will be connected to the processor through one or more communication busses. Any shared bus will result in
competitions for that resource that will degrade performance and make timing behaviour more difficult to ascertain.
Furthermore, any interactions through a communications channel (wireless, Ethernet, etc.) also make for challenges in
creating real-time systems (there are real-time protocols such as real-time transport protocol (RTP) as opposed to
transmission control protocol (TCP), but these require additional support).

One observation is that there is no requirement for the hardware to be fast. It only needs to be fast enough as is necessary
to control the expected environment in the desired manner. Consider, for example, the 8-bit Freescale RS08
microcontroller, which is a descendant of the Motorola 6800. It has only one data register: an 8-bit accumulator; it uses a
14-bit address register which allows for a maximum of 214 = 16 KiB of main memory, and the maximum processor speed
is 20 MHz—200 times slower than modern general-purpose processors. The unit cost is on the order of 50 cents and less
in bulk.

Hardware failures in real-time systems usually result in malfunctioning equipment, and the system may or may not be able
to recover from such failures. An interesting example of a variation of a hardware failure from which a recovery was
possible was in 2010, when VVoyager 2, which was 13 light-hours away from Earth, experienced a communications failure.
This was narrowed to a problem where “[a] value in a single memory location was changed from a 0 to a 17, Fortunately,
this could be solved with a reset of the memory; although it took over a day to determine that this solution was successful.

1.3.3 Real-time software

While there are issues that affect the predictability of hardware, the timing characteristics of hardware, never-the-less, tend
to be easier to quantify. If the characteristics of a device are not adequate, it is possible to search other products. The jungle
of possible software implementations of the same algorithms are, however, more varied. Therefore, the first two-thirds of
this course will focus on real-time software systems: dealing with the challenges posed in devising algorithms that satisfy
the timing constraints of real-time systems. A small real-time system may contain only one processor and a few hundred
lines of code, while the projected estimates for the mid-1980s space station “Freedom” ran closer to 20 million lines of
Ada.

1'Veronia McGregor of the Jet Propulsion Laboratory quoted in “NASA Finds Cause of Voyager 2 Glitch” , May 18, 2010
by Irene Klotz.



There are two configurations for real-time systems, programs where access to resources is

1. direct through machine instructions, and
2. indirect through an intermediate operating system that mediates such requests.

Whether or not there is an operating system mediating requests for resources, it is necessary to manage the resources
available to programs. In this course, we will consider the management of such resources, including:

the processor,

main memory,

peripheral resources,
synchronization between tasks, and
file systems.

a s wbdE

We will conclude the course by showing that the cumulative efforts we have made in managing these resources can be
bundled into a single operating system kernel that executes in a protected environment which prevents executing programs
from accidentally corrupting main memory or accessing other resources currently engaged in other tasks.

Programs
Programs i

Operating

system $

i

t
{ .
ALU O—p  mammemory a0y ALU

peripheral resources
Processor Processor

Figure 1-2. Configuration of smaller embedded systems versus larger embedded and general-purpose systems.
Numerous failures, apart from software errors (bugs), in real-time systems can be described as being the result of

1. race conditions,
2. unexpected environmental conditions, and
3. failures in the model.

The majority of this text will look at avoiding race conditions through synchronization and deadlock avoidance, but we
will also look at software simulation and verification.

A race condition occurs when the response of the system (hardware or software) depends on the timing or sequencing of
events or signals initiated by independent tasks, but where at least one of the responses is undesirable. These are non-
deterministic bugs that are often difficult to find, as it may be very difficult to recreate the exact circumstances causing the
failure; hence the alternate name, Heisenbug.

To give some examples of race conditions, suppose two individuals are driving their cars down a three-lane highway, one
in the left lane and the other in the right, and each wishes to change into the middle lane. This is only a problem if both
cars are in line with each other and both drivers want to make the lane change in the same five-second window. This is
exasperated by factors such as lighting conditions, the alertness of the drivers, the presence of distractions, some drivers
only checking the middle lane for traffic, some drivers checking first and then signalling, while others signalling first and
then checking (ideally, you check, then signal and then check again), and yet others may not check, or not signal, or not
do either.



Another example of a race condition is when you agree to meet someone at a building at a specific time, but when you get
there, you realize that you could be meet at either the front or the back entrance. Staying at one entrance could see both of
you waiting indefinitely long, but going from one entrance to the other may have both of you miss each other if you both
within the same 20-second window decide to take two different paths between the two possible meeting points (after all,
you could walk through the building, clockwise around the building or counter-clockwise around the building). This is less
of an issue today, so long as everyone’s mobile phone is charged.

We will look at three examples of how race conditions:

1. killed patients in the Therac-25 killed,
2. almost ended the adventures of the Mars rover “Spirit” before the end of the first month, and
3. affect circuit and the benefits of circuit simplification.

We will start with Therac-25.

1.3.3.1 Therac-25

A race condition in the response of the Therac-25, a radiation therapy machine produced by Atomic Energy of Canada
Limited (AECL), to operator instructions led to patients being given 100 times the expected radiation. This was the result
of a race condition in which if the operator issued an instruction too soon after a previous instruction, the system was still
responding to the first command and therefore ignored the second without any notification that it was doing so. Three
patients died as a result.

1.3.3.2 The Mars rover “Spirit”

On January 4%, 2004, the Spirit rover set down on Mars to begin its 90-sol (Martian day or 1.027 Earth days) mission of
exploring the planet surface. It would go on to communicate information back to the Earth for a total of 2210 sols, ending
on March 22", 2010. However, a race condition due to a failure in modeling and an unexpected environmental condition
may have catastrophically curtailed its mission to a mere 16 sols.

Figure 1-3. The Martian rover “Spirit” (from NASA).

The rover has a processor, 120 MiB of RAM and 256 MiB of flash memory, part of which contained files relevant to the
operating system and 230 MiB of which are dedicated to a flash file system that stores data produced by the various
instruments and cameras. The operating system is Vx-Works version 5.3.1 by Wind River Systems, a real-time OS that
was compiled with flash file system extension. For the file system to work, however, critical information must be stored
in appropriate data structures in main memory (this will be discussed in Chapter 17). Everything was fine, except for a
sequence of unlikely events, which was not anticipated by the software designers.

After the rocket carrying Spirit launched on June 10™, 2003, it was determined that there were serious issues with the
existing software. During the trip, new files were uploaded to the rocket carrying the rover and then installed on the rover
itself. Everything seemed good to go. They even simulated Spirit in operation for 10 sols to ensure that this new installation
would not cause any problems. However, the new installation added approximately a thousand extra files and directories
compared to the original software.



On sol 15 (15 Martian days after landing), a utility was uploaded to Spirit to delete the obsolete files and directories, but
only one of the two components was received; therefore, a second transmission was scheduled for sol 19. On sol 18,
however, the rover’s scientific instruments and cameras were busy collecting data and creating data, and instructions were
sent to add these new files into the flash file system. Only now, the flash memory system made a request for additional
memory, but the old files and directories occupied the remaining memory, so the request for additional memory could not
be fulfilled. The system did what it was designed to do if there was a failure: reset. This is more or less what most people
do at home when their computer fails to respond, but in this case, the reset was automatic.

So the operating system reset, as directed. On start-up, it tries to mount the flash file system, this results in a memory
request which is, again, denied. So the system resets again and again... This cycle of resets ended most communications
with Earth and posed a serious problem for Spirit: it could not go to sleep at night, and therefore its system was overheating
and the battery was running low. The operators on Earth even sent the command SHUTDWN_DMT_TIL (shutdown,
dammit, until—someone had a sense of humor) in hopes of putting Spirit to sleep, to no avail; unbeknownst to the operators,
the reset sequence had priority, even over the shutdown command.

With no additional information, it was assumed that Spirit was in a reset cycle (there may have been other causes, for
example, a solar event (solar flare or storm) had occurred just prior to Spirit’s silence, but a reset cycle was the only one
that they allegedly could do anything about), and this would point to a problem in either the flash memory system, the
EEPROM (Electrically Erasable Programmable Read-Only Memory), or a hardware failure. Fortunately, the software
programmers included two features that allowed a recovery: a window of time was inserted between resets that allowed
commands to be received, and it was possible to issue a command to boot without installing the flash file system. At this
point, on sol 21, they were finally able to issue the command to give Spirit the sleep it required.

For the next two weeks, every Martian morning, a command was sent to wake up and reset without loading the flash file
system. Utilities were uploaded to manipulate the flash memory directly without loading the file system. This caused some
corruption, but some information was recovered, including a photograph of the Rock Abrasion Tool (RAT) (shown in
Figure 1-4), and more importantly a log of every event leading up to, and including, the failed request for additional
memory. Once the system was stable, an exception-handler utility was developed that would recover more gracefully from
an allocation error than simply triggering a reset.

Figure 1-4. The RAT.

Incidentally, the Opportunity rover landed on Spirit’s sol 21—only hours after they were finally able to put Spirit to sleep.
This summary is compiled from information appearing in Ron Wilson’s The trouble with Rover is revealed
(http://www.eetimes.com/document.asp?doc_id=1148448) and Mark Adler’s blog entry and presentation Spirit Sol 18
Anomaly (http://hdl.handle.net/2014/40546).
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1.3.3.3 Logic expression simplification
Another example of a race condition, but Consider the circuit shown in Figure 1-5. From predicate logic, the result should

always be equal to zero.
A— . —A"A =0
—‘ >C

Figure 1-5. A simple circuit with one input and output.

Unfortunately, with each circuit element, there is a slight delay as to how long it takes a change to propagate to the output.
Consequently, the actual timing diagram of the voltages looks like what you see in Figure 1-6.

A -

Af.'\(),-’

4 )
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A q —»
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Figure 1-6. The timing diagram of the circuit in Figure 1-5.

Thus, the output, rather than being a constant 0 V, it exhibits a spike (a window of short duration where the output is not
zero). Any circuit, however, that expects a clean 0 V may react adversely to the spike if this is not accounted for. To
minimize the number and impact of such transient intermediate states, Karnaugh maps are used to simplify Boolean
expressions such as:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
= ABC + ABC + ACD +BD

1.3.3.4 Summary of real-time software and race conditions
We’ve discussed some situations where the sequence in which events occur can result in problems. Such conditions are
called race conditions. Later in the course, we will look at solutions to such problems, at least in software.

1.3.4 Summary of the components of real-time systems

Thus, a software-controlled real-time system will work in an environment of the physical world, interfaced through
hardware and administered by software. This course will focus on the software component of real-time systems.
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1.4 The history of real-time programming

Programming real-time systems arose in parallel with the construction of large commercial and government systems in the
1960s. In his 1965 text Programming Real-time Computer Systems, James Martin discusses issues such as dynamic
scheduling, dynamic core allocation, allocation of priorities, multi-programming, interrupts, queues, overloads, multi-
processing, communication lines, random-access files, supervisory programs, communication with other computers, high
reliability, duplexing and switchover, fall-back, programming test, problem of programmer coordination, design problems,
and monitoring the programming progress. All of these issues remain associated with real-time programming today. At
that time, the larger real-time systems included air defence, telephone switching, airline reservations and the space program
and these often grew faster than programming paradigms could keep up. It was only in 1965 that Edsger Dijkstra proposed
the concept of a semaphore, a variable used for controlling access to a shared resource (we will examine this in a later
topic in great detail), to deal effectively with synchronization—synchronization and concurrency is not even a significant
topic in Martin’s book.

With the introduction of semaphores (special flags) and other innovative ideas, issues such as mutual exclusion and
serialization could now be dealt with in a manner that could be proved to be correct. One major step forward was with the
United States government requirement of a language designed for real-time and embedded applications; the result was the
programming language Ada. Furthermore, the greater availability and lower cost of processors made it desirable to shift
control out of hardware and into software—not without failures—to reduce development costs. Finally, in the last two
decades, real-time systems have moved into the realm of mass-produced consumer products and thereby providing
significantly more investment in developing real-time systems in the commercial industries.

1.5 Topic summary

In this topic, we introduced real-time systems, we looked at a case study of the development of anti-lock braking systems,
we described the relationship between the environment, hardware and software in a real-time system and looked at two
situations where race conditions may lead to issues in real-time systems through race conditions.
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Problem set
1.1 In one sentence, what differentiates a real-time computer system from a conventional computer system?

1.2 Recall that form your algorithms and data structures course that it is often possible to speed up an algorithm if you are
willing to store more information. While this leads to often more complex functionality and increased development costs,
such options are often taken in conventional computer systems. Why would you have to be more careful about such trade-
offs when you are dealing with an embedded system?

1.3 There are two requirements for an anti-lock braking system (ABS):

1. the vehicle must slow down, and
2. the tires cannot skid.

Without specific numbers, what are some of the timing requirements for such a real-time system? Why does releasing the
pressure on the brakes actually decrease the braking distance?

1.4 Suppose that the ABS component of a brake system fails, how should the system respond? Why?
1.5 Draw a block diagram of an ABS system.

1.6 Section 1.3.2 describes the characteristics of the Freescale RS08 microcontroller. It has only one data register—an 8-
bit accumulator. All operations involve either modifying this register, writing to the register, or saving the value to a
memory location. Any binary operation requires that one of the operands be located in main memory where it is fetched
using direct or indirect addressing, possibly with an offset. Is this reasonable for a system where the majority of the
operations involve calculating statistics based on input from a sensor, or would it be better to get a system that has two or
more registers?
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2 Real-time, embedded and operating-system
programming languages

In this topic, we will look at real-time programming languages and characteristics of such languages to help ameliorate the
likelihood of faults occurring. We will also consider characteristics of programming languages appropriate for embedded

systems and for programming operating systems. We will then consider the programming language we will use in this
class: C.

2.1 Programming languages

What language should we use for real-time systems, and why is C so prevalent? Why do we not use, for example C++,
C#, Pascal, Ada, Java or another programming language for our projects? We would prefer a language that is appropriate
for

1. real-time,
2. embedded, and
3. operating

systems development. On any project, it is necessary, however, to standardize the language.

Rule 1 of the Jet Propulsion Laboratory (JPL) coding standard specifies that the when C is used, any programs must
adhere to the 1ISO/IEC 9899-1999(E) standard. By specifying the standard to which source code must adhere to, this
ensures

1. any compliant compiler can be used,

2. the source code can be analyzed by tools meant to verify and , and

3. any competent programmer is able to work with the code as necessary.
The source code may not rely on behaviors not specified in the standard. By avoiding compiler- or platform-specific
behavior, it avoids issues of portability and code reuse in future projects.?

We will discuss these development domains, followed by a discussion of other software design techniques applicable to
real-time systems. We are not assuming that an operating system is necessarily in place. Instead, we will investigate the
various structures and modules necessary to accomplish goals in real-time systems, and we will conclude the course by
observing that these structures and modules are sufficiently common and critical that they can be placed into a protected
environment which a user cannot accidentally or even deliberately interfere with. Many vendors will provide real-time
operating systems (RTOSS) which you can use off-the-shelf; however, in this course, you will understand how those
structures and modules are designed and how they work so that when you use a vendor product, you will understand what
is going on under the hood.

A technician (programmer, electrician, construction worker, etc.) should know how to use a tool or package, an
engineer should know how that tool or package works.

We will look at

1. programming paradigms,
2. ideal characteristics of programming languages for given systems, and
3. other software programming techniques.

2 Throughout this text, we will be referencing many of the rules from the JrL Institutional Coding Standard for the C
Programming Language. A primary object of the Jet Propulsion Laboratory, in addition to many other objects, is the
design, construction and operation of planetary robotic spacecraft.
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2.1.1 Programming paradigms

Before we start looking at programming languages, it is likely useful to compare procedural languages with object-oriented
languages. We will proceed historically through

structured programming,
procedural languages,

data abstraction,
object-oriented languages and
design patterns.

a s wdE

These reflect the evolution of software engineering, each contributing to the previous. Initially, software was programmed
entirely in assembly, and it was only with the introduction of COBOL that programming became abstracted from the
machine instructions. This further lead to data abstraction and behavioral abstraction, together with the identification of
common problems with recognized solutions. There are other programming paradigms such as functional programming,
logic programming and aspect-oriented programming, but procedural and object-oriented are the two most commonly
found in real-time systems and embedded systems development.

2.1.1.1 Structured programming
The concept of structured programming is based on the structured-programming theorem which says that

1. blocks of code executed in sequence,

2. a Boolean-valued condition selectively executing one of two blocks of code (conditional statements or if
statements), and

3. repeatedly executing a block of code until a Boolean-valued condition is false (repetition statements or loops)

is sufficient to express any computable function. Prior to this, especially when programming was within the realm of
assembly language, you could expect to see, for example, code that looks like:

void insertion_sort( int *array, int n ) {
int i, j, tmp;
i=20;
start:

if ( ++i ==n)
return;

tmp = array[i];
j=1i-1;

loop: if ( array[j] > tmp )
goto copy;

array[j + 1] = tmp;
goto start;

copy: array[j + 1] = array[jl;

if ( --j >=90)
goto loop;

array[0] = tmp;
goto start;
}
The structured programming paradigm tries to improve the quality and reduce the development and maintenance time of
programming by requiring the user to restrict flow control to:
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1. blocks of instructions,
2. conditional statements, and
3. repetition statements.

The primary goal being to combine a series of statements into blocks meant to be executed as a unit and avoiding statements
such a goto that allow for a myriad of execution sequences, also known as spaghetti programming due to the myriad of
crossing paths of execution, as highlighted in Figure 2-1.
void insertion_sort( int *array, int n ) {
int i, j, tmp;
i=e0;

start:
i++;

if (i==n)
return;

tmp = array[i];
j=1i-1;

loop:« array[j]
goto copy

ifF( jo>=0)
goto loop;

array[e] = tmpj
goto start;

Figure 2-1. The basis for the term spaghetti programming.
The above implementation of insertion sort would be written as

void insertion_sort( int *array, int n ) {
int i, j, tmp;
bool found;

for (1 =1;1<n; ++i ) {
tmp = array[i];
found = false;

for ( j = 1i; !found && (j > 0); --7 ) {
if ( array[j - 1] > tmp ) {

array[j] = array[]j - 1];
} else {
found = true;

}
}

array[j] = tmp;
}

The cost, however, is not zero: even with all optimizations turned on, the structured programming approach for this
problem contains 5 % more instructions and is 10 % slower than the unstructured approach. The benefits of structured
programming, however, in terms of readability and understandability and therefore reduced development and maintenance
costs severely outweigh these negligible costs. When the arguments for structured programming were first put forward,
there was a significant outcry and it was years before the benefits were recognized by the programming community as a
whole.
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One paradigm that uses structured programming is procedural programming.

2.1.1.2 Procedural programming

The C programming language uses the procedural programming paradigm. Structured programming is achieved through
the solution of a problem being specified by a sequence of computational steps that must be performed on input data to
transform it into a format that gives a solution to the given problem. Thus, each problem can be specified by

1. the format of the data that is necessary to solve the problem (including any necessary assumptions on the state of
that data), and
2. the transformation on that data in order to produce the solution to the problem.

The primary mechanism for solving a problem is a function that takes data as input (parameters) and returns data as a
solution to the problem (the return value). When a function is called, it is passed specific input, or arguments. By
compartmentalizing problem-solving to function calls, this allows for the re-use of existing code and thus reducing code
duplication.

Consider Gaussian elimination: this is a near ubiquitous algorithm used in most solutions requiring linear algebra.

The idea is so simple that most programmers will implement it in-place—in one application, there were 16 separate

implementations scattered throughout the libraries—however, the algorithm is subject to numerical instabilities that

can be resolved by selective use of pivoting and scalar multiplication. For example, for sufficiently small ¢,
1 1 a 1 1

a 1 1 ¢ 1 0
X = = X = X = , where X ~ for the first two, and x =~ for the
[1 2] [3} 0 2+1 3+i % 0 i i {1) (1]
(04 a a a

last. Recall that 2 + 10% can be stored exactly using double-precision floating-point numbers, but 3 + 10%® is stored as
4 + 10% due to rounding. Of the 16 implementation, all but two had bugs related to floating-point computations.

In general, any large problem can be solved by sequentially solving conceptually easier sub-problems. Consequently,
structured programming is achieved by identifying computational steps that solve simpler problems that are necessary to
solve the larger problem and then implementing functions to solve the smaller sub-problems.

For example, the quicksort function can be described as

1. taking as input an array of unordered items that can be linearly ordered, and
2. reordering the items so that they are sorted according to the linear order.

This problem can be solved by taking the following computational steps:

1. if the size of the array being sorted is less than 20, call a non-recursive sorting algorithm;
2. otherwise, sort the list as follows:
a. choosing a pivot and removing it from the list (choose the median of the first, middle and last entries of
the array being sorted; place the other two accordingly);
b. starting from the front and back,
i. finding the next item greater than the pivot,
ii. finding the previous item smaller than the pivot,
iii. swapping the two
until the entries are partitioned into those less than the pivot and those greater than it;
c. placing the pivot between the two partitions; and
d. calling quicksort recursively on both partitions if the partitions are not empty.

Many of these steps describe sub-problems that could be solved in many different ways; consequently, many of them could
be written as functions that are called from the quicksort algorithm.

// The argument 'array' is an array of entries from a tob -1
// Those entries are sorted so that array[k] <= array[k + 1] for k = a, ..., b - 2
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void quicksort( int *array, int a, int b ) {
if (b-a<20) {
insertion_sort( array, a, b );
} else {
pivot = find_pivot( array, a, b );

int low = a + 1, high = b - 2;
while ( true ) {
low = find_next( array, pivot, low, b );
high = find_previous( array, pivot, a, high );
if ( low < high ) {
swap( array, low, high );

} else {
break;
}

}
reinsert_pivot( array, pivot, high, b );

quicksort( array, a, high );
quicksort( array, high, b );

}

Now, each of the sub-problems may be solved in a similar manner: describing the form of the input, and what must be
performed in order to solve the sub-problem. This can be repeated as often as necessary.

In order to make software development reasonable and tractable, in general, a function should solve one and only one
problem, and any sequence of steps that could collectively be described as solving a well identifiable sub-problem should
be factored out into a function. The benefits include:

1. easier maintenance,

2. the ability to quickly switch algorithms (for example, using insertion sort instead of quicksort in very specific
applications),

3. allows easier division of labor—different teams of developers can be assigned very specific tasks, and

4. if the sub-problem appears elsewhere, the same solution can be used in both locations to solve both problems
(reducing costs of development, testing and maintenance).

A number of rules from the JPL coding standard apply to the procedural approach to programming, including Rule 25::
“Functions should be no longer than 60 lines of text and define no more than 6 parameters.”
and including Rule 14:

“The return value of non-void functions shall be checked or used by each calling function, or explicitly cast
to (void) if irrelevant.”

While not used in embedded or real-time systems, the printf command for displaying text on the console does have a return
value: an integer equal to the number of characters that were printed. A failure to print to the screen would result in either
0 (nothing was printed) or a number smaller than the expected number of characters. In most cases, programmers are not
interested in the return type of printf, and thus, following this standard, we would see code such as

(void) printf( "Hello world!\n" );
indicating to the reader that there is a return value, but that that return value is being explicitly ignored.
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2.1.1.3 Data abstraction

Another concept in software engineering is that of data abstraction, or abstract data types (ADTS). At the basic level,
designers think of integers, real numbers, alphabets, Boolean values and references to other objects. Programming
languages provide primitive data types that represent these values, and the programmer must choose the appropriate type
that sufficiently approximates the abstract concepts. As primitive data types such as short, int and long all use fixed
amounts of memory, they can only represent integers on a finite range, while f1loat and double represent real numbers
with different amounts of precision (the former being useful only for graphics and the later sufficient for scientific
computation). The char represents a very small Ascll alphabet with 256 characters while Unicode allows the
representation of significantly larger alphabets and writing systems (L, pupty Qbkq, 000000, #&EF, 8ogbsedgdo,

yewwcag, 000, avw, DOO000, SAIZEIE, 00000, Snuws, OFESHM R, Dooooon, D000, D000, 00
(000 D000, 3apaseTsyiite, 3g86RID S, (1011111, 110111, a¥aé and hello).

More complex abstractions are described as compositions of more primitive types. Designers only need then to discuss the
problem at the appropriate level of abstraction. For example, in arranging plans for an evening with your friends, you us
simply message them. There is no need to understand the underlying implementation, you need to understand the interface
provided by your computer or smart phone. Similarly, software engineers will think in terms of abstractions, such as lists,
queues, stacks, sorted lists and priority queues. Software engineers then design data structures or data types that implement
these abstract concepts. A sorted list that is not likely to change is best stored as an array, but one that is to be modified is
better stored as a search tree. Whether or not a B+-tree or an AVL tree or a red-black tree is used for a sorted list depends
on the requirements, just like whether a binary heap or a leftist heap is used for a priority queue, again, depends on the
requirements. No data structure is ideal of all situations and it is up to the designer to choose the appropriate representation.

The ADTS you have seen prior to this course include

sets (a collection of unique objects),

bags (sets with repetition),

lists (an explicitly ordered sequence of items),

strings (an ordered sequences of characters from an alphabet),
stacks (last-in—first-out),

queues (first-in—first-out),

sorted lists (an implicitly ordered sequence of items),

priority queues (highest-priority-first) and

graphs (vertices and edges).

© O NOo G WNRE

Lists can be implemented using linked lists or arrays, and we will refer to the first entry as the front and the last entry as
the back. This is an appropriate time to discuss terminology we will use throughout this text.

Insert Remove Ne?<t or Last
First
Stack push pop top bottom
Queue enqueue dequeue head tail
Linked list  push front or back  pop front or back front back

Different texts will use different terminology, including pushing and popping from queues.

2.1.1.4 Object-oriented programming
Object-oriented (00) programming is usually built on top of the procedural programming paradigm. This combines data
abstraction with the procedural problem-solving paradigm. The characteristics of an 00 language are

1. encapsulation,
2. inheritance, and
18



3.

polymorphism.

To summarize what you have seen previously:

1.

In an object-oriented programming language, the focus of the design is on encapsulated and related data and the
operations and queries that can be performed on that data in a structure usually referred to as a class.

In addition to the relationship between the data stored within a class, it is also possible to specify ordered
relationships between classes where one class is said to be derived from another if it contains a superset of the
data stored in the parent class (the derived class inherits the data of the parent class) and that in addition to
possibly including new operations and queries, operations and queries in the parent class may be either inherited
or may be redefined (overwritten).

This inheritance relationship defines either a partial order (resulting in a directed acyclic graph (DAG) of classes)
or a hierarchical ordering (defining a tree of classes). When an operation or query is made on a particular object,
it traces back from the location of the class in the DAG or tree until it finds the first redefinition or the original
implementation of the operation or query, whichever is first, a behavior described as polymorphism.

Object-oriented programming became adopted in larger software projects as the focus is on well-defined collections of
data and operations that can be performed on that data. One issue OO languages is that there is a computational overhead
in implementing polymorphism. For example, Java implements all three aspects, but polymorphism is applied in C++ only
through the use of the virtual keyword.

Note: private members are not immune from malicious attacks. Consider the following C++ code:

All encapsulation does is prevent honest programmers from accidently accessing or modifying the internal structure
of a class.

class X {
private:
int x;
public:
X( int xp ):x( xp ) {}
void get_x() { return x; }

}s

int main() {
Xa(3);

std::cout << a.get_x() << std::endl; // This prints the initial value, 3

int *p_ax = reinterpret_cast<int *>( &a );
*p_ax = 5;

std::cout << a.get_x() << std::endl; // The value is now 5

return 0;

2.1.1.5 Design patterns

The concept of a design pattern was adopted from architecture: well defined solutions to common and reoccurring problem
arising in the field. Computer architecture and software designers have compiled numerous patterns for which there are
recognized reusable and efficient solutions. The benefit of design patterns is that there are often numerous other means of
solving such problems, each of which have negative characteristics.

One such design pattern is a singleton, a class for which there is only ever one instance of that class. One may consider
many ways of implementing such a class, but the most reasonable C++ implementation is as follows:
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class Singleton {
private:
static Singleton *p_instance;
Singleton() { }

public:
static Singleton *get_instance();

}s
Singleton *Singleton::p_instance = nullptr;

Singleton *Singleton::get_instance() {
if ( Singleton::p_instance == nullptr ) {
Singleton::p_instance = new Singleton();
}

return Singleton::p_instance;

}

int main() {
Singleton *ptr = Singleton::get_instance();

return 0;

}

Thus, the only way to access the single instance of the class is to call the get_instance member function, and as the
constructor is private, only the member functions defined in this class can access and assign to that member variable.
Without encapsulation, this cannot be done securely in C as it can be in C++. A summary of design patterns in Gamma et
al. is made available by Jason McDonald at his web site®. Some patterns that are possibly of interest to mechatronics
students are listed in the following table.

Avoid coupling the sender of a request to its server by giving more than one server a chance
to handle the request. Chain the receiving servers and pass the request along the chain until
a server handles it. For example, a request could be sent to a chain of robots and the first
one available would service the request.

Chain of responsibility

Define a one-to-many dependency between objects so that when one object changes state,
all its dependents are notified and updated automatically.
A mechanism for providing access to the entries of a container without exposing the
Iterator underlying implementation of that container. For example, is an implementation of a list
ADT using an array, a linked list or a linked list of arrays?
Suppose means of storing some (usually large) components of an object in secondary

Observer

Prox . . . .
y memory as opposed to in main memory, loading the component only when required.
A means of creating instances of related objects without specifying the actual class to which
it belongs. For example, you may have to deal with different graphical user interfaces (GUIS
Abstract factory g ple.y y grap ( )

in different systems. Each will have classes for windows and other graphical widgets, but
you would rather not have to declare two constructions of essentially the same display.

2.1.1.6 Summary of programming paradigms

We have described structured programming and the procedural programming paradigm of C. This was followed by the
concept of data abstraction and its central role in object-oriented programming in Java. The C++ and Ada programming
languages contains elements of both procedural and object-oriented programming in their design philosophies—you can
easily use both approaches. We finished with the concept of design patterns—recognized solutions to common problems—
and described some examples that may be applicable to engineering disciplines in general. There are other programming

3 http://www.mcdonaldland.info/files/designpatterns/designpatternscard.pdf
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paradigms, including functional, logic and aspect-oriented programming, but most embedded systems use (as this book
will) structured procedural programming with data abstraction and encapsulation with design patterns indicating best
practices.

2.1.2 Ideal characteristics of programming languages

Not all programming languages allow the same ease of performing certain tasks; each enforces certain programming
practices on the code being generated. Consequently, there are programming languages that may be ideal for one type of
problem, while other programming languages may be better suited to other problem domains.

For example, Matlab is an excellent programming language for solving problems involving linear algebra, while Maple is
excellent for solving symbolic mathematical problems.

We will look at the desirable characteristics for programming

1. real-time systems,
2. embedded systems, and
3. operating systems.

2.1.2.1 Characteristics of a real-time programming language
Ideally, a real-time programming language will have mechanisms built into its design in order to facilitate

data encapsulation,

exception handling,

synchronization (including mutual exclusion and serialization),
concurrency, and

message passing.

IEES AN -

The Ada programming language was designed in the 1970s specifically with these goals in mind. At the other end of the
spectrum, none of these concepts are built into the C programming language: if any are to be used, they must be built into
libraries which are then called through appropriate functions. Other real-time programming languages include Modula and
Modula-2, and there is a real-time specification for Java, a programming language that implements the first four of the
above five mechanisms.

If production and maintenance costs, rather than performance, are of primary concern as, a programming language like
Java is likely appropriate. After all, if a toaster fails to pop up the toast after 40 seconds and does so after 41 seconds, it is
hardly a tragedy. There is a real-time specification for Java (RTSJ) and this environment has been recently used for
numerous aspects of the South Korean T-50 trainer jet, shown in Figure 2-2. RTSJ is used in the multi-function display
set, the heads-up display, the mission computer, the mission planning and support system, fire control, as well as other
components.

Figure 2-2. The T-50 trainer (photo by Kentaro lemoto).
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As another alternative, Ada is a programming language resulting from an initiative by the United States Department of
Defense. It is a programming language designed from the ground up to support concurrency (for example, tasks and
synchronous message passing) and to work in real-time and embedded environments. As another example, routines that
are designed to run in parallel are described as tasks, and functions are routines called by executing tasks. In C, both are
implemented as functions, where concurrency is achieved by simply telling the appropriate library to “begin executing this
function as if it was a parallel task”. In Ada, tasks have separate declarations from functions—you cannot accidently call
a task from a function, and you cannot accidently start executing a function as a parallel task.

Despite the increase of popularity of object-oriented programming languages, their overhead can be detrimental.
Specifically, the aspects of inheritance and polymorphism, and also function encapsulation (the overhead of which can be
ameliorated but not entirely eliminated with inline) results in unpredictable and inefficient systems. The problem is
dramatically worse in systems with garbage collection; the garbage collector runs whenever the system decides it is
appropriate. This is, from the perspective of the programmer, utterly unpredictable. However, object-oriented programming
languages can be recommended for soft and firm real-time systems.* Of course, in a system such as the T-50 trainer, the
cost of processors that are perhaps 100 % (or more) faster is probably insignificant when contrasted with the possible
savings in software development and maintenance in using a language such as Java. That is to say, sometimes the cheaper
decision is just to buy more or better hardware.

In an anecdote replayed by Laplante, a real-time system was developed using C++ at the insistence of the design team.
The system was developed and was functional; however, upon the inclusion of additional features, it was found to be
impossible to meet specified deadlines. One client engaged an outside vendor to implement the system in C together with
hand-optimized assembly language for the most critical sections. The low-level procedural correspondence between C and
assembly allowed this to occur, whereas this was not possible with the higher-level object-oriented approach of C++.
However, individual data points should not be used to draw sweeping conclusions.

2.1.2.2 Characteristics of an embedded systems programming language

Programming languages for embedded systems, in general, must produce compact and efficient code. They must allow for
access to peripherals and exhibit close ties to the underlying hardware. Assembly language as well as C and its descendants
are well suited for embedded systems.

4 Laplante and Ovaska, p.165.
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With the focus of a language such as C on procedural programming, it is possible to include inline assembly instructions;
for example, taken from the Keil web site,

extern void test();

void main( void ) {
test ();

#pragma asm
JMP ¢ ; endless loop
#pragma endasm

}

Thus, while other alternatives exist, C is still a ubiquitous programming language for embedded systems. There is even an
extension to the C language, Embedded C, that is useful for writing embedded code (see
http://www.engineersgarage.com/tutorials/emebedded-c-language).

Additionally, embedded systems tend to be smaller than many applications, and therefore are still manageable without
much additional overhead. Consequently, the framework provided by higher level languages like C++ may not be worth
the additional costs. The C programming language was designed to write operating systems, and many of the structures
we will examine will have parallels in operating systems; it has even been described as a “portable assembly language”.
Consequently, it is appropriate at this level.

Every year, VDC Research polls embedded systems developers as to which programming languages they use to develop
such systems. Normally, they document all programming languages used, however, in 2014 they contrasted the change
from 2008 to 2013. Java and C#, each running on virtual machines, are seeing significantly more prominence, while the
workhorses of embedded systems, C and Assembly, are seeing a decrease in market share (see Figure 2-3). Recall that, at
best, virtual machines run similar code with a slow-down of at least 300 %.

100 %
Survey of programming languages
used in embedded systems
75 % 2008 to 2013
50 %
- j J

C C++ Java C# Assembly

Figure 2-3. Percent of programming languages used in embedded systems
(with multiple responses, totals are greater than 100 %). Recreated from
http://electronicdesign.com/embedded/developers-discuss-iot-security-and-platforms-trends.

2.1.2.3 Characteristics of an operating system programming language

The C programming language was designed to implement the kernel and other components of the Unix operating system.
The C programming language was originally written to allow Unix to be portable across many platforms; consequently,
many of its design decisions were made in order to allow it act as an abstraction of a processor. Additionally, compiled C
tends to be more compact than other programming languages. In a sense, the original C compliers were essentially
interpreters. For example, the reason C has auto-increment (++i and i++) and auto-decrement (- -1 and i--) operators is

23


http://www.engineersgarage.com/tutorials/emebedded-c-language
http://electronicdesign.com/embedded/developers-discuss-iot-security-and-platforms-trends

that there are assembly language instructions and related flags for these very operations, especially when associated with
array indexing. Otherwise, there would be no point to these, and we would be left with

i
i

i+ 1; // ++1;
i+ a; // 1 += a;

Most languages that do not descend from C do not support such operators on the argument that they don’t add anything to
the programming language—they really are cues for the compiler.

Of course, another part is sheer momentum: experienced C programmers are more readily available than, for example,
ESL (embedded systems language) programmers.

Why not use C++, as data encapsulation and exception handling are built into the language? While an appeal to authority
can sometimes form the basis of a fallacious argument, the following quote by two Linux kernel developers, Linus Torvalds
and Richard Gooch, respectively, seem appropriate:

“Trust me: writing kernel code in C++ is a bloody stupid idea. The fact is, C++ compilers are not trustworthy.
The whole C++ exception handling thing is fundamentally broken. It's especially broken for kernels. Any
compiler or language that likes to hide things like memory allocations behind your back just isn't a good
choice for a kernel.”

“My personal view is that C++ has its merits, and makes object-oriented programming easier. However, it
is a more complex language and is less mature than C. The greatest danger with C++ is in fact its power.
It seduces the programmer, making it much easier to write bloatware. The kernel is a critical piece of code,
and must be lean and fast. We cannot afford bloat. | think it is fair to say that it takes more skill to write
efficient C++ code than C code. [Developers] will not know the various tricks and traps for producing
efficient C++ code.”

As an example, the first author of this text implemented the Dormand-Prince algorithm for approximating solutions
to systems of initial-value problems. This algorithm is adaptive, so the number of steps (the size of the output array)
is not known prior to completing the algorithm. When implemented in Matlab, all memory allocation and deallocation
is performed by the Matlab interpreter. In C++, the first solution is to use the Standard Template Library (STL)
vector class; however, in C, no such structure exists, so it was necessary to come up with an appropriate intermediate
structure: in this case, a linked list of arrays. Then, only at the end, was a pass made to copy all data in these arrays
into a single array of the appropriate size. The C implementation was significantly faster than the C++ version using
the vector class, and twenty times faster than the Matlab version.

2.1.2.4 Summary of ideal characteristics

The C programming language is appropriate for embedded and operating systems, but it lacks the desirable characteristics
for real-time systems. Never-the-less, it is still the most common programming language used in such situations, and we
will consequently use it in this class. In time, it seems that object-oriented programming languages such as C++ and Java
(languages that impose a layer of data abstraction on the procedural programming paradigm used by C) will become
dominant. C++ is likely more appropriate when tighter code is required while Java is available if minimizing development
and maintenance costs takes highest priority.
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2.1.3 Other software programming techniques

As described previously, an object-oriented programming language is often described as implementing data structures that
include

1. encapsulation (data hiding),
2. inheritance, and
3. polymorphism.

In fact, object-oriented programming actually deals more with the latter two concepts. Encapsulation is a software
programming technique used to ease maintenance. We will discuss through this course how encapsulation can be used as
a technique of disciplined programming that will help you develop maintainable code, even if it is not enforced by the
programming language using visibility specifiers such as public, protected and private. Note that inheritance and
polymorphism are not required characteristics of a real-time programming language listed at the start of Section 2.1.2.1.

Other software techniques applicable to embedded systems include

1. abstraction and
2. modularity.

Abstraction separates the concepts or ideas regarding the functionality from the concrete implementations. For data
structures, the implementation is hidden behind an interface used by programmers so that the programmer can use, for
example, a stack to provide the expected behavior without worrying about the details. Systems can have abstraction layers
where, for example, a network can be divided into multiple layers where programmers of each layer need only understand
the interface of the immediate adjoining layers. Consider the Open Systems Interconnection (OSI) model of a network:

application,
presentation,
session,
transport,
network,
data link, and
physical.

NooakwbdE

An application need only understand the interface of the presentation, and at each step, the message and its address is
appropriately packaged and modified until it is finally sent to its destination on the physical network. At the other end, the
application merely accepts the package in an appropriate form as returned by a function in the presentation layer interface.

Modular programming involves the separation of the functionality of a system into self-contained, independent and
interchangeable modules. Each module contains only the functionality required to execute the desired level of abstraction.
This allows a separation of concerns, where the programmer of one module need not concern him or herself with the
details of the other modules (very helpful in 4"-year design projects). We will be using modularity in this course, too. The
tasks that are necessary to control and allocate resources on a computer can be broadly broken into categories to deal with
ideas such as

dynamic memory allocation,
task execution and scheduling,
synchronization,

message passing, and

file systems.

akrwdnPRE

For example, in Linux, it is possible to swap different modules for any of these required categories. The default scheduler
in Linux (we will look at this later), is not a real-time scheduler; however, you can swap that scheduler out and install a
module with a real-time scheduler (one that selects the next task to execute in ®(1) time).
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2.1.4 Summary of real-time programming languages

C is more desirable as an operating system and embedded systems programming language as opposed to a real-time
programming language; however, the availability of appropriate libraries, the fact that C programmers are ubiquitous, and
the availability of compilers on all platforms, make it the de facto programing language for many embedded systems. This
does not mean that it is a better programming language; Ada is more appropriate, it is simply less accessible. We also
discussed other software techniques applicable to designing embedded systems such as the applicability of object-oriented
design techniques and abstraction and modularity.

2.2 The C programming language

We will now continue with looking at many of the features in the C programming language and compare and contrast them
with characteristics of the C++ programming language you have already learned. We will see:

C does not have classes, only structures,

it is possible to do generic programming in C, only it is less safe or very complicated,
a discussion of pass-by-reference in C,

it is possible to emulate object-oriented programming without the encapsulation provided in C++,
it has header files that are important to understanding a system,

the functioning of the pre-processor,

there is a relationship between the order of structures and memory allocation,

there is both explicit memory allocation and deallocation,

. bit-wise operations,

10. bit-fields in C99,

11. pVision4 specifics,

12. there are other places to find help.
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These topics are discussed here, but let us start with a cartoon from XKCD (http://xkcd.com/371/ used for academic
purposes):

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY You | WELL, THATS WHAT A
LN 9] FALLING ASLEEP AND NISSTER, STUMBLE, SEGFAULT FEELS LIKE.
{UH: YOU IMAGINE YOURSELE | AND JOLT AWAKE? 3
BEFORE. YOU WALKING OR YEAH! DOUBLE - CHECK. YOUR
HIT (OMPILE, A SOMETHING, il yﬁ DAV POINTERS, CKAY

1 | Sul

2.2.1 No class, just structure...

C++ is an object-oriented language and therefore the primary mechanism for creating aggregate types is the class. A class
is a collection of data (member variables) associated with a collection of functions that operate on that data (member
functions). The interface is usually through public member functions while the actual implementation is hidden behind an
opaque barrier of private and protected member variables and functions. There are many good reasons to use objects;
however, that and other features of C++ are not necessarily the most appropriate for embedded systems.

As a brief review of C++, in C++, we have global and member functions, the second being associated with a class. There
are also global, local and member variables, the second being associated with a function calls and the third being associated
with instances of classes.

// Global variables and functions
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class Class_name {
private:
// Private member variables (member variables are usually private)
// Private member functions (helper functions)
public:
// Public member functions (interface)

1

// A global function
int main( void ) {
// Local variables

}

A function or variable that is shared is said to be static. For example:

1. Astatic local variable is one that is shared by all calls to that function,
2. A static member function or member variable of a class is one that is not bound to any specific instance of that
class.

Think of static variables and functions as global variables and functions that can only be accessed in the associated function
or class.
// A global function
void f( void ) {
// The number of times this function is called
static int size = 0;
++size;

}

class Class_name {
private:
// Private member variables (member variables are usually private)
// Private member functions (helper functions)
public:
// A static member variable, or "class variable"
static double PI = 3.1415926535897932385d;

¥
In C, there are no classes with member variables and member functions, only structures and functions. A struct is a
class without any visibility restrictions, without associated member functions (and therefore without polymorphism) and
without inheritance.

struct pair {
int first;
int second;

1

struct single_node {
void *p_entry;
struct single_node *p_next;

1

The member variables of the structure are called fields and instances of structures are commonly referred to as records.
Unlike C++ classes, where you can declare an instance of a class by just using the class name, in C, you must always use
the struct modifier, as is demonstrated by the pointer to the next node in the single node structure.

struct pair coordinate;
struct single_node new_node;

To simplify this, C uses a concept known as type definitions (typedef) that allows you to use this definition in place of
the full type name or description; for example,
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typedef struct {
int first;
int second;
} pair_t;

typedef struct single node {
void *p_entry;
struct single_node *p_next;
} single_node_t;
By convention, types in C are suffixed with an _t. Recall that a singly linked list (or single list for short) usually consists
of a head pointer (storing the address of the first node), a tail pointer (storing the address of the last node as a means of

optimizing insertions at the end of the linked list), and a counter. Here is a single list structure:

typedef struct {
single_node_t *p_head;
single_node_t *p_tail;

size t size;
} single_list_t;

Note: for any container, size will refer to the number of items that the container is holding, while capacity will refer
to the maximum number of items that the container can hold.

Here we have a pre-defined type size_t (defined in stddef.h) that is used to store the number of entries in the linked
list. The type size_t is an unsigned integer able to store a number sufficiently large to capture the maximum size of an
object. This would be at least 2 bytes on a 16-bit computer, 4 bytes on a 32-bit computer and 8 bytes on a 64-bit computer.
The use of size_t eliminates potential portability problems.
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2.2.2 More than the sum of'its parts
Consider the following structure:

#tinclude <stdio.h>

struct demo {
char a;
int b;
char c;
short d;
char e;
int f;
long g;

s

int main() {
struct demo x;

printf( "%p  %d\n", &x, sizeof( x ) )
printf( "%p  %d\n", &(x.a), sizeof( x.a ) );
printf( "%p  %d\n", &(x.b), sizeof( x.b ) );
printf( "%p  %d\n", &(x.c), sizeof( x.c ) );
printf( "%p  %d\n", &(x.d), sizeof( x.d ) );
printf( "%p  %d\n", &(x.e), sizeof( x.e ) );
printf( "%p  %d\n", &(x.f), sizeof( x.f ) );
printf( "%p  %d\n", &(x.g), sizeof( x.g ) );

return 0;

}

Consider the output:

ox7fffbcc535e0 32
ox7fffbcc535e0 1
ox7fffbcc535e4 4
ox7fffbcc535e8 1
ox7fffbcc535ea 2
ox7fffbcc535ec 1
ox7fffbcc535f0 4
ox7fffbcc535f8 8

Why isthistrueif 1+4+1+2+1+4+8=21? This is a consequence of the compiler trying to optimize access time to
memory. While memory is byte addressable, most computers will read multiples of bytes, or words, and a word boundary
will be at multiples of the word size, so if a field spans one of these boundaries, it will require two fetches to access it, as
opposed to one. The compiler option gcc -fpack-struct will minimize the space required by the structure:

=

Ox7fffbcc535e0
ox7fffbcc535e0
ox7fffbcc535el
ox7fffbcc535e5
ox7fffbcc535e6
ox7fffbcc535e8
ox7fffbcc535e9
ox7fffbcc535ed

ORARRNRDMRN
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These two memory maps are shown in Figure 2-4.

ex7fffbccsases ex7fffbccsases

}
\
|
)

.57 -o5fe

—

Figure 2-4. Memory map of a structure: one optimized and the other packed.

The justification for this layout deals with the design of the data bus (the connection between the computer and main
memory), a topic that we will see in the next chapter.

2.2.3 Genericsin C

One point you may have noticed above is that we don’t have anything in C that resembles templates from C++ or generics
in Java. Instead, we are forced to create data structures that simply store addresses where the type is left unspecified,
namely void *. The notation is slightly confusing for a new C programmer, as

void () { .. }
defines a function that does not have a return value, but
void *f() {..}

is a function that returns a pointer where the type of that pointer is unspecified (that is, it is just a 16-, 32- or 64-bit address,
depending on the system)—it is not a pointer to nothing.> We will look at using the pre-processor later.

2.2.4 Static and dynamic memory allocation
Now, we must consider the difference between the following two declarations:

single_list_t s1;
single_list_t *p_sl = (single_list_t *) malloc( sizeof( single_list_t ) );

In the first case, the compiler knows the size of a single list and allocates the appropriate amount of memory (somewhere).
In the second case, the compiler knows the size of a pointer (4 bytes on a 32-bit processor and 8 bytes on a 64-bit processor,
and of course, 2 bytes on a 16-bit processor and 1 byte on an 8-bit processor). The memory for the second single list must
later be returned to the operating system. To return the memory, call

free( p_sl );

5 There is another alternative, colloquially referred to as hacking the pre-processor. If you’re interested, please read Andrei
Ciobanu article at http://andreinc.net/2010/09/30/generic-data-structures-in-c/ for a brief introduction.
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Memory is byte addressable. This means that each byte has a unique address and if you want to access or change a single
bit, you must first access the byte containing that bit. If the bit is changed, then the entire byte must be written back to the
address.

Why byte addressable? Why not 7-bit addressable or 6-bit addressable? This largely historical:

1. 7 bits is sufficient for coding the English alphabet with one parity bit,
2. 8 hits is sufficient for coding European languages (&, 6, G, B, é, &, ¢), and
3. 256 colors is usually sufficient for a gray-scale image.

Later, we will see the concept of block addressability. For example, on a hard drive, each block (usually 4 KiB, but
possibly smaller or larger) has its own address and no more. If you want to access a byte on a hard drive, you must
first load the block containing that byte into the hard drive, modify the byte, and if necessary write the entire block
back to the hard drive.

The next question is how many addresses are there? In general, an address will be a multiple number of bytes. An n-bit
computer will be able to address 2" unique bytes. Consequently:

A 8-bit processor will be able to access 28 = 256 bytes,

A 16-bit processor will be able to access 26 bytes or 64 KiB,

A 32-bit processor will be able to access 2%2 bytes or 4 GiB, while
A 64-bit processor will be able to access 2%* bytes or 16 million TiB.

H>owpheE

Note: 21°=1024 = 1000 = 10%. Thus, 232 =22 x 230 = 22 x (210)3 = 4 x 1000° = 4 billion.

It is colloquial to call 2%° as one kilobyte (kB) and 2%? as four gigabytes using metric prefixes; however, these are
powers of 10, not powers of 2. Consequently, | will use 10 kB and 2 GB to represent 10 000 bytes and 2 billion bytes,
respectively, while 10 KiB and 2 GiB to represent 10 240 and 23! bytes, respectively.

Now, let’s observe something interesting:

#include <stdlib.h>
#include <stdio.h>

int main( void ) {
int exit_value;

int m = 4
int *p_n = (int *) malloc( sizeof( int ) );

if ( p_n == NULL ) {
exit_value = EXIT_FAILURE;

} else {

*p_n = 5;

printf( "The address of 'm': %p\n", &m );
printf( "The value of 'm': %d\n", m );
printf( "The address of 'p_n': %p\n", & _n );
printf( "The value of 'p_n': %p\n", p_n );
printf( "The value stored at 'p_n': %d\n", *p n );
free( p );

exit_value = EXIT_SUCCESS;
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return exit_value;

}

When we compile and run this on a 32-bit computer, we get the output;

$ gcc example.c

$ ./a.out

The address of 'm': oxfffffd73c
The value of 'm': 4

The address of 'p_n': oxfffffd730
The value of 'p_n': 0x16d1a38
The value stored at 'p_n': 5

You will notice a few things here:

1. The local variables are stored close to the end of memory,
2. The local variables are stored next to each other, but
3. The memory allocated by malloc is somewhere else.

You will also recall that malloc must find and allocate the memory so that no one else can either overwrite it, or even
view it.

In a few topics, we will look at how understanding how the program works, what the operating system does, and discover
a few things about operating systems.

Thus, the programmer must be aware of how much memory is required. This introduces the unary operator
sizeof( datatype ) which will return the memory required by the given data type. For example,

sizeof( int ) usually equals 4 (representing four bytes),

sizeof( float ) always equals 4 (representing eight bytes),

sizeof( double ) always equals 8 (representing eight bytes), and

sizeof( single_node_t ) (comprised of two pointers) equals 8 on a 32-bit machine (every pointer is 4
bytes) and equals 16 on a 64-bit machine (every pointer is 8 bytes).

~wbdhpe

Note, the only requirement in the specification is that the following must be true:

2 <= sizeof( short int )
4 <= sizeof( int ) && sizeof( short int ) <= sizeof( int )
sizeof( int ) <= sizeof( long int )
sizeof( long int ) <= sizeof( long long int )

Aside: Note that sizeof is an operator, not a function. It must be able to determine the size of the type at compile
time. This is slightly confusing, as sizeof int is invalid—one must use sizeof( int )—but return @ is just
asvalid asis return( 0 ).

This ambiguity as to how large various integer data types are has led many lower-level tools and utilities to create a set of
specified types:

typedef signed char  S8; typedef char us;

typedef short S16; typedef unsigned short ule;
typedef int S32; typedef unsigned int u32;
typedef long long S64; typedef unsigned long long U64;

If we only use these defined types, S8 through U64, then if we port our code to a different compiler where, perhaps char
is signed by default, we would only have to change the first line. Common alternate type definitions include:
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typedef signed char int8_t; typedef char uint8_t;

typedef short intle_t; typedef unsigned short uintle_t;
typedef int int32_t; typedef unsigned int uint32_t;
typedef long long int64_t; typedef unsigned long long uint64_t;

These are defined in the header file stdint. h, together with other useful definitions, including for example

#tdefine INT8_MAX ox7f

#define INT8_MIN ( -INT8_MAX - 1)

#define UINT8 MAX  (2*INT8_MAX + 1)

#tdefine INT16_MAX ox7fff

#define INT16_MIN ( -INT16_MAX - 1)
#define UINT16_MAX  (2U*__CONCAT(INT16_MAX, U) + 1U)

This is emphasized in Rule 17 of the JPL coding standard, which says that

“typedefs that indicate size and signedness should be used in place of the basic types.”

2.2.5 Pass-by-reference in C

The C programming language does not allow pass-by-reference. Consequently, the following C++ example cannot be
written in C:

void increment( int &n ) {

+4n;

}

If we write
void increment( int n ) {

+4n;

}

and call this with

int i = 5;
increment( i );

this, does not change the value of the argument i, as the value of the argument is copied to the parameter n. While the
parameter is changed, the original argument is left unchanged.

Instead, we can solve this by passing the address of the object to be changed, for example
void increment( int *p_n ) {
+(*p_n);
and call this with

int i = 5;
increment( &i );

As a first approximation, any pass-by-reference in C++ can be converted into a pass-by-value in C by:
1. replacing the &p in the formal parameter with *p,
2. replace any instance of the actual parameter p in the function call with *p, and
3. replace any arguments q with &q.

The benefits of pass-by-reference in C++ do however include
1. transparency (you don’t have to explicitly use &q in the calling sequence),
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2. temporary objects can be passed (those created but not assigned to local variables), and
3. itis easier to work with references and therefore it is less likely to result in bugs (is, for example, *n++ the
same as (*n)++ or *(n++)?).

The following swaps two 32-bit integers:

void swap( U32 *p_a, U32 *p b ) {

U32 t;

t = *p_a;
*p_a = *p_b;
*p_b = t;

}

The following swaps two arbitrary sized objects:

void swap( void *p_a, void *p_b, size t n ) {
int i;
char t;
char *p_char_a = (char *) a;
char *p_char_b = (char *) b;

for (1 =0;1i<n; ++i ) {
t = p_char_a[i];
p_char_a[i] = p_char_b[i];
p_char_b[i] t;

}

Note: if you want to pass a pointer by reference, you would use

typename **pp_obj;
In the calling function, you would pass the address of the pointer, and in the function updating the parameter, you
would assign a pointer to *pp_ob7j. Note that Rule 26 of the JpL coding standard says that

“The declaration of an object should contain no more than two levels of indirection.”

Thus, a declaration such as

typename ***ppp_obj;
meaning the address of the pointer that stores the address of a pointer to an object, should generally not be used. If
you dealing with the address of a pointer storing the address of a two-dimensional array (a matrix), this suggests it
would be clearer to define the two-dimensional array within a structure, and to then pass the address of the pointer to
the structure. This would significantly clarify code for the reader.

2.2.6 An object-oriented approach in C
Let’s start writing a function to work on a singly linked list as if it was in C++. Let’s start with the push front function:

int push_front( void *p_new_entry ) {
single_node_t *p_new_node = (single_node_t *) malloc( sizeof( single_node_t ) );

The compiler does not allow us to arbitrarily assign pointers to different objects being assigned without explicitly telling
the compiler that that is what we want to do, consequently, we must cast the returned pointer from malloc as a pointer to
asingle node: (single_node_t *).

Next, we must initialize the fields:

p_new_node->p_entry = p_new_entry;
p_new_node->p_next = ...
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Normally, we would assign the next pointer of the new node to be placed at the front of the linked list to be address of the
node currently at the front of the linked list, but which linked list?

In C++, when a member function is called on an instance, the address of the object it is called on is implicitly passed as
the pointer this. In this case, however, we have no such luck: we must explicitly pass the address of the object.

bool single_list push_front( single_list_t *const p_this, void *p_new_entry ) {
bool success;
single_node_t *p_new_node = (single_node_t *) malloc( sizeof( single_node_t ) );

if ( p_new_node == NULL ) {
// No memory...
success = false;

} else {
p_new_node->p_entry = p_new_entry;
p_new_node->p_next = p_this->p_head;
p_this->p_head = p_new_node;

if ( p_this-»>size == 0 ) {
w_

p_this->p_tail = p_new_node;

}
++( p_this->size );
success = true;

}

return success;

}

As we do not have the new operator, which automatically calls a constructor, we may have to do our own initialization.
This is often done with an init () function that must be called separately:

void single list _init( single_ list_t *const p_this ) {
p_this->p_head = NULL;
p_this->p_tail = NULL;
p_this->size = 0;

}

We would now do the following:
int main( void ) {
single_list_t s1;
single_list_init( &sl );
// Use the single list with, for example, single_list_push_front( &sl, ... );

return EXIT_SUCCESS;

or
int main( void ) {
single_list_t *p_sl = (single_list_t *) malloc( sizeof( single_list_t ) );
init( p_sl );
// Use the single list with, for example, push_front( p_sl, ... );
free( p_sl );

return EXIT_SUCCESS;
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Note: this brings us to another convention. You will note that we use
single_list_t *p_sl;

and we do not use either of
single_list_t* p_s1;
single_list_t * p_s1;

The first of these alternates would make the most sense: “p_sl is a pointer to a single list”. Unfortunately, this
suggests that single_list_t* isatype, and it is not:

single_list_t* p_sll, p_sl2;
declares p_s11 to be a pointer, but p_s12 to be simply a single list.

Thus, we will read my convention as “p_s1 is a pointer that stores the address of a single list”. This is the same
notation used in the Keil operating system.

If all instances of a class are to be allocated dynamically, we could combine both memory allocation and initialization into
a single function:

single list_t *single_list alloc() {
single_list t *p_list = (single_list t *) malloc( sizeof( single list t ) );

p_list->p_head = NULL;

p_list->p_tail = NULL;

p_list->size = 0;

return list;

}

This will not work, however, if any single list is to be declared statically (either as a global or local variable).

2.2.7 Header files

Up until now, you’ve dealt with a header file and a source file. A few comments on terminology:

1. The signature of a function is called a declaration, while
2. The signature together with a function body is a definition.
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In a project, you may have a number of source files with associated header files, such as:

my_module.h my module.c

#ifndef CA_UWATERLOO_DWHARDER_MY_MODULE #include "my_module.h"

#tdefine CA_UWATERLOO_DWHARDER_MY_MODULE // Any headers required to compile this file
#include <stdio.h>

// Definitions and macros to be used by anyone #include <math.h>

// using this package #include "my_other_module.h"

#tdefine N 100 // Definitions and macros to be used inside

#define F8(x) F((x), NULL, @, 255 ) // this file only

#define F16(x) F((x), NULL, ©, 65535 )
#define ERROR_LIMIT 5
// Type definitions and structures to be used #define MAX(x, y) ((x) >= (y) ? (x) : (y))
// by anyone using this package
// The declaration of functions that are only

typedef unsigned char U8; // used and defined in this source file and
typedef signed char  S8; // required for compilation
typedef struct my_struct { void swap( int *, int * );

// Fields...
} my_struct_t; // Function definitions
// The declarations of functions that are void f( int n, my_struct_t *p_ms, int low, int hi ) {
// defined in the source file // Performing a task

}

void f( int, my_struct_t *, int, int, int );
int g( int, int ); int g( int x, int x ) {

// Performing another task
#endif }

For modules meant to be used in other programs or modules, they will often be compiled into object files which will then
be included in the compilation of other functions that require them. For example:

$ 1s

main.c my_module.c my_module.h my_other_module.c my_other_module.h
$ gcc -c my_module.c

$ gcc -c my_other_module.c

$ 1s

main.c my_module.c my_module.h my_module.o
my_other_module.c  my_other_module.h  my_other_module.o

We will now compile and execute a source file that has a global int main(...) function.

$ gcc -o executable_name main.c my_module.o -1m
¢ executable_name

executable_name: Command not found.

$ ./executable_name

..running running running..

Note that the file name of the executable is executable_name, but just typing that at the prompt will not automatically
execute that file. If you type Is, however, it seems to work. This is because the shell (terminal interface) has a user-
defined list of places that it will for executable files (type

$ echo $PATH
if you want to see where it looks), and if it doesn’t find it in one of those directories, it will stop searching. Thus, if
you want to execute a file that is not in the path, you must explicitly give a path either from root “/” or from the
current directory, “.”; for example, both of these would work:

$ /home/dwharder/mte241/executable_file
$ ./executable file

If you do not include an output file, the default name of the executable will be a.out (for assembler output, which is
technically wrong, as it is the linker output).

You will note we must use -1m to link the math library (which includes the implementation of
double sin(double)), but we didn’t have to link to a library containing printf. This is because, as a general
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rule, any header file prefixed by “std” is automatically linked in, and you must explicitly use -nostdlib if you
don’t want it linked. For every other library, e.g., 1ibname.so, you must include it in the linking process with
- 1name. For the most part, you won’t have to worry about this in this course, as the IDE will take care of all of this.

For your information, all functions in stdio.h are in 1ibc. so and all functions in math.h are in 1ibm. so.

The reason for this discussion is that we will be using the Keil RTX (for Real-Time executive) real-time operating system
(RTOS) that comes with our Keil evaluation board and the uVision4 IDE. Consequently, it will be useful for you to
understand how the forest of header files are all related. Once you start looking at the library, you will find a number both
header and source files related to the operating system. These are shown in Figure 2-5.

arncc_intr.h
€ compiler
intrinsics
Ft_HAL_CM.h rt_Typebef.h  RTL.h RTX_Config.h rt_Task.h rt_systes.h rt_Event.h rt_NesBox.h rt_Mailbox.h  rt_Semaphore.h rt_Time.h rt_timer.h rt_Mutex.h rt_List.h rt_Robin.h
Hardware Type Application Exported Task functions System Task Inplements Interface Inplements Inplenents. Inplements Inplements Inplenents Functions for  Round Robin
2 e functions of and systen Manager waits and functions for  waits and binary and waits and wake- waits and waits and wake- the management Task switching
Layer for Interface RTX_Config.c start up wake-ups for  fixed memory  wake-ups for  counting ups for event  wake-ups for  ups for event  of different
event flags block manage-  mailbox semaphores. flags event flags flags Lists
definitions ment systen messages

effect
RTX_CM3.c rt_System.c rt_Event.c ) rt_Mailbox.c  rt_Semaphore.c  rt_Time.c rt_Timer.c _Mutex. rt_List.c rt_Robin.c
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Figure 2-5. Header and source files for the Keil RTX RTOS.
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We’ll look at two just to note what the files contain, rt_Mailbox.h and rt_Semaphore.h, reprinted here for academic
purposes:

/¥ o o -
* RL-ARM - RTX
K o L e e e e e e e e e e e m e . m — — — — — — — — — — — — — — — — — — e — o — e — e ——————————
* Name: RT_MAILBOX.H
* Purpose: Implements waits and wake-ups for mailbox messages
* Rev.: V4.70
K o L o e e e e e e e e e e — e — e — — e — e — e —————————
* This code is part of the RealView Run-Time Library.
Copyright (c) 2004-2013 KEIL - An ARM Company. All rights reserved.
K o o o e e e e e e e e e e e — e ———————— */
/* Functions */
extern void os_mbx_init( 0S_ID mailbox, Ul6 mbx_size );
extern OS_RESULT os_mbx_send( 0S_ID mailbox, void *p_msg, Ulée timeout );
extern OS_RESULT os_mbx_wait( 0S_ID mailbox, void **message, Ul6 timeout );

extern OS_RESULT os_mbx_check( 0S_ID mailbox );

extern void isr_mbx_send( 0S_ID mailbox, void *p_msg );
extern OS_RESULT isr_mbx_receive( O0S_ID mailbox, void **message );

extern void os_mbx_psh( P_MCB p_CB, void *p_msg );
/2

* end of file

K L L e L o o o o o e o e e o e e e e e e e e e ————— o —— */
/22

* RL-ARM - RTX

K o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mm e mmm e — e ———————

* Name: RT_SEMAPHORE . H

* Purpose: Implements binary and counting semaphores

* Rev.: V4.70

K o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mm e mmm e — e ———————

* This code is part of the RealView Run-Time Library.

Copyright (c) 2004-2013 KEIL - An ARM Company. All rights reserved.
K o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mmmmm e mmm e —————— */

/* Functions */

extern void os_sem_init( O0S_ID semaphore, Ul6 token_count );
extern OS_RESULT os_sem_send( O0S_ID semaphore );

extern OS_RESULT os_sem_wait( OS_ID semaphore, Ul6 timeout );

extern void isr_sem_send( OS_ID semaphore );
extern void os_sem_psh( P_SCB p_CB );
2
* end of file
K L L e o o o o o e o o e e e e e e e e e e e e ——————— */

We have standard headers and footers, and a sequence of functions that perform various operations. You will not be
expected to memorize or understand all of this at this point, but by the end of the course, you will have a good idea as to
the purpose of each of these files. At the top of Figure 2-5 is a header file that is included by default in each compilation
and below this, to the right, are eleven header files with corresponding source files. These files are for the operating system;
however, other files are microprocessor specific, such as

LPC17xx.h
cMsIs Cortex-M3 Device peripheral access layer header file for NXP LPC1768 and related devices.

system_LPC17xx.c
cMsIs Cortex-M3 Device System source file for NXP LPC1768 and related devices.

39



2.2.8 Further help

One of the best books on the market for programming in C is Practical C Programming by Steve Oualline, or—as it is
better known—the “Cow Book. Another excellent text—especially for this course is the 2007 Springer Verlag on-line text
by Parab, Shelake, Kamat and Naik (PSKN), Exploring C for Microcontrollers: A Hands on Approach, which uses the
Keil development environment. These are shown in Figure 2-6.

jwan'S. Par
Vinod G. Shelake
Rajanish K Kamat
Gourish M. Naik

Exploring C for

Microcontrollers

&' <
‘;

Practiéal C

Programming

AHands o0 Approach

OREILLY"

Figure 2-6. Practical C Programming from O’Reilly, Inc., and Exploring C for Microcontrollers from Springer-Verlag.

There are additional web sites available from the various manufacturers, including Keil, ARM and NXP Semiconductors.

2.2.9 Bit-wise operations
You have likely been taught bit-wise operations, but you might not be sure what they’re useful for.

Let’s take as an example, a set of five different Boolean-valued flags that control the state of an operating system. We
could define five global variables of the appropriate type:

#include <stdbool.h>
bool flag_all;
bool flag directory;
bool flag long_name;
bool flag recursive;
bool flag no_backups;
Unfortunately, this occupies five bytes. Instead, we could use a single byte:
t#tdefine ALL (1 << 0)
#define DIRECTORY (1 << 1)
#define LONG_NAME (1 << 2)
#define RECURSIVE (1 << 3)
#define NO_BACKUPS (1 << 4)
unsigned char flags;
Now, if you want to access the flag for LONG, use
if ( flags & LONG_NAME ) { .. }
If you want to set the flag for RECURSIVE to true, use
flags |= RECURSIVE;
If you want to set the flag for ALL to false, use

flags &= ~ALL; // Bit-wise NOT

Now, if you had a tri-value flag (one that holds values of TRUE, FALSE or FAIL), you could just use the next two bits:
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#tdefine USER (3 << 5)
#define USER_FALSE (@ << 5)
#define USER_TRUE (1 << 5)
#define USER_FAIL (2 << 5)
Now, however, we would have to do a little more work
if ( (flags & USER) == USER_TRUE ) { .. }

Bit shifting and bit-wise AND can be used to extract components of a number:

1561710820; // 01011101000101011101000011100100
(x >> 5) & 511; // ©0000000000000000000000010000111

int x
int y

Note that 511is2°—1or (1 << 9) - 1o0r111111111,.

2.2.10 Bit-fields in C99

An addition to the 1999 standard for the C programming language was an internalization of the concept of a bit field. The
number of bits that a particular field takes up is specified by a trailing colon followed by a positive integer indicating the
number of bits. This removes the need to access the bits through individual bit-wise operations. Taking the examples in
Section 2.2.8 and re-interpreting them as bit-fields, we have the following code:

#include <stdio.h>
#include <stdbool.h>

#tdefine FALSE ©
#tdefine TRUE 1
#tdefine FAIL 2

typedef struct {
bool all
bool directory :
bool long_name :
bool recursive :
bool no_backup :
bool user

} flag_t;

e Ve Lo Lo W
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int main( void ) {
flag_t my_flags;

my_flags.all
my_flags.user

TRUE;
FAIL;

my_flags.all
my_flags.user

FALSE;
TRUE;

return 0;

}

Note that true and false are defined in stdbool.h.
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2.2.11 switch statements versus function pointers

As described by Nigel Jones®, often C programmers will use a switch statement under what appear to be appropriate
conditions: a particular variable may take on one of a fixed number of values, and it is possible to describe the response
to each possible value. On the surface, the switch appears to be very appropriate; however, the compiler may choose to
compile a switch statement into

1. acalculated jump necessitating the possibility of wasted space,
2. an if-else-if chain

or an appropriate combination thereof. A switch statement may be reasonable if the range of possible values is contiguous
and the blocks of code to be executed are similar in size, but Nigel points out that even a small change in the code base
may result in a significant change in performance due to the compiler choosing an alternate approach for encoding the
switch. An alternative, to a switch statement, at least with the range of values are contiguous or equally spaced is to use
function pointers. Suppose, for example, that you have already declared four functions

void response@( void );
void responsel( void );
void response2( void );
void response3( void );

You may now initialize an array

void (*function_array[4])( void );

function_array[@] = &responseo;
function_array[1] = &responsel;
function_array[2] = &response2;
function_array[3] = &response3;

and now you may call
function_array[2]();
In a case where a variable n may take on one of four possible values from 0 to 3, you may now replace the switch statement

switch( n ) {

case @: // response 0...
break;

case 1: // response 1...
break;

case 2: // response 2...
break;

case 3: // response 3...

}

with a function call from the table:
function_array[n]();

The execution is now well defined, and changes to the code will not affect the run time of responses not related to the one
being modified.

6 See http://embeddedgurus.com/stack-overflow/category/efficient-cc/.
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2.2.12 pVisiong specifics: variable declarations in functions
You may be familiar with C++ where you can declare variables at any point, and this in general also holds in C; however,
older versions of the compiler that ships with uVision4 require all local variables to be declared at the top of the function.

2.2.13 The pre-processor

You’ve already seen the #include pre-processor directives, and we’ve touched on #define to give a definition to an
identifier (any token starting with an underscore or a letter followed by any number of underscores, letters or numbers).
Note that in C, you must still specify the . h at the end of library files (for example, #include <stdio.h>). When C++
introduced namespaces, they moved to the convention that, for example,

#include <iostream.h> // Access the deprecated version without namespaces
#include <iostream> // Access the new version

There are, however, other features that allow for conditional inclusion of source code to be sent to the compiler

#ifdef IDENTIFIER
/] ..

f#telse

/] ..
tendif

For example, if you are developing an embedded system, it may have to compile for numerous microcontrollers, so you
may want to

#if defined LPC17xx
#include "rtx_lpcl7xx.h"
#elif defined EFM32
#include "rtx_efm32.h"
ttelse
#terror "no target specified at the command line"
t#tendif

Now, you can choose which header files are included in the compilation based on the arguments:
$ gcc example.c -DEFM32
$ gcc example.c -DLPC17xx

If you forget to specify the target, you get the error:

$ gcc example.c
example.c:8:2: error: #error "no target specified at the command line"

If you want to actually give an identifier a value, use
$ gcc example.c -Dthe answer=42
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The line
#if defined
is used so commonly that it is abbreviated to
#ifdef
with a similar definition of #ifndef. While you can also undefine an identifier you no longer want used; for example,
#undef EFM32
removes the definition of EFM32 (if any), Rule 22 of the JpL coding standard states that
“#undef shall not be used.”
Finally, you can define a macro—essentially, an in-line function:
#define MAX(x, y) ((x) <= (y)) ? (x) : (¥))
Now, if you call MAX( var_1, var_2 ), the preprocessor replaces this with
((var_1) <= (var_2)) ? (var_1) : (var_2))

You’ll notice that there are a lot of parentheses there: this is to ensure that expressions such as MAX(a+b, c/d) work. If
you used

#define UNPROTECTED_MAX(X, y) X <=y ? X : Yy
then UNPROTECTED_MAX( addr_1 & 1020, addr_2 & 1020 ) will do the simple substitution of
addr_1 & 1020 < addr_2 & 1020 ? addr_1 & 1020 : addr_2 & 1020
which the compiler will interpret as
addr_1 & (1020 < addr_2) & 1020 ? addr_1 & 1020 : addr_2 & 1020
Another example is
#define DEG_TO_RAD(x) ((x) * ©.01745329251994330d)
If you did not place parentheses around the x, then DEG_TO_RAD( angle + 90 ) would be replaced by
angle + 90 * 0.01745329251994330d
We will often see macros used to specify default values of parameters in C:

#define F1( a ) f( (a), ©, NULL )
#tdefine F2( a, b ) f( (a), (b), NULL )

int f( int a, int b, int *p c ) {
// Performs tasks...

}

You may even see

#tdefine INIT_STACK( x ) stack_t x; stack_init( &x )
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Now, if you have
INIT_STACK my_stack;
this is replaced with

stack_t my stack; stack_init( &my_stack );

Note that you can use comments after your defined identifiers if necessary—these are not substituted into the source
code.

#tdefine false ©
#tdefine true (!false) // Negated 'false’

Use the -E option in gcce to see the output of a source file after running only the preprocessor.

2.3 Software engineering and development

The practice of software engineering is the systematic, disciplined and quantifiable application of engineering, scientific
or algorithmic principles and experience to research, design, develop, test, document, operate and maintain economically
viable software solutions to problems that concern the safeguarding of the client, public or environment. This section will
be expanded to give an introduction to some basic software engineering practices followed by a section on good
programming practices.

2.3.1 Software engineering and the software development cycle
The development of software is fundamentally different from many other engineering processes, as

1. software is not material, and therefore can become arbitrarily complex, and
2. software rarely ends in a final product, as it can easily be upgraded or replaced.

Consequently, this results in a more cyclical approach to development, often where subsequent versions can be released
on a regular cycle. Unfortunately, the complexity of software, and its implied promise of solving problems that cannot be
easily solved in more traditional fields of engineering, results in numerous issues, for example:

“The first 90 percent of the code accounts for the first 90 percent of the development time. The remaining
10 percent of the code accounts for the other 90 percent of the development time.””

Tim Cargill

We will quickly look at a reasonable model for the software development cycle and then consider good programming
practices to complement the design cycle.

Note that much of the information in these slides is derived from associated Wikipedia pages.

2.3.1.1 Problem definition
First, it is necessary to explicitly define the problem we are trying to solve. This should be a brief statement that indicates
to all parties what is required.

7 Jon Bentley, “Programming pearls: Bumper-Sticker Computer Science”. Communications of the ACM 28 (9): 896901,
1985.
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2.3.1.2 Software requirements
Given the problem definition, it is next necessary to determine what is required of the solution. This includes either the
capabilities to or conditions imposed on the solution in order to either

1. solve the problem, or
2. comply with a regulatory or legal constraint (terms within contracts, standards, regulations, statutes).

To determine the requirements, it is necessary to communicate with those who have an interest in seeing a solution to the
given software problem. Such individuals or groups are referred to as stakeholders and these may include the client or
sponsors, the development team together with their management and executives, and possibly any group that either
operates, benefits from, is adversely affected by, markets, or regulates the solution.

In order to determine the requirements, the following steps should be followed:

elicitation,
analysis,
specification,
validation, and
management.

O wnPE

2.3.1.2.1 Elicitation

The first step is to approach the stakeholders and, through either discussion or observation, to gather or discover what is
require the solution to do or solve. At this point, the requirements will be a collection of disparate and possibly
contradictory statements about the solution. Following this, it is necessary to analyze these statements.

2.3.1.2.2 Analysis
Once the requirements have been collected, it is necessary to analyze to restate them clear and unambiguous terms using
consistent language. A requirements may be described as either a

1. functional requirement if it describes an expected response of the solution given specified conditions and inputs,
2. performance requirement if it describes the run-time or memory requirements,
3. ancillary requirement if it describes a quality of the solution including qualities describing

a. the execution, such as reliability, security, availability or usability, and

b. evolution, such as maintainability, extensibility, portability and scalability.

The overlap between functional and ancillary requirements is not necessarily clear or distinct. Instead, it provides a This
can be helped through the development of stories. These describe how the purpose of the software through various
examples. These may include one or more narratives that describe why the solution is necessary:

As a role |l want feature so that benefit

For each such narrative, one or more scenarios is presented in order to describe a requirement of the solution:

Given situation and context and when conditions and events
then list of responses and outcomes

requirement that places an absolute quantifiable bound on some characteristic of the solution is often said to be a
constraint.

2.3.1.2.3 Specification
A requirements specification is a deliverable that presents the requirements in a single document.
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2.3.1.2.4 Summary of software requirements

Once the software requirements and specifications are completed, they should be validated to ensure that the solution
proposed will in deed solve the engineering problem of the user or client. Once this is completed, we can proceed to project
planning.

2.3.1.3 Project planning
The project plan should include:

1. astatement of work, including
a. alist of features,
b. adescription of deliverables, and
c. anestimate as to the effort required for each deliverable;
2. alist of resources required to complete the project;
3. a work-breakdown structure indicating those resources (human and material) that will be developed to each
component of the project;
4. aproject schedule, and
5. arisk plan.

Following the project plan, we may proceed to the design.

2.3.1.4 Design
The design document will give both a high-level design together with detailed design plans for each component.

2.3.1.5 Code development

As the design document takes shape, it is possible to start development, which includes the authoring, testing and
verification of the code. At this point, as the code is written, it is essential to write unit tests that check that the specifications
are being implemented correctly. A unit test, when it passes, ensures that some component of the specification is being
satisfied, and it should be possible to link the test to the specification.

2.3.1.6 Integration
As the components and deliverables are developed, they must be integrated with other components and deliverables. This
will lead to further integration testing and verification.

2.3.1.7 System verification and validation
Once all the components are developed and integrated, it will be necessary to perform system-wide testing, verification
and validation. Following this step, the solution can be deployed.

2.3.1.8 Maintenance
Following the deployment, additional changes will continue to be performed on the code base to address issues such as

corrective maintenance to fix the code where it does not meet the specification (bug fixing),
adaptive maintenance where evolving technology must be adapted to,

perfective maintenance where improvements are made, and

preventative maintenance where future problems are anticipated and corrected.

o

With corrective maintenance, it is important to write regression tests, that fail if the fix is not in place, and pass when the
fix is in place.

2.3.1.9 Summary of software engineering
Software engineering is the process of beginning with the requirements of the user or client and following a systematic
approach to determining the problem and the requirements, a specification, project plan and design document, upon which
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the code development will be based, after which there will be integration and integration testing, followed by system
testing, verification and validation, after which the solution is deployed. Following this is the inevitable maintenance
required to correct, perfect or adapt the code base,.

2.3.2 Good development practices

Good coding practices consist of an informal collection of heuristics, guidelines and rules that have been observed to
correlate with improved software quality. We will look at a number of such best practices, once this section is completed.
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2.3.2.1 Good programming practices

While everyone can appreciate the following code, which prints all twelve verses of the song “The Twelve Days of
Christmas”8, here modified to allow compilation in modern gcc compilers without additional options, it might be somewhat

difficult to first find and then fix the one spelling mistake:

This code—which uses such interesting programming techniques such as recursive calls to main(...), using the underscore
_ as avariable name, and nested ? : operations—has become famous, or infamous, among programmers. That which is so

#include <stdio.h>

main(int t,int _,char *a){return!e<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):1,t<_?
main(t+l,_,a):3,main(-94,-27+t,a)8&&t==2?_<13?main(2,_+1,"%s %d %d\n"):9:16:t<@?t<-72?main(_,t,

"@n '+, #" /X Jwr/witcdnr/+, {r/*de}+, /X {*+, /w{%+, /witqitn+, /#{1+, /n{n+, /+#n+, /#; #qtin+, /+k# R4, /e 0\
td*'3, H{w+K w'K:'+}e#t' ;dq#'l gq#'+d'K#! /+ki; g rIeKK#Iw' r}eKK{nl] " /#;#qg#n" ) D#Iw' ){){nl]" ' /+#n";\
dirw' i;# ){nl]!/n{n#'; r{#w'r nc{nl]'/#{1,+'K {rw' iK{;[{nl]'/wig#n ' wk nw' iwk{KK{n1]!/w{%"'1#\
#wi#' i; {nl]'/*{q#'1ld;r'}{nlwb!/*de}'c ;;{nl'-{}rw]'/+, }Ht" " *}nc, ', #nw]'/+kd '+e}+;# " rdg#w!nr"\
/") HMHrl# {n" ")#}+}##(11/") 1 t<-50?_==*a?putchar(31[a]):main(-65, ,a+1l):main((*a=="/")+t,_

,a+l):0<t?main(2,2,"%s"):*a=="/"| |main(@,main(-61,*a,"lek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-\
0O;m .vpbks,fxntdCeghiry"),a+1);}

wrong is so admired for its wrongness, or, more colloquially, like “Plan 9 from Outer Space”, it’s so bad, it’s good.

Writing such code does have one significant benefit: job security for the author. Unfortunately, writing production code
like this will also lead to the phenomenon of writing new code rather than trying to fix or maintain an existing code base.

We will look at some of what are considered the best coding practices, including:

NG~ WDR

commenting your code,

choosing good function and variable names and using naming conventions,
consistent indentation,

restricting the line length to 80 characters,

grouping related statements,

limiting the scope of variables,

always using braces for control structures, and

avoiding heavily nested control statements.

We will begin with comments.

8 In an e-mail from Jim Coplien to his colleagues on Tuesday, December 22, 1998.
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2.3.2.1.1 Comments

You have heard over and over again that you should “comment your code”. Comments are to aid the reader in
understanding the purpose of the code, not what it does. The most useless comments translate the coded into English:

++1; // Add 1 to i

// Loop from j =@ ton -1
for ((int j =0; j<n; ++3 ) { ...

// If k = 3, do something
if (k==3){...
Comments should explain the purpose of the code:

// Loop over the rows in the matrix
for (j=0; j<n; ++j ) { ...

// First deal with the special case when k == 3,
if (k==3){...

2.3.2.1.1.1 Comment blocks versus single-line comments

C and C++ have two styles comments. Any text that appears between a /* and an ending */ represents a comment block
and may span multiple lines. Such comments cannot be nested: any /* that appears in a comment block is treated as part
of the comments. When documenting code, comments are often highlighted

/********************************************************************

* Enter your comments here

* - documentary, 70 characters in width
********************************************************************/

All asterisks other than the first and last are purely decorative, but allow the reader to easily distinguish between comments
and code. Do not, under any circumstances, try to create clean comments by closing the comment block on the right,

[ AR R KKK OK S ROK SKK SK SOK R R SR S KK SRR SR Sk K R ok ok ok

* NEVER DO THIS *
* - the extra work discourages programmers *
* from updating the comments. *

********************************************************************/

If it is necessary to divide your code base into sections, it is relatively easy to do so in a way that quickly attracts the
attention of the programmer reading the code:

/********************************************************************
3k 3k ok ok 3k 3k 3k ok 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k >k %k 3k 3k >k 3k 3k 3k >k 3k 3k 3k >k 3k 3k 3k >k 3k 3k 3k >k 3k 3k >k %k %k 3k %k sk skook ok k sk k ok ok kok ok kkkkkk  x

* ok Class declarations and definitions * ox
ks ok ok ok 5k ok ok %k 3k ok oK 3 5k 5k ok 3k 5K 5K 5k 5k 5k 3k 5k 5K oK 3k 3k ok ok 3k 5k ok 5k 3k ok %k 5k ok ok sk ok ok ok sk kK kk ok ok kokkkkkkkkkkkkk ok

SRR K K KK SR K R SR K K SRR SR SR K SRR SRR R SRR SOK KR SRRSO KR SRk Rk oK

The other style of comments are single-line comments, where all text following a double-slash and up to the end of the
current line is treated as a comment.

// This is a single-line comment

Such comments are useful for short comments found inside of class, structure and function definitions, however, judgement
should be used when deciding whether to append such comments to the end of a line, or to keep such comments on separate
lines. For example, in documenting a class or structure, by appending information to the end of each line, the reader is still
able to scan both the types and the fields or member names.
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typedef struct {

size_t dimension; // matrix dimension of a square n x n matrix

size_t max_off_diagonal_entries; // maximum number of off-diagonal entries in the matrix
size_t *a_row_index; // array of the index of each row's first off-diagonal entry
size_t *a_column_index; // array of the column of each off-diagonal entry

double *a_diagonal_values; // an array of the n diagonal entries

double *a_off_diagonal_values; // an array of all off-diagonal entries of the matrix

} sparse_matrix_t;
When documenting a function in this manner, it will lead to a maintenance disaster:

if (empty() ) {
result = obj; // An object larger than the item requested was not found

// - return the item that was passed to flag this situation
} else if ( value() <= obj ) { // First, there is seldom much space over here
result = right()->next( obj ); // Second, this is a maintenance disaster, as
} else { // any change to a block of code will require
Type tmp = left()->next( obj ); // the spacing to be adjusted.
// Additionally, if lines of code are added,
result = ( tmp == obj ) ? value() : tmp; // this will break the comments, increasing
} // the frustration of the programmer even
// more.

Comments that describe the functionality of code or explain a specific deviation should generally be at the same level of
indentation as the code that is being described.

A significant benefit of including only single-line comments within classes, structures and functions is that any portion of
the code can be temporarily commented out through the use of comment blocks without having to worry about nested
comments. For example, it is always possible to comment out an entire function:

/* Comment out the an entire function

bool is_upper_triangular( sparse_matrix_t *this ) {
// Local variable declarations and initializations
bool return_value = true;

// These comments are ignored
for (1 =1; i < this->dimension; ++i ) {
// Some other code

}

return return_value;

¥
*/

or just one component:

bool is_upper_triangular( sparse_matrix_t *this ) {
// Local variable declarations and initializations
bool return_value = true;

// A description of what this for loop does...
for (i =1; i < this->dimension; ++i ) {
/* Comment out this conditional statement
if (
this->a_row_indices[i] < this->a_row_indices[i + 1]
&& this->a_column_indices[this->a_row_indices[i]] < i
) {
// This comment is ignored
return_value = false;
break;
T o*/
}

return return_value;
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In some cases, the single-line comments are even used in documenting functions and classes:

LITIT1T7077 0777777777077 777770777777777777777777777777777777717777771/777
// Enter your comments here
// - documentary, 70 characters in width

LTI II I P LTI P77 700071717177 77770777717777717117117

or for code division:

IITTTTTITEE0 0700111170701 7777777717171111717771717
L AITTTITTEI I PP TTTT P70 77771171777 777777777777777777 7

/ / Class declarations and definitions / /
[ 1117177077777 777777777777777777777777777777777777777777777777 7
[11177177777777777777777777777777777777777777777777777777777777177777777

This has the benefit that entire sections of code can be simultaneously commented out with a single block comment.

2.3.2.1.1.2 Classification of comments
An excellent source every programmer and engineer should read is Bernhard Spuida’s “The fine art of commenting”. His
first observation is one that all engineers should be aware of:

“All time saved by not commenting during the coding process is made up more than twice at least
by inserting comments and providing documentation after the coding process is finished.”

Failure to add comments what-so-ever will repay itself tenfold during code maintenance and future development, as the
programmers who are fixing or extending an existing code base will take that much more time to understand the existing
code. He classifies comments based on their purpose:

1. documentation,
2. functionality, and
3. explanatory.

To begin, every function, class, structure and in some cases even variables (to be discussed later) needs to be documented,
and this documentation must be standardized. Aspects that may be described include:

purpose,
requirements,

arguments and return values,

hardware dependencies, and

known weakeness (often in the form of a to-do list).

arwdE

Some information that may be stored in the version control system, including:

1. creation date,
2. author’s name, and
3. the change history,

however, any changes to the functionality must always be refected in the documentary comments.
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First and foremost, one aspect that will be very different when programming real-time systems where sensors pass
information from the environment and ultimately are assigned to variables. It is important that the declaration of the
variable has comments that give the reader a clear understanding of the significance of the variable®, including

>R

a description of what the variable stores,

the units of the variable,

the resolution of the least-significant bit (LsB), and

the dynamic range of the variable (smallest and largest values).

For example, a temperature sensor reading or the angular speed of a while may be commented as follows:

unsigned short outside_temperature; // Ambient temperature (degrees Fahrenheit)
// Range: 0x0000 - Ox07ff
// -20 degF - 144 degF
// 1 LSB = 0.08 degF
// 32 degF = 0x028a

signed int wheel_1lf_angular_speed; // Angular speed of the left front wheel (rad/s)
// Range: Oxffo0000l - oxeeffffff
// -161 rad/s - 161 rad/s
// 1 LSB = 0.0000096

In addition to commenting the significant of variables, it is also useful to explain to the reader what problem the code is
attempting to solve, and how is it solving that problem. Comments should not simply re-iterate what the code is doing,
they should enlighten the reader as to why it is doing this. This now begs the question: what is a useful comment? For
example, recall that a binary tree is a node-based data structure where

a s wbdE

6.

each node contains a value and two pointers to left and right nodes,

one node is designated the root node,

if the left or right nodes are not null pointers, those nodes are called children of the given node,

a path of length N is a sequence of nodes (no, Ny, ..., Nn) Where Ny is a child of ny,

there is a unique path from the root node to each node in within a tree and the length of that path is the depth of
the node (the root node having a depth of 0), and

given any node n, the collection of all nodes m such that there is a path (n, ..., m) is the sub-tree rooted at n.

A binary search tree is a binary tree where each node within the tree

1.
2.
3.

all nodes in the left sub-tree have values less than or equal to the value stored at the root node,
all nodes in the right sub-tree have values greater than or equal to the value stored at the root node, and
both the left and right sub-trees are themselves binary search trees.

% “Real world variables” by Nigel Jones: http://embeddedgurus.com/stack-overflow/2013/01/real-world-variables/
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Given a binary tree, we can now ask a question such as: “What is the next-largest element of a given value?” One
implementation of such an algorithm in C++ is:

// Return the object if no next-largest value is found

template <typename Type>

Type Binary_search_node<Type>::next( Type const &obj ) const {
Type result;

if (empty() ) {
result = obj; // Return the object

} else if ( value() <= obj ) { // If the value is less than or equal to
result = right()->next( obj ); // the object, get the next-largest
} else { // object from the right tree;
Type tmp = left()->next( obj ); // otherwise, get the next value from
// the left tree and if no larger value
result = ( tmp == obj ) ? value() : tmp; // is found there, return this value
}

return result;

}

These comments are little better than

++i; // Increment i
return @; // Return @

They say what the code is doing, but even a mediocre programmer can understand this.
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Instead, the above function is so short, it would be better to comment in the description:

/******************************************************************************

*
*
*

¥ X X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥

template <typename Type>
Type Binary_search_tree<Type>::next( Type const &obj ) const

In a binary search tree, find the next-largest object of the argument
- If no next-largest entry is found, return the argument 'obj’
- There can be duplicate entries in the tree

Given any node, there are three possibilities:
1. We are at an empty node, in which case, there is no next-largest
object--return the argument.
2. The value of the entry is less-than-or-equal-to the argument, thus
if there is a next larger entry, it must be in the right sub-tree
3. The value of the entry is greater than the argument,
- query the left sub-tree to find the next-largest entry
- if a next-largest entry is found, return it,
- otherwise, this must be the next-largest entry, so return the value

******************************************************************************/

template <typename Type>
Type Binary_search_node<Type>::next( Type const &obj ) const {

}

Type next_entry;

if ( empty() ) {
// An empty sub-tree has no next-largest entry
next_entry = obj;
} else if ( value() >= obj ) {
// The right sub-tree must contain the next-largest entry
next_entry = right()->next( obj );
} else {
assert( value() > obj );

// Query the left sub-tree for the next-largest entry
Type next_entry_in_left = left()->next( obj );

// If none is found, this is the next-largest;

// otherwise, return what is found
next_entry = ( next_entry_in_left == obj ) ? value() : next_entry_in_left;

return next_entry;

Note how the structure of the comments reflects the structure of the code? Alternatively, you could write:

¥ ¥ ¥ X ¥ ¥ ¥

This might be an excellent explanation in a text book, but associating the comments with the source code is never-the-less
difficult. Writing comments is, in many ways, an art form, and always remember that you are likely going to be the
programmer who is looking at this code, only one week from now, you’ve forgotten what it is you were doing when you

Given any node, there are three possibilities. If we are at an empty node, in
which case, there is no next-largest object, so return the argument. If the
value of the entry is less-than-or-equal-to the argument, thus if there is a
next larger entry, it must be in the right sub-tree. Finally, the value of
the entry is greater than the argument, so query the left sub-tree to find the
next-largest entry and if a next-largest entry is found, return it, otherwise,
this must be the next-largest entry, so return the value.

wrote it.

For more complex routines, you may want to describe the functionality of any conditional or looping statements
immediately prior to those statements and any initialization statements required for those flow-control statements to
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execute. In general, end-of-line comments tend to describe what that line does. Most programmers can figure out what a
line of code does; what you want to do is explain what the code is trying to accomplish.

Or in short: comments should explain why, not what.

2.3.2.1.2 Names and naming conventions
As observed by Guido van Rossum and others, code is more often read than written, and therefore readability is essential.
In order to enhance readability, consistent naming conventions are used, so we will discuss

word concatenation,
variable names,
type names, and
function names.

HowppE

We will begin by looking at concatenating multiple words to form type, variable and function names.

2.3.2.1.2.1 Word concatenation

Every symbol in most programming languages consists of a letter or underscore followed by a sequence of zero or more
letters, underscores or digits. These are usually used to represent words, and consequently, there is always the issue as to
how to join a string of words together without the availability of a space. There are four approaches described in the
following table.

Convention Description Examples

juxtaposition join the words stacksize pushfront singlelist protonmass

snake_case join with intermediate undercores stack_size push_front single_list proton_mass

camelCase capitalize subsequent words and join stackSize pushFront singlelist protonMass

ALL CAPS  capitalize all leters and join with STACK_SIZE PUSH_FRONT SINGLE_LIST PROTON_MASS
underscores

Both snake_case and camelCase may be described as lower or upper depending on the capitalization of the first letter of
the first word. Upper camelCase is sometimes referred to as PascalCase.

More recently developed programming languages have created standard libraries that choose one of these conventions,
and programmers who adopt the language maintain the convention.

Variables Constants Functions Types
Java lower camelCase ~ ALL CAPS lower camelCase  upper camelCase
C# lower camelCase ~ ALL CAPS upper camelCase  upper camelCase
Matlab juxtaposition juxtaposition juxtaposition juxtaposition
Python lower snake case ~ ALL CAPS lower snake_case  lower snake_case

In C and C++, however, there is no universal convention for word concatenation. Lower snake_case is usually used, except
for constants which are ALL CAPS, and in C++, classes use upper snake_case; however, if a significant portion of a
development team is derived from, for example, programmers more familiar with Java, they may adopt a blend of lower
and upper camelCase.

As to which is preferable, at least one paper, “An Eye Tracking Study on camelCase and under_score Identifier Styles” by
Sharif and Maletic presented at the 18" IEEE International Conference on Program Comprehension shows that snake_case
is more easily recognized than camelCase. Consequently, we will use lower snake_case throughout this publication.

2.3.2.1.2.2 Name components and length
Any name should be sufficiently descriptive to allow a casual reader with some familiarity with the project to easily discern
the purpose of either the type, variable or function. Consequently, some guidelines you should consider following include:
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1. Names should be meaningful, meaning not too short as to be ambiguous, but not so long as to be difficult to read,
so for a variable describing the maximum queue length in the last ten minutes, maximum is likely too short,
max_queue_size is likely reasonable if the time is inferred, but maximum_10 minute_ queue_size is likely
too long.

2. Different names should differ by more than just a few letters, as

double average_medial node_depth;
double average_medium_vertex_depth;
are too similar.

3. Acronyms and initialisms can be made use of, but not excessively, as this may lead to opaque variable names.

4. While 10, 10, 10, 10, 10,01, 01, 0T, 01, 01 and oT are all valid names, don’t use them. The Consolas typeface
uses a slashed zero, but many typefaces (including Courier New, Arial, and Times New Roman) make it difficult
to distinguish between 0 and O.

5. If you must use shorter variable names,

a. usei, j, k, n, mfor integers, and if you must (because you are implementing a given formula), use ell
for I,
b. usex,y, z for floating-point numbers, and
c. uset for time, d for distance, etc.
Most readers will be confused if he or she sees a statement like
double i = array[x];

All of these are guidelines and not hard-and-fast rules, and there are always circumstances where the strict adherence to
these guidelines will have negative consequences.

2.3.2.1.2.3 Type names

Atype, be it a structure or a class, should be a singular noun. If it is a container of nodes, it could be either a node_pool_t
or node_list_t, but do not use nodes_t. In C, the naming convention is to give structures a type name using lower
snake_case followed by an _t. This is only a convention, but if you choose not to follow it, other C users will become
frustrated with your packages. In C++, the naming convention for classes is to use a capitalized snake case word, such as
Node_pool or Node_list. Asa counterexample, the Keil RTX RTOS uses U8, U16, ... and S8, S16, ... to represent types
for unsigned and signed 8-, 16-, etc. bit integers, in contrast with the more usual uint8_t, uint16_t, ... and int8_t,
intle_t, ....

2.3.2.1.2.4 Variable names
Variables store data, and therefore should also be represented by nouns. When deciding how to name variables, you should
take into consideration that

variables store data, and thus the name should be a noun that reflects the data stored,

consistency is important, do not use num_entries in one location and array_count elsewhere,

indices for arrays, however, can be reduced to common letters such as i, j and k,

fields in structures should not repeat the name of the structure; for example, for a stack structure, the number of
items in the stack should be size and not stack_size, and

5. where applicable, names can be suffixed by the units associated with the field; for example, wait_time_ms,
ambient_temp_degC, speed_cm_per_min and freq_kHz.

M owbdpE

In the C++ standard template library, the number of items in a container is represented by size and the number of items
the container can hold is presented by capacity. Arrays should either be always singular, or always plural. Which is
preferable is up to the reader, but be consistent; for example, the two alternatives are shown here:

// We have arrays of vertices and edges // Here, they suggest a pointer to one object
typedef struct { typedef struct {

vertex_t *p_verticies; vertex_t *p_vertex;

size_t num_vertices; size_t num_vertices;
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edge_t *p_edges; edge_t *p_edge;

size_t num_edges; size_t num_edges;
} graph_t; } graph_t;
graph_t layouts[1@0]; graph_t layout[1@];
// Now, however, referring to a single vertex
// from a single layout appears to suggest // We are now referring to vertex 7 of
// a plurality // layout 5.
layouts[5].p_verticies[7]; layout[5].p_vertex[7];

It is conventional to use p_ to prefix a pointer, as we have previously used. Whle this may seem unnecessary, it ensures
the reader is aware of the significance of the variables. For example, you would never use the . operator on a pointer, and
you would never use -> on an instance.

void init_stack( stack_t *s, size_t n ) { void init_stack( stack_t *const p_this, size_t n ) {
s->size = 0; p_this->size = 0;
s->capacity = n; p_this->capacity = n;
s->entries = malloc( n*sizeof( void * ) ); p_this->p_entries = malloc( n*sizeof( void * ) );
} }

2.3.2.1.2.5 Function names

Functions perform operations, and therefore the name should reflect the action being performed. Hence, functions are often
verbs or verb phrases using the imperative. A single verb, such as evaluate(..), however, is often insufficient to describe
the action of a function. (Of course, analyze_this(..) may be quite reasonable, so long as it is paired with another
function die_another_day( _00_t * ).)

In some cases, there are common prefixes for certain actions, such as for determining a state, or fetching or setting a field

Operation Prefix Example Abbreviated form
Determining a state is_ bool is_empty() bool empty()
Fetching a field get size t get capacity() size_t capacity()
Setting a state set_  void set_name( char * ) Usually not abbreviated
Calculating a value find_ double find_min_path() double min_path()

In C, where functions are not intrinsically linked to structures, it is usual to prefix the name of the action by the structure
type. Thus, associated with stack_t structure would be stack_init(), stack_push(), stack_pop() and
stack_empty (). With C++ classes, it is, on the other hand, considered inappropriate to repeat the class name in the
names of the member functions. Thus, the member functions of the Stack class would be push (), pop() and empty ().

2.3.2.1.2.6 Summary of names and naming conventions

A reasonable choice of names and naming conventions is critical to the readability of source code. Consistency is as
important as clarity, and having a common naming convention on a project will greatly aid in reducing confusion among
developers. It is always critical that when one is in the employ of a company or under contract, that one false the
conventions adopted by the company or client. There may be issues with their naming convention, but consistency is
ultimately a more important factor in reducing the costs of any project. In one situation, one author was the only person in
a company able to debug code that had previously been submitted by a long-since-gone developer, for all the variable
names were in German and with abbreviations and the use of juxtaposition, it was even difficult to use a dictionary to
determine the significance of particular variable names.

2.3.2.1.3 Consistent indentation and alignment of braces
There are two reasonable mechanisms for aligning braces for functions and blocks of code:

if ( condition ) { if ( condition )
// statement body {
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} else if ( condition ) { // statement body

// alternative body }
} else { else if ( condition )
// other alternative body {
} // alternative body
for ( init; condition; iteration ) { else
// looping statement body
} // other alternative body
}
while ( condition ) {
// while body for ( init; condition; 1iteration )
} while ( condition ); {
// looping statement body
do { }
// while body
} while ( condition ); while ( condition)
{
void f( parameters ) { // while body
// function body }
}
do

// while body
while ( condition );

void f( parameters )

{
¥

// function body

This lead author prefers the one on the left—it is more compact and the additional spacing does not necessarily help
readability; however, that is an esthetic choice. If you work at any business organization, you are required, however, to
follow the style adopted by that corporation (or, at least, your group within that business organization).

2.3.2.1.4 Restrict your line length

Newspapers have narrow columns as it allows the reader to easily scan the articles, for under a certain width, the mind can
comprehend the entire line without moving left-to-right and back again. Once the line length becomes too long, the eye
must scan continually left and right, sometimes requiring scrolling, all actions that distract the reader from comprehending
the code itself.

There are numerous reasonable mechanisms for breaking long lines. For example, the line

for ( SingleList<double>::iterator itr = list.begin(); itr != list.end(); ++itr ) {
// Loop body...
}

will extend beyond 80 characters, but could be broken as

for ( Single_list<double>::iterator itr = list.begin();
itr = list.end(); ++itr ) {
// Loop body...
}

Note that the break is sufficiently indented to line it up with the start of the contents of the for loop.

Similarly, if a function has many parameters, or parameters with long names, it is useful to break it across more than one
line; for example,
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double *analyze_least_squares( double *p_data, size_t count,
int degree, bool ignore_outliers,
bool running_count, double *p_bounds,
bool linear );

In general, if you must break an arithmetic or logical expression, try to break on the lower priority operators, and therefore
the right is preferable to the left:

double x = a + b double x = a
* ¢ + b*c;

Similarly, place the relevant operator at the start of the line, as it may, otherwise, be assumed; for example, on the left, the
reader may miss the negative sign and assume that addition is used, as opposed to subtraction:

double x = a +b - c+d - double x = -c+d

a+b
e + f; - e+ f;

In the following conditional statement, the spacing has been adjusted so that the reader can easily deduce the similarities
and differences between the two operands:

if ( ( sum & & (A.off_diagonal[aj] != -B.off_diagonal[bj] ))
|| (!sum && (A.off _diagonal[aj] != B.off_diagonal[bj] )) ) {
++count;
}

Many editors allow the user to set how many characters a tab is displayed as, and consequently, any attempt to use tabs for
any additional indentation beyond the indentation necessary to group code within a block may result in undesirable results
under different tab lengths. For example, the reader used spacing to identify to the reader the relationship between the
values, where the tab characters are represented in yellow (with one tab equalling eight spaces):

for ( int n = m; n < count; ++n ) {

table[jy][m] =
(  table[jy]l[m - 1] - table[iy][m - 1])
/(x_values[jx] - x_values[ix]);

}

Changing the tab length to 4 spaces would result in code that seems more confusing than enlightening:

for ( int n = m; n < count; ++n ) {

table[jy][m] =
(  table[jy]l[m - 1] - table[iy][m - 1])
/(x_values[jx] - x_values[ix]);

}

Consequently, restricting the code length to 80 characters, while based on the width of older terminals such as the v1100,
is still relevant today to aid in readability. That we can extend our code beyond 80 characters does not mean we should.

2.3.2.1.5 Grouping related statements

Within a function, statements that are performing related operations within a function should be grouped together. For
example, the following function adds a new item onto a queue and logs the transaction (storing the identifier of the object,
the size of the queue, and the current time):

void data_queue_push( queue_t *const p_this, data_t *p_entry ) {
if ( p_this->size == p_this->capacity ) {
queue_double_capacity( p_this );
}

++( p_this->tail );
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++( p_this->size );

if ( p_this->tail == p_this->capacity ) {
p_this->tail = o;
}

fprintf( p_this->logfile, "enqueue: %s %d %d\n",
p_entry->id, p_this->size, time( NULL ) );
p_this->p_entries[p_this->tail] = obj;
}

The statements, however, are not grouped, as the three statements related to placing the new object at the tail have other
operations (updating the size and logging the transaction) interspersed between them. Grouping the three statements
distinguishes the operations being performed, and allows for more reasonable comments:

void data_queue_push( queue_t *const p_this, data_t *p_entry ) {
// Double the capacity if the queue is full
if ( p_this->size == p_this->capacity ) {
queue_double_capacity( p_this );
}

// Place the new object at the new tail of the queue and update the size
++( p_this->tail );

if ( p_this->tail == p_this->capacity ) {
p_this->tail = 0;
}

p_this->p_entries[p_this->tail] = obj;
++( p_this->size );

// Log the event
fprintf( p_this->logfile, "enqueue: %s %d %d\n",
obj->id, p_this->size, time( NULL ) );

2.3.2.1.6 Limiting the scope of variables

Variables can be declared within any block of code delimited by braces, and their scope is restricted to that block—it is
not possible to access a variable before it is declared or once it goes out of scope. It is sometimes tempting to simply
declare all variables at the start of a function, but this has two consequences:

1. itisnot possible for the compiler to reuse memory, and
2. aprogrammer might inadvertently access a variable when it was not meant to be used.

By limiting the scope of a variable, the reader can get an idea as to where the variable is meant to be used, thereby helping
understand its purpose. If you are using C++ or C99, make use of the declaration of variables within the for statement,
where the following two are equivalent for scope purposes:

{ for (int i =0; i < n; ++i ) {
int 1i; // Do something...

}
for (1 =0; i<n; ++i ) {
// Do something...

}
}

The following is an implementation of the fast Fourier transform in C++, with comments removed. On the left, all local
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variables are declared at the start of the function, while on the right, variables are declared to limit their scope, with the
most important declaration being that of the variable k in the second for loop,

static void FFT( std::complex<double> *p_data, size_t n ) { static void FFT( std::complex<double> *p_data, size_t n ) {
size t i, j, k, m; double const PI = 4.0*std::atan( 1.0 );
std::complex<double> w, wn, tmp;
double const PI = 4.0*std::atan( 1.0 );

for (1i=n/2; 1>=1;1i/=2){ for ( size_t i =n/2; i>=1;1/=2) {
w=1.0; std::complex<double> w = 1.0;
wn = std::exp(std::complex<double>( 0.0, -PI/i )); std::complex<double> wn =
std::exp( std::complex<double>( 0.0, -PI/i ) );
for (j =0; j<i; ++7 ) { for ( size_t j =0; j < i; ++j ) {
for (( k = 3j; k < n; k += 2% ) { for ( size_t k = j; k < n; k += 2*1 ) {
m=k + i; intm=k + i;
tmp = p_data[k] + p_data[m];
p_data[m] = (p_data[k] - p_data[m])*w; std: :complex<double> tmp = p_data[k]
p_data[k] = tmp; + p_data[m];
} p_data[m] = (p_data[k] - p_data[m])*w;
p_data[k] = tmp;
w *= wn; }
}
} w *= wn;
¥
for (1 =0, j=0; 1< (n-1); ++1 ) { }
if (i<3) A
tmp = p_data[j]; for ( size_t i =0, j=0; i< (n-1); ++i ) {
p_data[j] = p_data[i]; if (1i<3)A
p_data[i] = tmp; std::complex<double> tmp = p_data[j];
} p_data[j] = p_data[i];
p_data[i] = tmp;
for ( k =n/2; k<=3; k /=2) {
J=73-k;
size_t k;
j +=k; for ( k =n/2; k<=73; k /=2) {
} j=3-k;
} ¥
Ik

The most significant benefit is that because the indexing variable k of the last for loop is declared outside the loop, this
indicates to the reader that the variable will be used beyond the scope of the loop; whereas without the declaration, a reader
may simply assume that k is restricted to the body of the loop.

2.3.2.1.7 Always use braces for any control structure, even if you don’t have to

While this could have been indicated before, it is of such relevance that it is included as a separate point. In C, if a
conditional or looping statement has a body that consists of only a single statement, one does not require braces around
the body. Consequently, these are valid examples of C code:

if (n!=0 ) p=0b/n; for (i =0; i< 10; ++i )
sum += i;

Unfortunately, this short cut is the cause of numerous errors, as programmers may, for example, include another statement
in the body, forgetting to include braces. It is better to use the more conventional

if (nl=0) { for (i =0; 1i<10; ++i ) {
p = b/n; sum += i;

} }

2.3.2.1.8 Avoid deeply nested control statements

When you come across code that is deeply nested control statements, it becomes difficult to understand the
interrelationship. In this case, we are attempting to determine if a sparse matrix (using the new Yale sparse matrix format)
is symmetric.

for (i=1; i < p_matrix->M; ++i ) {
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for ( j = p_matrix->row[i]; j < p_matrix->row[i + 1]; ++j ) {
if ( p_matrix->column[j] > i ) {

break;
}
++count;
for ( k = p_matrix->row[p_matrix->column[j] + 1] - 1;
k >= p_matrix->row[p_matrix->column[j]]; --k ) {
if ( p_matrix->column[k] == i ) {
if ( p_matrix->off_diagonal[k] == p_matrix->off_diagonal[j] ) {
break;
} else {
return false;
} else if ( p_matrix->column[k] < i ) {
return false;
}
}

}

The inner body could, instead, be broken into a separate function, and one conditional can be simplified to a simple return

statement:
bool verify_row_symmetry( Matrix *p_matrix, size_t i, size_t j ) {
size_t k;

for ( k = p_matrix->row[p_matrix->column[j] + 1] - 1;
k >= p_matrix->row[p_matrix->column[j]]; --k ) {
if ( p_matrix->column[k] == 1i ) {
return p_matrix->off_diagonal[k] == p_matrix->off_diagonal[j] );
} else if ( p_matrix->column[k] < i ) {
return false;
}

}

and now the original code is, while still obscure with comments, more understandable:
for (i =1; i < p_matrix->M; ++i ) {
for ( j = p_matrix->row[i]; j < p_matrix->row[i + 1]; ++j ) {
if ( p_matrix->column[j] > i ) {
break;
}

++count;

if ( !verify_row_symmetry( p_matrix, i, j ) ) {
return false;
}

2.3.2.1.9 Use #error, #warning and assertions

The C programming language allows both #error and #warning to flag exceptions during pre-processing, and assertions
to check conditions at run time, but only when debugging, and not for production code. The pre-processor instructions
simply take strings as arguments and print those strings to standard error; for example,

#if some-condition
f#terror some condition is not met
#tendif

#ifdef DEBUG

#warning debugging statements turned on
#endif
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Additionally, both C and C++ have the assert.h and cassert libraries, respectively. This contains a macro
assert(..), which takes a Boolean-valued argument. If the argument returns false, the assertion will terminate the
program and write the filename, line number, function name and the expression that failed to standard error. This can be
used to ensure that, for example, the first conditions of a conditional statement have not been significantly modified, or
perhaps the second block assumes the negation of the first block. Here, we may deduce the negation of the first statement
using De Morgan’s rule.

#include <assert.h> #include <stdlib.h>
// Some code... // Some code...
if (((a <b) & (c ==4d)) || (e <=F)){ if (((@a<b) & (c==4d)) || (e <=1)){
// Do something... // Do something...
} else { } else if ( (a >=b) || (c !=d)) && (e > f) ) {
assert( (a >=b) || (c !=d)) && (e > f) ); // Do something else...
// Do something else... } else {
} exit( @ );
¥

Functionally, these are equivalent (although the second does not give information as to what failed), but assertions have
additional benefit that they can be removed. By declaring

#tdefine NDEBUG

this directs the compiler to ignore all debugging statements, including assertions. Consequently, during testing, we may
leave NDEBUG undefined, but when it comes time for compiling the final product, NDEBUG can be defined, and all these
tests are turned off, meaning the (hopefully) unnecessary checks are turned off, thereby resulting in faster code. In the
right-hand side, the second test will always be performed, both during development and in production.

Assertions can be used, for example, to ensure that arguments or return values fall within specific ranges, or have specific
properties. If during development, if these values ever fall outside those specified, an error will be raised with additional
information as to where the assertion failed.

There is only one issue with assertions: the tests can never contain side effects: variables cannot be assigned, and any
function calls cannot change the state of any data within the system, for once the assertions are turned off, these side effects
will no longer occur, resulting in different behavior.

The use of assertions is highlighted in Rule 16 of the JpL coding standard, which says

“Assertions shall be used to perform basic sanity checks throughout the code. All functions of more than 10
lines should have at least one assertion.”

2.3.2.1.10 Use parentheses to indicate precedence

In secondary school, you were made aware of BEDMAS (brackets, exponentiation, division-and-multiplication, and
addition-and-subtraction). Rather than evaluating operators strictly from left to right, inserting parentheses whenever
needed, this allowed us to write polynomials as

a® +bx? +cx+d

instead of

a(x3)+(b(x2)+(cx+d))

which is what would be required if there was no precedence apart from brackets, in which case, the bare-bones equation
would mean
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((((ax)3 +b) x)z +c)x+d

which is almost certainly not what we meant...
We could tabulate this precedence rule in the following table:

1 2 3
b§a~b§a+b

a a—b a-b

Similarly, C has operator precedence, but there are many more operators, and thus, one could memorize the table, where
all operators are binary unless an explicit a or x?y: z is indicated.

1 2 3 4 5 6 7 8 9 10 11 @ 12 13 14 115
— «— — — — — — — — — — — «— “«— —
++a =
--2 +=
a++ +2 *=
a-- -a " < =
a() la + KK k= == R . %=
al] ~a ; - >> 1 >= 1= & l & || | x?y:z <=’
. (type)a ) > >>=
-> *a =
&a A=
sizeof a =

The arrow indicates if the operator is

1. left associative where
a+b-c+dmeans((a +b) - ¢) + dand
a[]()->bmeans ((a[])())->b;and

2. right associative where - ! *a means - (! (*a)).

Unfortunately, it becomes very difficult to read certain statements if you simply rely on precedence; for example, the
following is taken from an encryption algorithm which we will cover later in this book:.

vl += (vO@ << 4 ~ v@ >> 5) + v@ ~ sum + k[sum >> 11 & 3];
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Your goal is to use the above table to determine which of the following is the correct interpretation:

vl += ( (v@ << 4) ~ (v@ >> 5)) + (v@ ~ sum) + k[(sum >> 11) & 3 ];
vl += (((v@ << 4) ~ (v@ >> 5)) + v@) ~ (sum + k[ sum >> (11 & 3)]);
vl += (((v@ << 4) ~ (v@ >> 5)) + v@) ~ (sum + k[(sum >> 11) & 3 ]);
vl += ( ve << (4 "~ v@) >>5) + (v~ sum) + k[(sum >> 11) & 3 ];
vl += (( v@ << (4 ~ v@) >> 5) + v@) ~ (sum + k[(sum >> 11) & 3 ]);
vl += ( ( << 4) ~ (v@ >>5)) + (v@ ~ sum) + k[ sum >> (11 & 3)];
vl += (( v@ << (4 ~ v@) >> 5) + v@) ~ (sum + k[ sum >> (11 & 3)]);
vl += ( v0 << (4 "~ wv@) >>5) + (v0 ~ sum) + k[ sum >> (11 & 3)];

If you haven’t figured it out by now, you will find your answer in a subsequent chapter. If you can appreciate the frustration
of this exercise, you will remember the easier precedence rule suggested by Steve Oualline:

Multiplication, division and modulo (%) come before addition and subtraction;
put brackets around everything else.

This is also strongly emphasized in the JPL coding standard, under Rule 18 which says

“In compound expressions with multiple sub-expressions, the intended order of evaluation shall
be made explicit with parentheses.”

2.3.2.2 Use interfaces for data structures

With an object-oriented programming language like Java or C++, encapsulation is part of the programming language:
private member variables are simply not visible to tasks that use that data structure. It is often tempting, however, when
returning to C to manipulate the data structures directly. For example, suppose you have a linked list and in your program,
you are aware that you must immediately insert an object into that list. Normally, this would require two function calls:

single_list_t *1st = (single_list_t *) malloc( sizeof( single_list_t ) );
single_list_init( &lst );
single list_push_front( &list, whatever_value );

You may reason as follows: why call two functions which first initialize the linked list to one that is empty, and then add
a push front that also must check whether or not the current linked list is empty; why not just initialize the linked list to
one that is not empty, thereby requiring fewer steps:

single_list_t *p_lst = (single_list_t *) malloc( sizeof( single_list t ) );
p_lst->p_head = (single_node_t *) malloc( sizeof( single_node_t ) );
p_lst->p_head->p_value = whatever_value;

p_lst->p_head->p_next = NULL;

p_lst->p_tail = p_lst->p_head;

p_lst->size = 1;

If speed is that essentially, then implement an initialization routine that initializes a singly linked list with one item:

void single_list_init( single_list_t *const p_this ) {
p_this->p_head = NULL;
p_this->p_tail = NULL;
p_this->size = 0;

}

void list_init_push( single_list_t *const p_this, void *p_first_item ) {
p_this->p_head = (single_node_t *) malloc( sizeof( single_node_t ) );
p_this->p_head->p_value = p_first_item;
p_this->p_head->p_next = NULL;
p_this->p_tail = p_this->p_head;
p_this->size = 1;
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Similarly, do not simplify statements

if ( !single_list empty( p_lst ) ) {
printf( "The first entry is at %p\n", single_list_front( p_lst ) );
}

to ones that immediately access the data structure:

if ( p_lst->p_head ) {
printf( "The first entry is at %p\n", p_lst->p_head->p_value );
}

Certainly the second is faster, and perhaps demonstrates your superior understanding of the C programming language, but
the function calls signal to another reader your intentions, as opposed to what you are actually doing:

1. If the singly linked list is not empty, print the address of the object at the front of the linked list.
2. Ifp_lst->p_head isnot null, print what isat p_1st->p_head->p_value.

2.3.2.3 Functions are not only for code reuse

Functions can be used to reduce duplication, and as a general rule, if you find yourself writing code twice, that’s often
acceptable, but if you are writing the same code a third time, it is time to factor out that code as a function. But this is not
the only purpose of functions: a function should perform a specific task.

Essentially, you can always ask yourself: “Does a significant block of code in a function body perform a complex operation
that 1. produces either nothing or a single value, and 2. performs a task that can be summarized in a few words?” If so,
that block of code is an excellent candidate for factoring out into a separate function

Consider this stack function that doubles the capacity of the internal array if the current one is too small:

void stack_push( stack_t *const p_this, int value ) {
if ( p_this->size == p_this->capacity ) {
int i;
int *p_old_entries = p_this->p_entries;

p_this->capacity *= 2;
p_this->data = (int *) malloc( p_this->capacity*sizeof( int ) );

for (1 =0; i< p_this->size; ++i ) {
p_this->p _data[i] = p_old_entries[i];
}

free( p_old_entries );

}

p_this->p_entries[p_this->size] = value;
++( p_this->size );

}

Over 50 % of the function is doing something other than pushing the new value onto the stack—instead, this entire block
of code could be factored out as a separate function.  Additionally, the  condition
p_this->size == p_this->capacity indicates what the code is doing, but creating a stack_full function indicates
what the programmer intended.
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void stack_double_capacity( stack_t *const p_this ) {
int i;
int *p_old_entries = p_this->p_entries;

p_this->capacity *= 2;
p_this->p_entries = (int *) malloc( p_this->capacity*sizeof( int ) );

for (1 =0; i < p_this->size; ++i ) {
p_this->p_entries[i] = p_old_entries[i];

}
free( p_old_entries );
}
bool stack full( stack_t *const p_this ) {
return ( p_this->size == p_this->capacity );
}

void stack_push( stack_t *const p_this, int value ) {
if ( stack_full( p_this ) ) {
stack_double_capacity( p_this );

}

p_this->data[p_this->size] = value;
++( p_this->size );

}

Now, each function can be tested individually to determine if it works and the functionality of the actual push function is
now quite clear.

As another example, when this author wrote a memory-allocation algorithm, he first sat down and wrote in pseudo code
what he wanted to achieve:

void *memory_alloc( unsigned int n ) {
unsigned int bucket, N, offset;

// If the memory request is @ or too large, immediately return

// Convert the request to the correct bin number

// Find a non-empty bucket containing available memory

// - if none is found, return NULL

// Get a block of memory of the appropriate size

// Set that block as a having been allocated and put back the unused portion
// Return the physical address to the user
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Even though none of these operations would ever be used elsewhere, the author converted each of these to a function and
the final algorithm looked as follows:

void *memory_alloc( size_t bytes_requested ) {
void *p_allocated_block;
size_t bin_idx, N, offset;

if ( (bytes_requested == @) || ((bytes_requested + BUFFER_SIZE) > MAX_SIZE) ) {
p_allocated_block = NULL;
} else {
// Find if a bin has an available block of memory
// - the most appropriate bin may be empty
bin_idx = bytes_requested_to_bin_index( bytes_requested );
bin_idx = find_non_empty_bin( bin_idx );

if ( bin_idx == NO_AVAILABLE_BIN ) {
p_allocated_block = NULL;
} else {

// Acquire a block of memory from the available bin
memory_block = pop_bin( bin_idx );

set_alloc( memory_block, 1 );

split( memory_block, bytes_requested );

p_allocated_block = memory block _to_user_address( memory block );

}

return p_allocated_block;

}

Had all this code been placed into a single function, it would have spanned four pages, but as it is now, the execution of
this function is much more readable, and each function performs a separate task which can be independently verified.
When this code was developed, once all the functions were verified as working correctly, because the logic in the top-level
routine was already correct, the allocation function worked flawlessly with the first execution. Had the memory allocation
been written as a single function, no testing could be done until the body of the function was substantially complete, in
which case, tracking down the plethora of bugs would be quite difficult.

2.4 Summary of real-time programming

In this topic, we’ve looked at failures in real-time systems, and considered mechanisms that can be used to overcome faults
in programming languages. We’ve also looked at desirable characteristics of programming languages for both real-time
systems and for operating-system kernels, and given justification for using C. Next, we have discussed some of the aspects
of C that are important to this course together with a comparison and contrast with the implementation of data structures
in C and C++. We then looked at some of the best programming practices as applied to the authoring of C, followed by an
introduction to software engineering practices.
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Problem set

2.1 Why do you think that there was such an outcry raised the insistence that structured programming be used by software
developers as opposed to allowing software developers us traditional programming techniques based on writing optimal
code.

2.2 Structured programming only requires conditional statements and condition-controlled iterative statements (loops).
Thus, statements such as break, continue and goto do not constitute structured programming. Comment on the
following different implementations as to whether or not it is worth breaking structured programming. Assume that the
condition is initially false and once it is true, it remains true.

for (i =0; 1i<n; ++i ) { for (i =0; i< n & !condition; ++i ) {
// Code block 1 // Code block 1
if ( condition ) { if ( !condition ) {
break; // Code block 2
} }
}
// Code block 2
}
for (i =0; 1i<n; ++i ) { for (1 =0; 1i<n; ++1 ) {
// Code block 1 // Code block 1
if ( condition ) { if ( !condition ) {
continue; // Code block 2
} }
}
// Code block 2
}
for (i =0;1i<n; ++i ) { for (i =0; i< n & !condition;; ++i ) {
// Code block 1 // Code block 1
for ((j =0; j<n; ++1i ) { for ( j =0; j < n & !condition; ++i ) {
//Code Block 2 //Code Block 2
if ( condition ) { if ( !condition ) {
goto label; // Code block 3
} }
}
// Code block 3
} if ( !condition ) {
// Code block 4
// Code block 4 }
} }
label: // Code block 5 label: // Code block 5

2.3 The course notes shows both unstructured and structured implementations of insertion sort. Why do you think that the
unstructured implementation compiles to a smaller set of instructions?

2.4 Procedural programming is based on describing functions where you specify:

1. the input data and its state, and
2. the transformation performed on the data and state.

How does this differ from object-oriented programming?
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2.5 You can think of a function as the consequence of a sentence with an action verb. Take the following description of
Dijkstra’s algorithm and determine which components could be written as functions?

Loop:

Initialize a table setting the distance to each vertex as infinity and flag each vertex as unvisited.
Set the distance to the initial vertex as 0.
Find the unvisited vertex v with the shorted distance to it.
If no such vertex is found, we are finished.
For each unvisited neighboring vertex w of v,
a. Calculate the recorded distance to v and the weight of the edge between v and w.
b. Ifthis calculated distance is less than the recorded distance to vertex w, update the recorded distance to
w.
6. Flag the vertex v as visited.
7. Return to Step 3.

g krwdE
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3 Computer organization

A program is a sequence of instructions. In order to execute the program, at the very least, you require two resources:

1. aprocessor, and
2. main memory.

The processor will execute the individual instructions and main memory is required to allow access to the instructions and
allow access to and modification of data. For a computer to do something useful, it requires additional resources. In general,
we will refer to any other resources as devices and the executing program will communicate with the processor through
device controllers that are either accessed directly through:

1. specific instructions,
2. memory mapping (associating locations in memory with registers in the device controller), or
3. device drivers.

Additional resources may generally be classified as

1. storage devices: hard-disk, floppy-disk, flash, tape, and optical drives;

2. input devices: keyboards, mice, touch-sensitive screens, and microphones;
3. output devices: terminal screen (monitor), speaker, and printer; or

4. communication devices: serial and parallel ports, USB and Ethernet.

Note, however, today most devices connect to a computer through a USB port. Even keyboards are no longer purely input
devices—settings and LEDs may be controlled by the processor.

Relevant to the material in this text, we will view a general-purpose computer or microcontroller as

1. one or more processors, each with possibly multiple cores, with each being able to execute instructions
independently,

2. main memory, storing instructions and information necessary for computation, and

3. device controllers to communicate with other devices and computers.

We will begin by explaining why the processor and main memory are so central to computers, and then we will continue
to look at other aspects. Before we explain why, let us look at the design of most processors today, by describing

Turing machines,
processor registers,
processor architecture,
main memory, and
operating systems.

a bk wdE

We will now look at these.

3.1 The Turing machine

In 1936, prior to the first programmable computer being built (the German Z3 and British Colossus were developed
independently in 1941 and 1943, respectively), Alan Turing defined the Turing machine. It is comprised of four parts:

1. The machine itself is in one of a finite set of states.

2. Aninfinite tape divided into frames, each of which could hold a single character in an alphabet. The tape can be
accessed via a head that points to one frame on the tape and can read from and write to that frame as well as being
able to move to either the next or previous frame.
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There is a program that is a sequence of instruction. Each instruction maps a pair consisting of the current state
and the letter stored in the frame currently under the head to a triplet consisting of a new state for the machine, a
character to be written to the frame, and an instruction to either move to the previous frame, stay at the current
frame, or move to the next frame of the tape.

Figure 3-1 shows a Turing machine and if the set of symbols is {0, 1, 0} and the set of states is {b, c, d, €}, then transition
table (instructions)

Current Next
State  Symbolread  State Symbol written  Direction
b 0 c 0 right
c 0 e o right
e ul f 1 right
f 0 b o right

will create an unending sequence of 0-3-1-3-0-3-1-G---- Currently, the state in the figure is e and the symbol is a blank,
so with the next transition, the third row indicates will set the state to f, write a 1 and move the head right.

W00 C00D0000C00OCOOOC0O00OC0OOO000O0COOC0O e Qe O C 00 COh

RO000C0OC0C0000000COO0O000C0O0O0O000CCO000 spsgeRoX B O 00000

Figure 3-1. A mechanical Turing machine.

This sounds like a painfully tedious way of programming, but what is critical here is the subsequent Turing-Church
conjecture: If an algorithm exists to solve a given problem, that algorithm can be implemented on a Turing machine.

We will see that the components of a Turing machine are built into our current-day computers with the following
correspondences where

1.
2.
3.

the state of the system is maintained through registers,

the infinite tape is main memory, and

instructions are assembly instructions that manipulate main memory and the registers created through the
compilation of programming languages.

We will look at each of these components, and then give a quick overview of operating systems.

3.2 Register machines

The processor on most computers and microcontrollers contain a number of registers, each of which can store a fixed
number of bits.

1.

Some of these are data registers storing words; that is, the largest unit of data on which the arithmetic-logic unit
can operate. In a 64-bit computer, a word is 64 bits, for example.
Others may store addresses that refer to locations in main memory (usually 16-, 32- or 64-bit addresses, although
the microcontroller Freescale 68HCO8 has only 13-bit addresses).

Many processors do not differentiate between data and address registers. There are other registers that the processor will
use, including:
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1. aprogram counter (PC) that stores the address of the next instruction to execute, and
2. astatus register that stores information about the most recent instruction.

When you execute a command like,
++1;

the compiler will determine whether or not the value of that variable is already stored in a register or if it is a value stored
in main memory (there are only a small number of registers, and a function may have many local variables). If the variable
is stored in a register, it will simply increment that register. If it is not, that variable is stored somewhere in main memory,
so it will first copy the value from main memory into a register and then add one to it. In either case, the compiler may or
may not write that value back to main memory.

The status register will be updated to reflect such things as:

1. Is1inow zero?
2. Is i positive or negative?
3. Did adding one to i cause a carry (unsigned) or an overflow (signed)?

Each of these Boolean flags would be stored by a single bit in the status register. Beyond this, we will not delve too much
further into the functioning of the processor. As a mechatronics student, you will be using the processor as a tool; most of
you will not be designing processors. Never-the-less, it is useful to understand why these two components are essential to
programming.

3.2.1 Instructions versus data
The Turing machine makes a distinction between instructions and data where

1. instructions are to be executed in a specific sequence by the processor and are generally considered to be
immutable, while

2. data is to be accessed by the processor and instructions use the data as operands and it should be possible to
change these values.

The distinction between instructions and data will allow us to make different decisions when designing the architecture of
a computer.

Consequently, one could envision a system with one set of memory being distinct from each other. For example, consider
the Atari 2600, shown in Figure 3-2. The machine instructions are stored in read-only memory on cartridges purchased
separately by the consumer, while the device itself only had random-access memory for run-time data.

Figure 3-2. An Atari 2600 with separate instruction memory (ROM stored on cartridges) and data memory (RAM).
(Wikipedia users Evan-Amos and Locke Cole)

This setup, where instructions are stored separately from data, is described as a Harvard architecture.
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3.2.2 Word size

The size of a data register said to be a word and these are usually 4, 8, 16, 32 or 64 bits. This generally defines the largest
integer data type that can be operated on via the arithmetic-logic unit (ALU). Most processors in desktop and laptop
computers today have 64-bit words. Some processors have 128-bit words, but these are rare. The LPC1768 has a word size
of 32, but microcontrollers—depending on the application—may also have word sizes of 16, 8 and even 4 bits (such as the
Epson sic6o family of microcontrollers, the Amtel MARC4 and the EM Microelectronics EM6682 as used in a Braun
electric toothbrush).

3.2.3 The registers in the LPC1768
The microcontroller we are using is the LPC1768. We will look at the registers in this specific processor, including

1. the general-purpose registers and
2. some of the special registers.

3.2.3.1 General-purpose registers

The general-purpose registers in the LPC1768 may store either data or addresses. These are identified as RO, R1, ..., R15
and each of these can hold 32-bits. The ALU can only perform arithmetic or Boolean logic operations on values that are
stored in these registers. In the examples, the italicized integers m and n represent values from 0 to 15, and any other
italicized identifiers represent numbers. For example, one instruction is

ADD Rm, Rn; % Rm = Rm + Rn
In some cases, you can specify the value that is to be added:
ADD Rm, #const; % Rm = Rm + const

Normally, if you add two numbers and the result is greater than the largest number that can be stored, you get an overflow,
in which case, the result will yield an unexpected value.

For example, consider the sum 89 + 42 as 8-bit signed integers.

1011001
+_101010
10000011

This number is, however, negative as the leading bit is ‘1°, so to determine the value of this, we apply 2’s complement to
get 1111101, or —125. There are special commands that perform saturation arithmetic

QADD Rm, Rn; % Rm = (Rm + Rn > MAX_VALUE) ? MAX_VALUE : Rm + Rn

where if the sum of two values is larger than the largest value that can be stored, the result is that largest value, as opposed
to the general behavior to wrap to the smallest value. For example, the sum of two 8-bit signed integers 89 + 42 would be
0111111, or 127, which is the largest 8-bit signed integer.

As an example of another machine instruction that is likely not to be used by most C++ compilers is the logical BIC, or
bit-clear, instruction

BIC Rm, Rn; % Rm = Rm & ~Rn -- clear the bits in Rm of any 1 in Rn

This is not a course in assembly language programming; however, these maintain the state of the processor.
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Note: One thing you may appreciate here is why writing in an assembly language usually results in faster code (at
least for small blocks of code). Even if you wrote:
X &= ~y;

not all compilers would reduce this to a single instruction. Instead, they may make a copy of y, take a bit-wise
complement, and then proceed to perform a bit-wise AND with x. Some compilers do have numerous algorithms for
examining code to determine whether or not two or more instructions could be replaced by a smaller set of instructions,
but inappropriate optimizations themselves cause problems, as we will see later. Additionally, many general-purpose
compilers will simply not take into account machine-specific instructions, instead preferring to restrict the instructions
generated to an almost universal subset.

To copy a value stored in one register into another, use the move command:

Rn
-Rn

MOV Rm, Rn; Rm
MVN Rm, Rn; Rm

In addition to using these registers to store data, they can also store addresses. This is necessary to load and save the values

stored in registers from and to main memory, respectively. The command

LDR Rm, [Rn, #offset]; Rm = *(Rn + offset)

loads the value stored at the address Rn plus the offset into the register Rm. Any arithmetic or logic operations will be

transformed by the compiler into such a set of instructions.

Note: On many systems, the size of an address may be different from the size of a word. For example, the Motorola
68000 (“68k™) has 16-bit data registers (the word size is 16 bits) but its address registers can hold 24 bits, that is, it
can access up to 22* memory locations. With each memory location being one byte, the maximum memory is 16 MiB.
On such computers, the data registers are separate from the address registers, and so they are identified, respectively,
as DO, D1, D2, ..., and A0, A1, A23, .... In this case, the width of the data bus is 16 bits and the width of the address
bus is 24 bits.

Of the sixteen general-purpose registers on the LPC1768, they may still be distinguished based on their use:

1. Registers RO through R7 are low registers and are used by instructions that only allow three bits to specify the

register.

2. Registers R8 through R12 are high registers and are used by instructions that allow four bits to specify the register.

3. R13 and R14 are involved in function calls, where

a. R13is a stack pointer (also MSP or PSP) and is used to track the values of parameters, local variables

and other related information, and

b. R14isalink register (also LR) and stores the address where the function should return on the completion

of the execution of that function.

4. R15 is the program counter (also PC) and it stores the address of the next instruction to be executed. You can

execute a goto by changing the value of the program counter.

We will see more about registers R13 and R14 when we discuss static memory allocation.
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3.2.3.2 Special-purpose registers
Beyond these general-purpose registers, addition memory is required for code execution. There are five additional special-
purpose registers in the LPC1768 that contain various types of information:

1. The program status register is 32 bits that is subdivided into three groups:
a. The application program status register (APSR), which is five bits that store details from the execution
of the last instruction:
i. Was it a negative number?
ii. Wasitzero?
iii. Did a carry occur when adding two unsigned integers?
iv. Did an overflow occur when adding two signed integers?
v. Did a saturation occur when performing saturation arithmetic?
b. The interrupt program status register (IPSR), which is used when external devices need to communicate
with the processor.
c. The execution program status register (EPSR), which stores the exception the processor is handling (if
any).
2. There are three registers that deal primarily with interrupts, including PRIMASK (1 bit), FAULTMASK (1 bit)
and BASEPRI (8 bits), and these will be discussed in Chapter 8.
3. The control register (CONTROL) is two bits that are used to provide a protected environment in which an
operating system can execute (that is, when you have an operating system).

All of these values store the state of the processor at any one time. If there are no changes to main memory, then if we save
the values of the registers, we can shut the processor down or do something else, and if we then restore all of the registers
to the saved values, the next instruction will execute as if nothing happened in between.

3.2.3.3 Summary of the LPC1768

We’ve described quickly some of the registers used in the LPC1768. We will at some point discuss the state of a processor.
This includes the values of all the registers in the processor.

3.2.4 Summary of register machines

We have briefly described register machines, the definition of a word, and how instructions affect the values of registers.
We will now proceed to discuss the second aspect of a Turing machine: main memory. If you are interested, you could
consider sitting in on a course such as ECE 222 Digital Computers:

Computer organization. Memory units, control units, I/O operations. Assembly language programming,
translation and loading. Arithmetic logic units. Computer case studies.

3.3 Main memory

Another aspect required by a Turing machine is some form of long-term memory that will, in our case, usually be
represented as main memory. We will quickly describe some aspects of main memory as they relate to this course and the
use of microcontrollers. Again, we will not often use main memory, at a low level, but rather an abstract level.

3.3.1 Addressing

Nominally, it would be easiest if the contents of a register could be copied back-and-forth between the processor and main
memory through a single operation. Thus, one would expect that each word would be given its own address in main
memory, in which case, main memory would simply be a sequence of words. For example, Figure 3-3 shows the first six
words of memory on a 32-bit processor.
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32 bits = 1 word
Figure 3-3. Individually addressed words on a 32-bit processor.

As an address is just another number, these are also stored in memory, so just like a word size, each processor will have
its own address size, where the number of bits determines the largest number of words that can be accessed (if an address
is n bits, up to 2" words can be accessed). However, the fact that computing was developed primarily in the English-
speaking United States and ASCII uses 8 bits to store a letter of the English alphabet (together with numbers, symbols and
special characters), it was convenient to give each 8 bits (called a byte) its own address. Such memory is said to be byte
addressable, as is shown in Figure 3-4.
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——

8 bits = 1 byte
Figure 3-4. Byte addressable memory.

Never-the-less, 16-, 32- and 64-bit processors will group bytes together, and therefore, even though you can specify byte
7, the processor will load the word containing the byte. For example, on a 32-bit processor, the bytes would be grouped
into intervals of four bytes (representing one word), as is shown in Figure 3-5.

© 1 2 3 4567 89 abcdef 101112131415161718191a1lb
H BN EEEETTEE B OEEOEETTEE B O EEEETTEE E (e

b;‘ze
——
32-bit word

Figure 3-5. 32-bit words within byte addressable memory.

To contrast the near ubiquitous byte addressability, the low-power 4-bit microcontroller EM6682 is nibble (or half-byte)
addressable—each four bits has its own address.

Note that the value stored in a byte may be represented by two hexadecimal numbers, from @x00 to exff, where the
“@x” indicates that the following number is in hexadecimal. For example, in ASCII, the letters ‘A’ through ‘Z’ run
from 0x41 to @x5a while ‘a’ through ‘z’ run from 0x61 to 8x7a, and the numbers ‘0’ through ‘9’ run from 0x30 to
0x39. To access individual bits, we must use bit-wise operations as was previously discussed.

While the address and word size are the same on the LPC1768, this isn’t true in general. For example, the earlier Motorola
68000s (also known as the M68k) had 16-bit words, but as memory is byte addressable, having 16-bit addresses would
restrict the size of memory to 2 bytes or 64 KiB. This was an insufficient amount of memory, and therefore 24 bits were
used for addresses, and therefore the maximum amount of memory would be 22 = 16 MiB (in 1979, 64 KiB of RAM cost
around $400 so 16 MiB would be upwards of $100,000, not adjusted for inflation).

The next question is how is data transferred between the registers and main memory. This is done through a data bus. The
width of the data bus is the number of bits that can be transferred in parallel between registers and main memory. An
example of these is shown in Figure 3-6.
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Main memory Processor
Data bus

Registers

Address bus

Figure 3-6. The data and address buses between the processor and main memory.

The size of the address bus must equal the size of the address registers. These are used to indicate the address of where
data that is to be either read or written. The size of the data bus often equals the size of a register (the word size); however,
this may not always the case. In the M68k, the data bus is 16 bits while the word size is 32 bits. Consequently, it requires
two separate instructions to load a word from main memory; this, however, significantly reduces the cost of the processer
(reducing the number of pins, simplifying the traces, etc.)—a significant issue when dealing with embedded systems.

In addition to separate data and address buses, there is a third control bus that is used to signal:

1. that main memory is being read,
2. that main memory is being written to, and
3. the number of bytes being read or written.

In the last case, a 32-bit data bus could be used to write, for example, 8 or 16 bits instead of all 32. This is shown in Figure
3-7.

Main memory Processor
Data bus

Registers

Address bus

Control bus

m

Figure 3-7. The data, address and control buses.

If the word size and address size is different, the processor will require separate data and address registers. However, once
we get to 32-bit and 64-bit processors, it is often easier to have the word size equal the address size with both data and
address buses being 32 bit. Therefore, a 32-bit processor (including the LpC1768 microcontroller we are using) will also
have 32-bit addresses, thus restricting memory to 2% bytes or 4 GiB. A 64-bit processor will have 64-bit addresses, and
thus as many as 16 777 216 TiB can be addressed.

Note: most computing today does not require 64-bit processors, at least with respect to the size of a word—32-bit
integers are more than sufficient for almost all applications, so moving around 64 bits is unnecessarily expensive. The
greatest benefit, perhaps, for 64-bit processors is that now a double-precision floating-point number (double) can be
loaded or saved in a single fetch from or store to main memory, respectively. The primary benefit is in the address
space: a 64-bit address can access 16 777 216 TiB of main memory, whereas 32-bit computers were restricted to 4
GiB of main memory.
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In general, we will represent addresses as hexadecimal numbers. For example, a 24-bit address will run from 0x000000
to oxffffff and a 32-bit address will run from 0x00000000 to oxfffffff+. Most of our examples will use 32-bit
addresses; however, examples on Linux systems may have 64-bit addresses. The structure of busses between processors
and memory is covered in other text on microprocessor interfacing.

One consequence of the discrepancy between word size and bytes is that, for example, a 32-bit machine will not load
one byte at a time; rather, given an address, it will load four bytes, those bytes with addresses ending with bits 00, 01,
10 and 11. Consequently, if you will recall from the previous topic, the compiler is very careful to separate out fields
in a structure so as to avoid poor placement. Suppose that a 4-byte integer is stored at addresses @x£3230255 through
0xf3230258. In this case, the last two bits are 81, 10, 11 and 00, and this will require two fetches from memory:
one for the 32 bits stored at @xf3230254 and one for the 32 bits stored at @xf3230258. Additional instructions will
be required to combine the two values in a register. Such processors are said to be word aligned.

Note: word alignment is not always required (for example, processors in the x86 line) but microprocessors will tend
to have word alignment as it simplifies the system.

3.3.2 Byte order

Another peculiarity that results from having byte addressability is the question: in a 32-bit integer, which byte comes first.
Of course, the “obvious” answer is the most significant byte or biggest part of the integer. For example, one would expect
that ©x12345678 would be stored as four consecutive bytes with the values @x12, 0x34, 0x56 and 0x78. However,
suppose you are adding two integers: the arithmetic-logic unit does not have the hardware to automatically add 32-bit
numbers. Instead, this is converted into the adding four byte-sized integers, possibly with carries. In that case, would you
not want to add the least significant bytes first, then the next least significant, and so on? For this, and many other reasons,
some processors store the littlest byte first.

Systems that store the most-significant (or “biggest™) byte first are said to be big endian, while systems that store the least-
significant (or “littlest”) byte first are said to be little endian.

Thus, using big endian, one billion, or 111011100110101100101000000000, would be stored in main memory as

\00111011 \1@@11@1@ \11@@1919\ 0000000@\

while using little endian, it would be stored as

\00000000 \11@01@10 \10011010\ 00111011\

Intel uses little endian while Motorola uses big endian. ARM processors allow you to decide which endian format is used.

This only matters if you are doing byte-wise operations on data types that are greater than one byte in size.
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3.3.3 Accessing memory
The actual connection between the processor and main memory is often through additional registers that are directly
connected to the data and address buses.

1. the memory address register (MAR) contains as many bits as the width of the address bus, and an address (or
general) register is copied to this register prior to memory being read or written to,
2. the memory data register (MDR) contains as many bits as the width of the data bus, and
a. if memory is being written to, the data to be written to memory is first copied to this registers, otherwise
b. if memory is being read, once the read operation is complete, this register will contain the value in
memory, which can then be copied to another register in the processor.

Once these two registers are ready, the control lines will be appropriately signaled and the main memory controller will
deal with accessing and either reading or writing to the specified memory address.

3.3.4 Buses

The connection referred to in the previous sections as a bus (from omnibus, Latin for “for all”) is, in general, used to
connect most peripherals with the processor. In general, you can think of a bus as a single communication system between
components in a computer. A computer may have more than one bus, but the added cost is often prohibitive. Instead, all
components (the processor, main memory, and other peripherals) will communicate via the bus and, as only one device
can use the bus at any one time, protocols must be in place to ensure only one device uses the bus at a time. For further
details on buses, see any text on microprocessor interfacing.

3.3.5 Memory allocation

Any program that wants to run requires memory. The available memory must be in some way allocated when it is required.
In the simplest case, only a single task may be running on a processor, in which case, all memory can be used however
that task implements it. Normally, however, memory is a shared resource between many tasks, and there must be some
central mechanism for allocation that memory to tasks as the memory is required. At the same time, there must be a
mechanism for collecting that memory once it is no longer required, such as after the termination of a task.

In some cases, it is possible for the compiler to determine the location or relative location of the memory allocations
required for a task. For example,

1. the instructions comprising the program can be placed in a single segment called the code segment (sometimes
called a text segment as a book is read-only), and

2. any constants (numeric constants, strings, etc.) or static variables required by a program can be placed together
in subsequent segment of memory called the data segment.

Thus, memory may be allocated by the compiler for these two segments, as shown in Figure 3-8.

Main memory

Code segment

Data segment

Figure 3-8. Memory allocation of code and data segments.
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There is, however, another case where the compiler can determine how much memory is required:

When a function is called, the compiler knows how many local variables it has, how many parameters it has, and the
arguments that were passed. Consequently, it should be possible to determine how much memory is being used by a
function at any one point. This is another situation where the memory allocation is determined by the compiler, on a per
function basis. As function calls have a stack-like behaviour (function A calls function B, and when function B returns, it
returns to function A), this can also be exploited with respect to memory allocation (the memory required for function B
is allocated immediately following the memory allocated for function A, and when function B returns, its memory can be
deallocated). We will describe this more in detail in the next topic; however, we will see that we can visualize such
allocation as if it were on a growing stack, as shown in Figure 3-9.

Main memory

Code segment

Data segment

Stack segment

Figure 3-9. Memory allocation with a stack segment.

The one case where the compiler cannot deal with memory allocations is when it deals with any interaction with another
party: when the compiler generates the code, it does not know how many or when messages are received, or how many
documents are being generated by a user, or how many clients are requesting a particular resource. In these cases, there
needs to be some other mechanism for memory allocation that can occur at run-time, or dynamically. We will see how we
can take a single large block of memory (we will call it a heap) which can be dynamically allocated as necessary. This is
a not-necessarily contiguous region which we can visualize as growing from the data segment, as shown in Figure 3-10.

Main memory

Code segment

Data segment

Heap

Stack segment

Figure 3-10. Memory segmentation including the dynamic heap.

3.3.6 Summary of main memory
This topic briefly introduced some of the more obvious issues that are relevant to main memory:

1. most processors use byte addressing although fetches may be word aligned,

2. words may have their bytes ordered from most significant to least significant (big endian) or least significant to
most significant (little endian) byte order,

3. accessing memory is through the memory address and data registers (MAR and MDR),
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4. buses connect the processor and main memory (as well as other peripherals), and
5. ahigh-level description of memory allocation.

Once we discuss other peripherals, we will look at other issues such as memory-mapping and direct memory access. We
will now, however, look at the high-level relationship (architecture) of the computer.

3.4 Processor architecture

A processor with registers that hold the state, with access to main memory, and where instructions transition the current
state into a new state is equivalent to a Turing machine. Consequently, the core functionality you require to execute an
algorithm is the processor and main memory; everything else is for utility or convenience. Thus, the core of any computer
is the processor and its memory, as shown in Figure 3-11.

Main memory

Bus
Processor

Figure 3-11. A processor and memory: the critical components of a computer.

The manner in which the components of a computer are connected is described as the architecture. We will describe the

design of microprocessors and microcontrollers,
Harvard architecture,

von Neumann architecture, and

Cortex-M3 architecture.

Mo

We will start by describing the difference between microprocessors and microcontrollers and then look at the various
architectures of connecting these.

3.4.1 Microprocessors and microcontrollers

Desktop and laptop computers have separate processors and memory: a processor may be replaced by a faster one, while
more memory can be added to the memory banks. For an embedded system, having separate processors and memory,
however, has sufficiently many drawbacks that it is often better for producers to make microcontrollers that contain both
a processor and main memory all on the same integrated circuit; that is, a collection of electric circuits (resistors, capacitors,
inductors, transistors, diodes, etc. connected by traces) on a single plate of a semiconducting material, usually silicon. A
microcontroller will also have additional peripherals (for example, system clocks, non-volatile memory (ROM) and other
communication interfaces) built into the same integrated circuit whereas the same would be found, perhaps, on the
motherboard of a general-purpose computer.
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3.4.1.1 Microprocessor
A microprocessor is essentially a register machine with limited capabilities, including:

an arithmetic-logic unit in order to perform integer arithmetic and Boolean operations,
a floating-point unit for performing floating-point arithmetic (not always present),

a system clock, the cycle of which times the execution of instructions, and

a control unit that regulates the operations of the processor.

Mo

Previously, floating-point units were separate integrated circuits (chips), but today they are usually integrated into the same
chip. Communication to other devices is through a bus or other pins.

Prior to microprocessors, the central processing unit of a computer would have consisted of circuit boards with hundreds
if not thousands of interconnected circuits. Reducing the manufacturing of the processor to handful (or one) integrated
circuit greatly reduced the costs. By not integrating main memory onto the chip, the unit cost was further reduced and
greater flexibility was provided for the end user. Examples include the Intel x86, i386 and x86-64 families of
microprocessors and the Motorola 6800, 68K and PowerPC families of microprocessors.
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3.4.1.2 Microcontrollers
Suppose we wanted to build an embedded system. We could create a board with a microprocessor, but that board would
also have to contain a number of other integrated circuits, including (at the very least)

main memory for dynamically changing variables,

flash memory or read-only memory for instructions and constants,
a real-time*° clock, and

some form of input and output.

Mo

Ultimately, there is a significant cost involved per embedded device to combine these integrated circuits on a printed circuit
board (PCB). This would involve numerous additional costs in design, quality assurance, testing and maintenance; for
example, see Figure 3-12.

Figure 3-12. Multiple integrated circuits on NorthStar Horizon Z80
processor board (photograph by Wikipedia user Deron Meranda).

Instead, a microcontroller (MCU or uC) contains a significant number of components on the same die that would otherwise
be peripheral integrated circuits in, for example, a desktop or laptop computer. The first microcontroller was designed in
1971 at Texas Instruments (T1) by the engineers Gary Boone and Michael Cochran. The 4-bit TMS 1000 included, in
addition to the processor, read-only memory, read/write memory and a clock on one integrated circuit.

A system-on-chip (SOC) is usually used to refer to more powerful microcontroller, often with sufficient resources to run
general operating systems such as Linux. A familiar example of a SOC is the Broadcom BCM2835 that forms the core of
the Raspberry Pi, shown in Figure 3-13. This SOC includes a 700 MHz ARM1176JZF-S processor, a VideoCore 1V
graphics processing unit (GPuU) and 256 or 512 MiB of RAM, but unlike the LPC1768, the Raspberry Pi does not have a
real-time clock. Broadcom Corporation uses a model similar to that of ARM Holdings plc in that it licences the design of
the Raspberry Pi to manufacturers.

101t is exceptionally unfortunate that real-time here means actual-time in contrast with the timer that signals the cycles of
the processor.
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Figure 3-13. Components of a Raspberry Pi B+, augmented from a photograph by Lucas Bosch.

A digital-signal processor is a microprocessor dedicated to measuring, filtering or compressing analog signals in real time
by converting the input analog signal into a digital signal, performing the appropriate operations, and converting the output
back into an analog signal. Some microcontrollers have digital-signal processing hardware built into the chip.
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In State of the Art: A Photographic History of the Integrated Circuit (see http://smithsonianchips.si.edu/augarten/),
Stan Augarten describes the first microcontroller: the TMS 1000 by Texas Instruments. At the time that he wrote his
book, 1983, it was the most widely used computer-on-a-chip, as well as being the first to integrate RAM, ROM and 1/O
onto a single chip together with a microprocessor. The team that designed this chip was led by Gary Boone and
Michael Cochran, but while they developed the chip in 1971, rather than making it available as a consumer item, its
first use was in a calculator introduced in 1972. The version of this chip shown below contains a 128 bytes ROM in
the top-left quadrant, a 32 byte RAM in the top-right quadrant, with the arithmetic-logic unit, controller, and other
components below. The actual size is 0.310 cm x 0.363 c¢cm, or .

3.4.1.3 What is firmware?

Firmware refers to software that is critical for the operation of hardware, and is therefore usually stored in read-only
memory (ROM) which may be read directly or may be loaded into main memory when the system is turned on. In most
hardware architectures, a firmware program is first loaded into main memory as part of setting up an infrastructure for the
program to execute. Once this is completed, the program counter is set to the address of the first instruction and the program
begins executing. In smaller systems, usually embedded, the program itself may be written into read-only memory. This
removes the loading process and therefore the set-up time is reduced. As part of the boot process, instructions in ROM may
perform task such as:

1. performing a power-on test,
2. reading configuration parameters from cMOS memory, and
3. loading a bootstrap loader from a boot sector of a boot device into main memory.

This bootstrap loader will now load a second-stage loader (e.g., GNU GRUB, BOOTMGR, Syslinux), which in turn will
load an operating system. Firmware is in many cases upgradable, but this requires additional hardware to flash the existing
ROM.

3.4.2 Harvard architecture

An architecture describes, at a high level, the parts of a computer and their relationships. The Harvard architecture is
based on the design of the Harvard Mark | computer, designed in 1939 and built in 1944, shown in Figure 3-14 where
instructions and data reside in separate memory and are accessed Vvia separate buses.
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Data memory

Instruction
memory

Instruction

Data bus

Figure 3-14. The Harvard high-level architecture.

The first programmable computer was developed by the German civil engineer Konrad Zuse also used this approach. His
“Z3” electromechanical computer had the instructions read from tapes (this computer was also Turing complete). As
another example of a Harvard architecture, the 4-bit EM6682 has a 4-bit data bus and a 4-bit address bus, but with 72 (>
2°) instructions, it requires two fetches per instruction, or two cycles per instruction (CP1).

An alternative architecture appeared a few years later.

3.4.3 von Neumann architecture

The Harvard architecture was the approach with many early computers, and it was not until 1945 when John von Neumann
published his First Draft of a Report on the EDVAC that lead to an architecture that saw a single main memory which
would contain both instructions and data. This came to be known as the von Neumann architecture; however, this was
based on the work of researchers both at Princeton University and elsewhere. This is the architecture used in most
computers and microcontrollers today.

Main memory

Bus
Processor

Figure 3-15. The von Neumann high-level architecture.

Instructions

Data

Having a single bus connecting the processor to main memory has as its consequence that instructions cannot be fetched
simultaneously with data. Consequently, this can severely restrict performance.

Aside: for your interest only, the following is from the seminal paper written by John von Neumann.
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It is evident that the machine must be capable of storing in some manner not only the digital information
needed...but also the instructions which govern the actual routine to be performed on the numerical data...
Hence there must be some organ capable of storing these program orders. There must, moreover, be a unit
which can understand these instructions and order their execution.

Conceptually we have discussed above two different forms of memory: storage of numbers and storage of
orders. If, however, the orders to the machine are reduced to a numerical code and if the machine can in some
fashion distinguish a number from an order, the memory organ can be used to store both numbers and orders.
The coding of orders into numeric form is discussed in 6.3 below.

If the memory for orders is merely a storage organ there must exist an organ which can automatically execute
the orders stored in the memory. We shall call this organ the Control.

3.4.4 The Cortex-M3 architecture

The microcontroller we will be working with, the Nxp (from Next Experience) LPC1768 microcontroller is based on the
Cortex-M3 architecture, a design that blends the von Neumann and Harvard architectures: all instructions and data are
stored in main memory, but part of main memory is accessible by a second instruction bus. If the entire program can be fit
into this sub-section, instructions may be fetched simultaneously with data instructions. While this leads to a much more
complex architecture, it reduces the effect of the von Neumann bottleneck, at least with respect to fetching instructions.

Main memory

Instructions Instruction

Data bus

Data

Figure 3-16. The architecture used in the Cortex-M3.

3.4.5 Architecture summary

This concludes a brief overview of various architectures, specifically the architecture used by the microcontroller in our
lab. Next we will describe the purpose of an operating system.

3.5 Operating systems
Consider again this program:

Program 1. Static and dynamic memory allocation.
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#tinclude <stdlib.h>
#tinclude <stdio.h>

int main( void ) {
int m = 4;

int *p_n = (int *) malloc( sizeof( int ) );

*p = 5;

printf( "The address of 'm': %p\n", &m );
printf( "The value of 'm': %d\n", m );
printf( "The address of 'p_n': %p\n", & _n );
printf( "The value of 'p_n': %p\n", p_n);
printf( "The value stored at 'p_n': %d\n", *p_n );
free( p );

return 0;

}

The program is running, and memory has been allocated by the operating system. Following this, instructions are sent to
the terminal to print the results, and the terminal, in turn, makes those results appear in a window in a graphical user
interface. But what is an operating system?

The operating system is a manager for the resources available on a computer.

The operating system is not a graphical user interface, it is not a command line interface, it is a collection of data structures
and functions that manage the resources available. These resources include:

available processors or cores,

main memory,

other storage devices (secondary memory),
input devices,

output devices, and

communication devices.

AU

We will focus on the allocation and effective use of the two primary resources in this course, namely the processors and
main memory, and how these may be effectively used in real-time situations.

3.5.1 Why do we need an operating system?

In short, we don’t always need one. You can load a program into memory of the LPC1768 microprocessor that you will be
using in your laboratories, ensuring that the first instruction is at memory location @x00000000, and when you reset the
processor, it will begin executing your program. This is all taken care of by compiler and loader the pVision4 integrated
development environment (IDE). To understand the purpose of operating systems, let’s review a history of the development
of computing.

The first programmable computers worked as follows: you loaded a program (initially by rewiring the computer and later
with punch cards), and then ran it. When the program finished (or time ran out), you would collect the output and the next
program would be executed.

There are, of course, benefits to such an environment: it is very fast, as the program is the only executable that is running.
The program has access to all of memory, all resources available to it, etc. There are issues, however:

1. most real-world systems do not require such speed, and
2. it was found a lot of time was spent waiting for input or output.
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For example, suppose you write such a program and you are waiting for input from some device. How do we communicate
with that device? Originally, a device may have been directly connected to the processor with specific instructions for
communicating with the device. In this case, the device may have a bit which, when set, indicates that data is ready to be
read off of that device.

if ( device_A_ready() ) {
int value = device_A_read();
process_A( value );

}
If you are specifically waiting for the device, you may try something like:
while ( !device_A ready() ); // Loop

int value = device_A read();
process_A( value );

In the second case, the processor could spend a significant amount of time essentially doing nothing as it waits. It would
be really nice if the device could flag the executing program to signal it had data, but what happens to the program if it
was running?

Looking ahead: Later, we will look at two different solutions. First, we will discuss the use of communication buses
to allow the processor to transfer data between it, memory and other devices. Second, we will look at the use of
hardware interrupts that will allow devices to signal that some goal has been accomplished. We will briefly describe
hardware interrupts here, but only as a brief overview.

When a processor is executing a program, suppose that there was processor support to do the following:

when a device signals that it is ready for data, the processor saves the state of the processor,
another function is called that can deal with the device that has signaled it is ready,

the function deals with the data appropriately, and

the processor is returned to the exact state it was in immediately prior to the signal.

HowppRE

In this case, the processor would continue executing as if nothing happened. The next instruction would execute in exactly
the same manner as if nothing had happened. This is because a processor is deterministic. If two processors are in the same
state, they will continue execution in the same manner. The only time that it will affect execution is if the data accessed
from the device, at some point, affects the next instruction.

Fortunately, we will see that this is such an elegant solution that most processors have support for such a mechanism.

Now, you could code for this, but such code would have to be very carefully written: any error in saving or restoring the
state of the processor would result in non-deterministic errors. For example, the program could run perfectly well nine
times out of ten, or 99 times out of 100 or 999,999 times out of one million, but if the signal occurred at exactly the wrong
time, it could result in an incorrect result. Trying to find such bugs is exceptionally tedious work: in one such case, a
program was run on every computer (in the background) at a place | worked repeatedly over the course of a few days
before it finally crashed and produced a usable core dump (an error report) that could be investigated.

Now, suppose one function is necessarily waiting for a response from a device. For example, suppose that a function is
executing and it then requests that a particular block from a hard drive be loaded into main memory. The run-time of such
a request depends on the speed of the disk. A disk spinning at 7200 RPM will have an average seek time of approximately
1 o 1
7200 RPM 240 s™
60 s/min
24 million instructions. Certainly if a function is waiting that long, would it not be more appropriate to allow another

7= 0.00416 s~4 ms with a worst case of 8 ms. In 8 ms, a 3 GHz processor could execute
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function to start executing? For example, if the request started the process of copying information from the hard drive to
the address specified.

char *p_memory_address; // the address to where the block will be loaded
hard_drive_load_block( block_id, p_memory_address );

while ( 'hard_drive_ready() ) {
// Perform other tasks

}

char value = memory_address[k]; // Access the kth byte

Again, this would have to be coded very carefully to ensure that other tasks can be performed. Wouldn’t it be easier if we
could just start executing another function until the block was copied? For example, what happens if it is essential that we
access the value as soon as it is loaded from the hard drive? If our loop was not well designed, it might take some time to
finish execution until the next check.

The ability to switch between two functions is called multiprogramming. This was first done in 1954 on a computer called
the LEO I11 (Lyons Electric Office).

Multiprogramming is just one of many ways of sharing the processor between multiple tasks all wanting to execute on that
processor. Others include time sharing and real-time systems. We will look at these later, but we will group all of these
together as multitasking.

Note: Processors for microcomputers appear to have capped out at approximately 3 GHz. This is for a number of
reasons, but a good discussion is available here:

http://lwww.technologyreview.com/view/421186/why-cpus-arent-getting-any-faster/

Essentially, there are other bottlenecks that are more critical at this point, including power (too hot), memory (access
is too slow) and instruction-level parallelism (optimizations and pipelining).

3.5.2 Uses of operating systems
An operating system is a manager of resources of a computer and it is written to deal with exactly such issues. Rather than
embedding all of the resource management software into your program, the operating system deals with issues such as

1. dynamic memory allocation,
2. device communications, and
3.  multitasking.

Note that, in essence, these three cover the gambit of available resources:

1.  main memory (dynamic memory allocation),
2. available processors or cores (multitasking),
3. other storage, input, output, and communication devices (device communication).

This is a standard engineering approach to any problem: divide the larger problem into independent sub-problems and
develop solutions for each of the sub-problems: the issue of resource management has been factored out of the
programming problem.

3.5.3 Linux, POSIX and the Keil RTX RTOS

When Unix was first developed, it evolved into a number of different flavors, each developed by separate vendors. While
each underlying operating system was reasonably portable, code written for one flavor would likely require significant
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rewriting to run on a different flavor of Unix. Consequently, the Portable Operating System Interface for Unix (POSIX)
standard was created. This defined a common interface so that any program that accessed the operating system strictly
through this interface could (theoretically) be run on any other platform. Linux implements the POSIX interface and we
will use this heavily during our lectures as examples. In the lab, you will be able to contrast this with the Keil RTX RTOS,
which you will be using in the laboratories.

POSIX (Portable Operating System Interface) is a collection of IEEE standards specified for maintaining compatibility
between operating systems. POSIX defines

1. the application programming interface (API), and

2. command line shells and utility interfaces.
Originally, as the name suggests, POSIX was targeted at providing cross-platform compatibility between variants of
the Unix operating system, but it is now also implemented in numerous other systems.

3.5.4 Real-time operating systems

The original Linux scheduler (the program that decided what runs next) could, in its worst-case scenario consider every
single process that could be scheduled. Thus, the run time was linear (O(n)) in the number of tasks. Such a response time
is not real-time. The first criteria for a real-time operating system is:

All services provided by the operating system must have bounded as well
as reasonable and consistent response times and memory requirements.

Real-time operating systems will also, in general, provide two other services:

1. A mechanism to ensure that the most critical process is the one that is currently executing, and
2. A mechanism for dealing with requests from other devices.

Throughout this course, we will investigate all of these.

3.6 Computer organization summary

We have discussed the concept of a register machine, described a Turing machine, considered multiple architectures
possible for computers and microcontrollers, and then considered the purpose of operating systems, both in general and
for real-time systems.
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Problem set
3.1 In general, resources could be classified as those where:

1. information is uni-directional, either

a. flowing to the processor, or

b. flowing from the processor; and
2. information is bi-directional.

The classifications 1a and 1b are usually referred to as input and output, respectively. Why do we break the second
classification into storage devices and communication devices? After all, isn’t a storage device just something that is
communicated with?

3.2 Given a Turing machine where our infinite tape is as follows:

joJoJofofJofofJoJoJoJoJafafafafafafa]a]

where the head is located at the cell denoted by pink. The state of the machine can be either A or B, and currently the state
is A. The instructions are as follows:

Current state Operation

Value Value New

under State to Move head

. state

head write
0 A 1 B R
0 B 0 A R
1 A 0 B R
1 B 1 A R

What does this program do to the tape after instructions are executed 14 times?

You should get a tape as follows, with the head at the last shown cell.

joJoJoJafofafofafofafafofafofafolsfa]

3.3 Most desktop and laptop processors have 64 registers. The 6800 has two registers. Is it possible to have a processor
with just a single data register? (Your argument should use the requirements of the Turing machine.)

3.4 Which of the following is the correct definition of the word size of a processor?

1. Itisthe width of the bus: the amount of data that can be transferred between the processor and main memory.
2. Itis the width of the data registers: the amount of data that can be operated on by a single instruction.
3. The width of the bus equals the width of the data registers, so the word size is both of these.

3.5 The address bus is 20 bits wide. What is the maximum amount of main memory that can be accessed by such a bus?

3.6 If the word size on a processor is 16, 32 or even 64 bytes, why do we still keep memory that is byte addressable (as
opposed to word addressable)?

3.7 What are the benefits of having the word size equal the address size? Why might such a requirement be detrimental to
the cost of an inexpensive embedded microcontroller?
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3.8 What does the following test?

t#tinclude <stdbool.h>
bool test() {
int a = 1;

char *p_char_a = (char *)( & );

return (*b_char_a) == 0;

}

3.9 What is the difference between a von Neumann architecture and the Harvard architecture?

3.10 What is primary drawback of the von Neumann architecture? Why is this not so much an issue with a desktop or
laptop?

3.11 What is the primary benefit of the Harvard architecture with respect to power consumption?
3.12 What is the difference between Linux/Unix and pOSIX?

3.13 Does a real-time operating system need to be fast?
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4 Static memory allocation

All real-time and embedded systems require data acquisition from sensors, and that data must be stored and processed.
Data can be categorized in terms of either temporary or persistent:

1. temporary data is that which must be reacted to, but once the action is performed, the data is no longer required,
and

2. persistent data is that information that is being collected by the system for long-acquisition or subsequent data
transfer to another system.

In either case, data should be moved as seldom as possible. Ideally,

1. temporary data is read into local memory and then discarded or into global memory or dynamic memory where it
is subsequently overwritten or the memory is released and reused, while

2. persistent data should only be read into global memory or dynamic memory, and if it is to be transferred to another
system, it should be transferred from that memory.

Memory is allocated in one of two ways:

1. Insome cases, the compiler can make decisions about where to allocate memory. It may be either at an absolute
address or at a relative address, but the need for such memory must be discernable from the code at compile time,
and this is termed static memory allocation. The absolute addressing includes global and static local variables,
while relative addressing is used for the local variables of functions.

2. In others, the requirement for memory cannot be determined at compile time. For example, when you open a new
document in a word processor, this requires memory; however, the compiler cannot be aware of that.
Consequently, this requires memory allocation at run time, or dynamic memory allocation.

This topic will look at static memory allocation, specifically how memory is allocated on the call stack, and will conclude
with an error-handling mechanism that allows you to return to a pointer other than the most recent function call.

Terminology: When you define a function, the parameters are the variables that are to be passed into the function.
When you make an actual function call, however, you are passing arguments. Therefore, in the function

double fabs( double x ) {
return ( X < @ ) ? -x : X;

}

the variable x is a parameter of the function; the behavior of the function will change based on its value, and therefore
it parameterizes the function call. On the other hand, when you now call this function, you pass an argument to the
function:

printf( "%f\n", fabs( sin( 1005.2343 ) ) );

In this case, the return value of the sine function is the argument to the absolute value function.
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4.1 The requirements of a function
The operation of a function requires, at a minimum: locations to store:

1. arguments,
2. local variables, and
3. areturn value.

These must be passed to the function, and as a function may be called recursively, each function call requires a different
location in memory. In addition, as a function may be called from multiple locations, the processor must know where to
return to when the function call returns; that is, you must store

4. the program counter as it was immediately prior to the function call.

Now, consider the nature of function calls. Suppose we want to calculate the sine of a complex number z. This requires us
to calculate the cosine, sine and exponential of three real numbers, the calls to both sine and cosine will involve a call to a
floating-point absolute value function, as is shown in Figure 4-1. These form a tree of function calls, but the only functions
we must keep track of those on the path from the initial function call to the currently executing function. When we return,
the path is shorted by one, and when another function is called, that path is extended by one.

cos(x)=—=Ffabs(x)
main()—==sincx(z)—= sin(x)=—=+*Fabs(x)
S exp(x)

Figure 4-1. Calculating the sine of a complex number.

Thus, this mimics the behaviour of a stack (see Figure 4-2): the memory required in main is at the bottom of the stack, the
memory required for the call to the complex sine is next, followed by the memory required for a double-precision floating-
point sine, followed by a call to the absolute value function. If the absolute value function wanted to call another function,
it could use the next available memory.

4
¢ Subsequent function calls
®

fabs(x)

sin(x)
sincx(z)

main()

Figure 4-2. The function call stack.
Now, because the memory required for each function call changes, we need to track
5. astack pointer to the current top of the stack.

However, there are two variables involved here: the amount of memory required for arguments changes from function
call to function call (as with printf) and the memory required for local variables changes, also. Thus, we require a second
pointer,

6. aframe pointer that separates arguments from local variables.
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Now, usually both the stack pointer and frame pointer are stored in registers, however, the value of these registers must be
temporarily stored as subsequent calls are made. Thus, with each function call, in addition to storing the old program
counter, we will also have to store

7. the old stack pointer, and
8. the old frame pointer.

In addition, the new function will require the use of registers—but when the function call is made, the registers are storing
values being used by the previous function. Thus, we must also store

9. the previous values of any registers used.
Later, we will see how the Cortex-M3 manages to avoid requiring both a stack and a frame pointer.

Thus, a function call looks like what is shown in Figure 4-3. In this image, the most recent function call is displayed in
vivid color, while the previous function call is grayed.

+

*‘— Stack pointer

Return address
Previous stack pointer
Previous frame pointer

Frame pointer

Previous stack pointer

ed
gV otS
o
re9d
Return address
Previous stack pointer
Previous frame pointer

Previous frame pointer

Even more prior stack pointer

Figure 4-3. A function call.

When the function returns, it must place the return value in an expected location. In this case, the most obvious point is
right on top of the previous stack pointer, as is shown in Figure 4-4. Note that you will never see the return value at this
location: when the function returns, this will either
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1. beassigned to a variable and copied to that location,
2. become the argument of another function call or operation, or
3. be ignored.

The last case happens quite often: printf returns the number of characters printed—how often have you ever inspected
this value?

Previous stack pointer

Return address
Previous stack pointer
Previous frame pointer

Previous frame pointer

-4— Even more prior stack pointer

Figure 4-4. A function call with the return value of the function that just returned.

Once the return value is copied to an appropriate location, the function may continue growing or shrinking the memory
required for local variables, as is shown in Figure 4-5.
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dynamic 44— Previous stack pointer

5aveS

'\5\9‘6

re9

Return address
Previous stack pointer
Previous frame pointer

Previous frame pointer

—— Even more prior stack pointer

Figure 4-5. Returning to dynamically changing amounts of local variables.

To view that local variables can be dynamic in size, consider the following function:

void f( void ) {

local i;

printf( "%p\n", &1i );
}

void g( void ) {
int i;

for (1 =1; 1< 10; ++1i ) {
int array[i*i];

f(O);
}
}
int main( void ) {
g();
return 0;
}

With each subsequent call, additional memory is allocated for the array, and the previous memory is reused, as the previous
array went out of scope.
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4.2 The Cortex-M3 design

The Cortex-M3 is designed to work as an embedded system, and therefore numerous assumptions can be made. First, there
is not likely going to be a significant number of parameters to functions. Also, it is assumed that functions will very quickly
require the use of their parameters. Consequently, arguments are not passed through the call stack, but rather, they are
passed through the first four registers. (If more arguments are required, the address of those arguments must be passed as
one of the four registers.)  Thus, the functions know where the parameters are stored when the function call is made.
Similarly, the return value is stored in a register. The compiler will deal with storing the values of the registers on the
calling function’s call stack. This allows a single stack pointer to be used. Later we will see that there are two stack pointers,

but one is to allow devices peripheral to the computer to interrupt the execution of the processor.

4.3 Set jump and long jump

The setjmp and 1longjmp features in C provide a mechanism that is more primitive than the throw and catch of C++. The

following two examples show how longjmp returns to the location

#include <stdio.h>

void second( int n ) {
printf( " start of second\n" );

printf( " end of second\n" );
}

void first( int n ) {
printf( " start of first\n" );

printf( " calling second\n" );
second( n );
printf( "  finished calling second\n" );

printf( " end of first\n" );
int main( void ) {

int 1 = 0;

printf( "start of main\n" );

while (i <3 ) {

++i;
printf( " calling first\n" );
first( i );

printf( " finished calling first\n" );
}

printf( "end of main\n" );

return 0;

#include <stdio.h>
#include <setjmp.h>

static jmp_buf buffer;

void second( int n ) {
printf( " start of second\n" );
longjmp( buffer, n );
printf( " end of second\n" );

}

void first( int n ) {
printf( " start of first\n" );

printf( " calling second\n" );
second( n );
printf( " finished calling second\n" );

printf( " end of first\n" );
int main( void ) {

int i = 0;

printf( "start of main\n" );

while ( setjmp( buffer ) < 3 ) {

++1;
printf( " calling first\n" );
first( i );

printf( " finished calling first\n" );
}

printf( "end of main\n" );

return 0;
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The change in behaviour between normal function calls and longjmp is clear from the output:

start of main start of main
calling first calling first
start of first start of first
calling second calling second
start of second start of second
end of second calling first
finished calling second start of first
end of first calling second
finished calling first start of second
calling first calling first
start of first start of first
calling second calling second
start of second start of second
end of second end of main

finished calling second
end of first
finished calling first
calling first
start of first
calling second
start of second
end of second
finished calling second
end of first
finished calling first
end of main

Note however that Rule 11 of the JPL coding standard says that “[t]here shall be no calls to the functions setjmp
or longjmp”.

Later in this course, we will discuss error-handling mechanisms where this will be applied.

4.4 Summary of static memory allocation

The allocation of global and static local variables is dealt with quite easily by the compiler; however, the compiler can also
set up the mechanism to make the allocation of memory required by local variables, and other aspects of function calls.
The Cortex-M3 makes certain assumptions about parameters allowing them to be passed in registers. The C programming
language setjmp and longjmp allow you to travel back down the call stack to a prearranged location.
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Problem set
T.B.W.
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5 Dynamic memory allocation

The last topic looked at static memory allocation. We will now proceed to dynamic memory allocation, the situation when
memory is being allocated or deallocated by various tasks at run time. We will consider the interface of an abstract dynamic
memory allocator (Dynamic Memory allocator ADT!?), and then look at a number of implementations of this abstract data
type. We will consider the appropriateness of the different implementations for real-time systems.

The relevance of studying dynamic memory allocation to real-time systems is related to the non-functional requirements
of safety, performance and scalability. Dynamic memory allocation is often complex and some approaches are simply
incapable of delivering memory with guarantees as to the run time, thereby violating safety. Additionally, the approaches
must be reasonably fast with the appropriate data structures supporting the process in a way that does not have serious
consequences if the number of allocations or deallocations suddenly increases.

Thus, we will look at:

the abstraction of a dynamic memory allocation scheme,
various allocation strategies,

the memory allocation schemes in FreeRTOS, and
comments on other features in memory allocation schemes.

Mo

We will start with defining an abstract dynamic memory allocator.

5.1 Abstract dynamic memory allocator

An abstract dynamic memory allocator is a container that maintains a pool of memory and that satisfies, where possible,
requests for memory and receives allocated memory when returned by its user. The interface for such an ADT has at least
two signatures:

void *allocate_memory( size_t n );
Allocate a block of n bytes of memory, returning a pointer to the address of the first byte.

void deallocate_memory( void *p_mem_block );
Return the block of memory allocated at the address mem_block back into the memory pool.

Note that, in general, it is not possible to return a part of a block of memory, and generally the allocator records the size of
the block that was allocated. In C++, this interface is provided through the new and delete operators; however, these are
coupled together with the initialize and destruction of the instances of classes by appropriate calls to constructors and
destructors, respectively.

Other possible interfaces include:

void *allocate_clear_memory( size_ t n );
Like allocate_memory, but sets all bits to zero in the block that is allocated.

void *reallocate_memory( void *p_memory, size t n );

Allocate n bytes of memory either by expanding the memory allocated at address mem, if possible, or allocate
new memory while copying over the contents at mem into that new memory. In either case, a pointer is returned
to the first byte of that block of reallocated memory.

Note that C++ does not offer these in conjunction with their new and delete interface.

1 Abstract Data Type, see Section 2.1.1.3.
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Recall the difference between static and dynamic memory allocation:

allocated at compile or deterministic allocation and deallocation are performed during the
design time initialization and termination of processes

allocation and deallocation occurs during the execution of
the process

Static

Dynamic  allocated at run time stochastic

We already saw previously that static memory allocation, when used in conjunction with function calls and returns, may
be performed efficiently using a stack. This is not the case with dynamic memory allocation.

With respect to deallocation of memory, dynamic memory allocation may either

1. require manual deallocation by the developer, or
2. the system may perform automatic deallocation.

We will describe each of these here and then address the issue of garbage collection.

5.1.1 Manual allocation management

The first case is exemplified by C and C++: an explicit call to free(..) or delete .. must be made. With such a scheme,
the programmer is in complete control of any dynamic memory allocation. The drawback is that it is error-prone for
developers, some of whom may not be entirely aware of the consequences of failing to delete memory. For example, a
common scenario in which memory is allocated but never deallocated occurs when memory has been allocated by one part
of the program and passed to another, but not deleted by the other task.

There are four common sources of error that we must be aware of:

1. pointers that store addresses of memory that have not yet been initialized are referred to as wild pointers,

2. pointers that store addresses of memory that has been freed are referred to as dangling pointers,

3. the same memory being freed multiple times, and

4. memory that is allocated but not appropriately deallocated when it is no longer needed; that is, a memory leak.

5.1.1.1 Wild pointers

After memory is allocated, but before it is first used, the content of that memory is usually random—unknown junk values.
Consequently, if the pointer is used as if it is referring to an initialized object, interesting things may or may not occur—
especially on different platforms or with different parallel events.

Consider, for example, a singly linked list'? used as follows:

single_list_t *p_list = (single_list t *) malloc( sizeof( single_list t ) );
single_list_push_front( p_list, 42 );

If the memory allocated all happens to contain zero, this will function perfectly: any variable storing the size will have a
value of zero, and the address of the head pointer will also be zero (NULL). However, if this code is run on another machine,
the memory may not be zeroed, in which case, it may appear that the linked list has a non-zero number of objects. For
example, if it is determined in the above case that the linked list is not empty, then a tail pointer would not be updated
when the node containing 42 is inserted.

12 See Section 2.2.6.
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The solution is straight-forward: ensure that each call tomalloc(..) isimmediately associated with a call to an initializer.

single_list_t *p_list = (single_list t *) malloc( sizeof( single_list t ) );
single_list_init( p_list );

single_list_push_front( p_list, 42 );

C++ solves this problem by having the new operator immediately call the constructor. Consequently it is not possible
to allocate memory without initializing it (assuming of course that the initializer is correctly implemented).

Failing to correctly initialize objects in C++ is a non-trivial problem in an algorithms and data structures course where
development is done in Windows but testing is done on Linux. In Windows, most memory is zero anyway, so an
incorrectly implemented constructor appears to work. If a student does not test their code in Linux, they will never
discover the error until they get their grade.

This can be solved in C using macros:

#tdefine SINGLE_LIST( list ) single_list t list; \
single list_init( &list )

#define SINGLE_LIST_P( p_list ) \
single_list_t *p_list = (single_list t *) malloc( sizeof( single_list t ) ); \
single_list_init( p_list )

Now our code looks like:

SINGLE_LIST( list );

single list_push_front( &list, 42 );
or

SINGLE_LIST( p_list );
single_list_push_front( &p_list, 42 );

5.1.1.2 Dangling pointers
Avoiding dangling pointers can be solved by always assigning a pointer the value NULL after the memory has been freed:

free( ptr );
ptr = NULL;

If you want to assign these pointers to NULL only during development (where use of a dangling pointer can be caught
during testing), but not in production code (where there is an unnecessary assignment), this can be done as follows:

free( ptr );
#ifdef DEVELOPMENT

ptr = NULL;
t#tendif

A reference to an address that has been deallocated has non-deterministic consequences: the operating system may

1. still flag that memory as allocated, so no issues occur,
2. cause the program to crash, or
3. have reallocated that memory to the same task, but it is now being used for a different purpose.

The last is the most detrimental, as the other data structure can be corrupted.
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5.1.1.3 Freeing the same location more than once

One possible consequence of dangling pointers is that they may be freed multiple times. This can have very different
results, but usually one of two events will occur:

1. the allocator will cause the program to stop execution,

2. the memory may have since been allocated again, in which case, you would free memory that was not meant to
be freed, or

3. heap corruption—the heap is in an inconsistent state and operations that mange it will be unpredictable.

Again this is a matter that can be resolved by having as few persistent variable storing addresses and ensuring that when a
call to free(...) is made, all of those variables must be set to null.

5.1.1.4 Memory leaks
The primary cause of a memory leak is when the last reference to memory is lost by the application. In C and C++, this
may happen in one of two ways:

1. The last pointer assigned the memory location is a local variable that then goes out of scope (often when a function
returns), or
2. The last pointer (local, member or global) assigned the memory location is overwritten.

In either case, because the last value storing the address is lost, it is now impossible to call either free(...) or delete ..
to indicate to the operating system that the memory is no longer required. Consequently, as long as the application is
running, the operating system will simply assume that the memory is being used by the application.

Aside: We will see later that when a program exits (or is terminated), any allocated memory is deallocated by the
operating system—there is no permanent loss of that memory. However, what happens if the memory leak is in the
operating system itself? An interesting article on this is Finding and Fixing NT Memory Leaks by Paula Sharick.

http://windowsitpro.com/systems-management/finding-and-fixing-nt-memory-leaks

As the aside mentions, a memory leak in an operating system can be detrimental; however, there are other instances where
memory leaks can be more serious than one in an application being run:

1. inan embedded system where memory is more limited as compared to what one would expect from a desktop or
laptop system,

2. inan embedded system that is meant to execute for an extended period of time (even years),

3. when memory may be shared by multiple processes and where the termination of one of these processes does not
necessarily cause the memory to be collected, and

4. inadevice driver.

Numerous programs and tools are available to help find memory leaks. In ECE 250 Algorithms and Data Structures,
students are given an overloaded new and delete operators that track memory allocations and deallocations and provide
specific details about any memory that has currently not been deallocated.

5.1.1.5 Summary of issues with memory deallocation
Manual memory deallocation has many issues; however, it is also the most efficient if it is done correctly.
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5.1.2 Automatic allocation management
Automatic allocation management has two aspects:

1. automatic initialization, and
2. garbage collection.

We will discuss both these here:

5.1.2.1 Automatic initialization
In C, allocation of memory and initialization are two separate operations, often in the form:

Type *p_entry = (Type *) malloc( sizeof( Type ) );
type_init( p_entry, .. );

Accidently accessing a pointer to an object that has not been initialized is a form of memory corruption. In C++, the
inclusion of a constructor prevents this: as soon as the memory is allocated, the constructor is called on the object prior to
new returning a pointer to the calling function:

Type *p_entry = new Type( .. );

In languages such as Java and C#, variables defined to be primitive data types are automatically initialized to zero.

5.1.2.2 Garbage collection

This second case is exemplified by the garbage collectors in programming languages such as Java and C#. Each time a
reference to an object is assigned, additional work is done by the runtime environment to track references to allocated
memory. We will describe

1. two algorithms for dealing with garbage collection, and
2. some of the issues with garbage collections.

5.1.2.2.1 Garbage collection algorithms
There are two mechanisms for dealing with garbage collection:

1. reference counting, and
2. tracing algorithms.

We will look specifically at the Boehm-Demers—\Weiser garbage collector for C.

5.1.2.2.1.1 Reference counting

The simplest form of garbage collection is reference counting: track how many references store the address of a particular
object and whenever one of those references is assigned a new value, decrement the count for the previous value and
increment the count for the assigned value. Whenever the count for an object is decremented to zero, delete the object.
Essentially, each time an assignment is done to either a pointer or reference; this must be replaced by a call to change the
allocation tree. This, of course, makes every assignment more expensive than one would expect. An example of reference
counting is shown in Figure 5-1.
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Figure 5-1. Reference counting for a collection of assigned blocks of memory.

In this case, if the global variable queue is set to NULL, the reference count for the data structure is decremented to zero,
so its memory is deallocated, but not before the reference count of the array storing the queue has its reference count
decremented. When the array is marked for deallocation, each of the arrays pointed to in the array also have their reference
count decremented, and thus 3 of those 4 arrays can also be deallocated (one of them still has a reference with the local
variable array).

It is possible to implement reference counting in C++ by creating a class that behaves like pointers but where operators
such as

1. the unary dereference operator *,
2. the assignment operator =,
3. the auto increment and decrement operators ++ and - -,

are overloaded.
Issues with reference counting include:

1. cycles cannot be detected (what if head and ptr are set to NULL),
it requires ®(n) additional memory where n is the number of pointers or references, and

3. itis not real-time, as the reference count of multiple objects may have be decremented even if none of them are
eligible for garbage collection.

Tracing algorithms solve the first problem.

5.1.2.2.1.2 Tracing algorithms

One problem with reference counting is that a data structure such as the cyclic link list pointed to by head in Figure 5-1
still has internal references even if, for example, head and ptr are reassigned. Such a structure would not be garbage
collected. As an example of another garbage collection algorithm, we will consider mark-and-sweep algorithm where
garbage collection is only run when a request for memory is made and there is no available memory; thus, unreferenced
memory may remain marked as allocated. These algorithms track all global and local variables that store references and
each allocated block of memory is associated with a bit. When the algorithm is run,
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1. all bits are set to zero,

2. each memory block referred to by a global or local variable is marked (the bit is set to 1),

3. the first time each block is marked, this algorithm is run recursively and any memory blocks referred to within
this memory block are themselves marked.

Thus, we perform a depth-first traversal of a directed graph, and all blocks that are connected to the set of global and local
variables referencing objects are therefore marked. We continue then to sweep through all allocated blocks of memory and
free all those that are not marked. Other garbage collection algorithms (such as the mark-compact algorithm) are based on
this mark-and-sweep algorithm.

Note that this approach makes it unsuitable for real-time systems, as the behaviour is unpredictable. If garbage collection
occurs at the wrong moment in time, this could cause the system to miss a deadline. For example, suppose a task requests
memory when it has another 10 ms of computation time to complete an operation that must meet a deadline in 12 ms. Even
if the garbage collection cycle is only 5 ms, the deadline will be passed. In soft and even firm real-time systems, such
sporadic delays may be acceptable, but they would be unacceptable in a hard real-time system.

5.1.2.2.1.3 Garbage collection in C
The Boehm-Demers—Weiser non-real-time garbage collector (see http://www.hboehm.info/gc/) can be implemented in
most C programs by

1. installing and including the library with #include "gc.h";
2. initializing the garbage collection with a call to GC_INIT();
3. replacing all calls to malloc(..) with calls to
a. GC_MALLOC(...) if the object itself may contain pointers, or
b. GC_MALLOC_ATOMIC(..) if the object does not contain subsequent pointers;
4. replacing all calls to realloc(..) with calls to GC_REALLOC(...); and
5. remove all calls to free(...).

You can access the size of the heap with GC_get_heap_size().

5.1.2.2.1.4 4 Summary of garbage collection algorithms
Garbage collection schemes generally fall into one of the two described categories: reference counting and tracing
algorithms, the second being far more prevalent and most algorithms today are based on the mark-and-sweep algorithm.

5.1.2.2.2 Issues with garbage collection

One issue with garbage collection is that references to allocated memory may remain in data structures even if they are not
accessible. For example, a stack that is used to perform a depth-first traversal of a tree will store addresses of nodes within
the tree; however, if the stack remains in scope and any global or local variable referring to the tree is reassigned or goes
out of scope, then there will still be entries in the stack that refer to nodes within the tree until either

1. the stack is no longer referenced to, or
2. the stack is reused to perform a depth-first traversal on a different tree.

The easiest solution is that any data structure that is used to implement an algorithm on a data structure should have a
shorter life span than the data structure itself; however, if this is not possible, references in such intermediate data structures
should be assigned null when they are no longer logically part of the data structure. For example, consider the following
example of a class in Java:
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public class Stack {
private int capacity;
private Object[] array;
private int size;

public Stack( int s ) {
capacity = s;
array = new Object[capacity];
size = 0;

}

public int size() {
return size;

}

public void push( Object obj ) {
array[size] = obj;
++size;

}

public void pop() {
--size;

}

public Object top() {
return array[size - 1];

}
}

Suppose we perform a depth-first traversal of a tree using a stack:

// Allocate memory for a stack to be used for traversals
Stack s = new Stack( 100 );

// Executing...
General_tree tree = new General_tree();
// Add children here

// Perform traversal
s.push( tree.root() );

while ( !s.empty() ) {

General_tree t = s.pop();

// Push any children of 't' onto the stack
}

root = null;
// We're finished, right?

At this point, we should be fine, right? root is setto null and therefore it and all its descendants can be garbage collected.
Unfortunately, no, because the entries of the array in the stack may still be assigned even if they mean nothing to the stack
itself (the next time it is used, those entries will be overwritten). Instead, we must remove all references to objects
temporarily stored in containers when those objects are removed from the containers:
public void pop() {
--size;
array[size] = null;

}

For other information about garbage collection, read
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Java theory and practice: Garbage collection and performance: Hints, tips, and myths about writing garbage collection-
friendly classes by Brian Goetz, available at

http://www.ibm.com/developerworks/library/j-jtp01274/

5.1.2.2.3 Summary of garbage collection

In this topic, we have discussed garbage collection algorithms and some issues that may affect the efficacy of a garbage
collection algorithm.

5.1.2.3 Summary of automatic allocation

Automatic allocation and deallocation are two separate issues: C implements neither, C++ implements automatic
initialization, and with the Boehm-Demers—Weiser garbage collector, it is possible to implement garbage collection in C,
but initialization must still be performed.

5.1.3 Summary of abstract dynamic memory allocation

An abstract dynamic memory allocator will, at the very least, have an interface that allows tasks to request memory from
the pool and to return memory to the pool. Most embedded systems will have manual deallocation, but it is possible to
have a reference counting scheme whereby each allocated object is associated with a count, thereby allowing blocks of
memory to be deleted. This has its own weaknesses and the execution of the garbage collector to find these blocks of
available memory is expensive with respect to run time.

5.2 Allocation strategies

The allocation of memory by the operating system can be either fixed partition or variable partition. Like static and dynamic
allocation, fixed partitioning is simpler to implement, but it has numerous restrictions, the most significant of which is
internal fragmentation. We will look at using:

fixed block sizes,

variable block sizes,

a composition of these two schemes, and
other advanced memory allocation schemes.

Ao

5.2.1 Fixed block sizes
One possibility is to have a fixed block size. In this case, all blocks of memory allocated are the same size; if the request

is less than one block, a full block is allocated anyway. If a request is for, say, 3.7 blocks, the memory returned will be 4
blocks.

5.2.1.1 One size of blocks

In an embedded system, it may only be necessary to provide memory for a data structure such as a linked list. In this case,
a memory allocation strategy is very straight-forward: create a linked list (you can think of it as a stack—we will only be
pushing and popping from the front) and cast each block as if it was a pointer and store the address of the next block of
available memory. The last block of memory would have store the address NULL, and when a node is deallocated, it would
be prepended to the front of the linked Ilist. An implementation of this is available at
https://ece.uwaterloo.ca/~dwharder/icsrts/Keil_board/dynamic/
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5.2.1.2 Fixed size blocks
With a fixed-sized-block strategy, memory is initially divided into partitions, each of which may be assigned.

1 KiB

INNNEREN

2 KiB

4 KiB

Generally, these can be allocated and deallocated in ®(1) time. We will discuss a strategy we will use again in this class.
One may, for example, keep either an array or linked list of the addresses of the unassigned partitions with one data
structure per block size.

// Global variables for the operating system
int partition_count[3] = {8, 4, 2};

size_t partition_size[3] = {1024, 2048, 4096};
single list_t addresses[3];

// Initialization
void memory_init() {
char *p_base_address = 0x039a8000;
char *p_working address = p_base_address;

for (int i =0; i < 3; ++i ) {
for ( int j = ©; j < partition_count[i]; ++j ) {
addresses[i].push_front( p_working_address );
p_working_address += partition_size[i];

}

Now, whenever memory is required, we just need pop the next address off of the appropriate linked list and return it:

void *malloc( size t n ) {
void *p_allocated_memory = NULL;

for ((int i =0; 1 < 3; ++1i ) {
if ( n <= partition_size[i] && addresses[i].size() > @ ) {
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p_allocated_memory = addresses[i].pop_front();
break;

}

return p_allocated_memory;

}

Note that this automatically allocates the smallest possible partition that satisfies the request. Freeing memory is similarly
meticulous:

void free( void *p_address ) {
if ( p_address != NULL ) {
char *p_working_address = p_base_address;

for (int i =0; i < 3; ++i ) {
p_working_address += partition_size[i] * partition_count[i];

if ( p_address < p_working address ) {
addresses[i].push_front( p_address );

}

}

In this case, however, the use of the linked list unnecessarily wastes memory; we don’t need this because either a partition
is

1. assigned, in which case, it will be used to store whatever the requesting process requires of it, or
2. not assigned, in which case, this is memory we can use for another purpose; for example, a linked list.

Essentially, each partition could store in its first location the address of the next.

// Global variables for the system

int partition_count[3] = {8, 4, 2};

size_t partition_size[3] = {1024, 2048, 4096};
char *ap_addresses[3];

// Initialization
void memory_init() {
char *p_base_address = 0x03928000;
char *p_working address = p_base_address;
int i, j;
void *p_address;

for (1=0; 1< 3; ++i ) {
ap_addresses[i] = p_working_address;

for ( j = ©; j < partition_count[i]; ++j ) {
p_address = p_working_address;
p_working address += partition_size[i];

if ( j == partition_count - 1] ) {
p_address = NULL;

} else {
p_address = p_working_address;

}
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void *malloc( size_t n ) {
void *p_return_value =
int i;

NULL;

for (1 =0; i< 3; ++1 ) {
if ( n <= partition_size[i] && 1list_size( &( ap_addresses[i] ) ) > @ ) {
p_return_value = list_pop_front( &( ap_addresses[i] ) );
break;

}

return p_return_value;

}

void free( void *p_address ) {
if ( p_address == NULL ) {
return;

}

char *p_working_address = p_base_address;

for ((int i =0; i < 3; ++i ) {
p_working_address += partition_size[i] * partition_count[i];

if ( p_address < p_working_address ) {

list_push_front( &( ap_addresses[i] ), p_address );
break;

Issue: if another process writes outside of its partition, this could corrupt the unused partitions.

Note that Rule 24 of the JPL coding standard says that “There should be no more than one statement or variable
declaration per line.” In the above example, both looping variables are declared together, as there is nothing gained by
defining them separately. The two previous lines, however, declare and initialize two variables of type char *
separately.

In an embedded system, if it is known at least approximately how much memory is required and in what amounts, it may
be reasonable to apply such a simple scheme. Many microprocessors come with a fixed amount of main memory, so there
may be no requirement to economize on main memory use if other factors already require the given chip to be used. In
addition, today, main memory is significantly cheaper than it was even a decade ago.

5.2.1.3 Internal fragmentation

One significant issue with fixed partitions of memory is that may factor against its use is that not all memory requests may
require the full block of memory; however, this does not prevent the entire partition from being assigned. These bits of
unused memory are termed internal fragmentation. In the next figure, allocated blocks are in solid colors with
representative internal fragmentation shown in gray.
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Just do demonstrate, collecting the allocated-and-used, unallocated, and internal fragments in this example, we find that
20 % of the memory is “lost” to internal fragmentation; it is not storing anything useful, yet cannot be assigned to a new
memory request either.

Note that a fixed partition strategy can be used to augment a dynamic and variable partition strategy. For example, if
it is known that a significant but variable number of blocks of a specific size BLOCK_SIZE may be required for a
project, it may be easier to allocation n * BLOCK_SIZE bytes initially and use a scheme similar to the one above for
fast allocation and deallocation of these blocks. This would require additional functions:

void *fix_malloc( size_t )
void fix_free( void * )

This may be useful in, for example, a video gaming application where speed is necessary but where the number of
partitions may vary quickly.

5.2.1.4 Summary for fixed block sizes

A memory allocator that uses only fixed block sizes can be very fast: all operations are ®(1). Unfortunately, this may
result in internal fragmentation, where a block significantly larger than the requested memory is allocated for a given
request. The extra memory is said to be an internal fragment and it cannot be used until the entire block is released. Variable
sized allocators can deal with this situation, but it also results in additional overhead in terms of run time and the possibility
of external fragmentation (blocks too small to allocate).

5.2.2 Variable-sized-block strategies
With a fixed partition strategy, memory is initially divided into partitions, each of which may be assigned. We will look at
a number of approaches.
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5.2.2.1 Bitmaps

It is possible to divide memory into M n-bit units, and then to create a bit-array of size M storing the status of each unit (0
for unallocated, 1 for allocated). In this case, 100/(n + 1) % of the memory is used for the bitmap, so if the unit size is 4
bytes, the bitmap occupies approximately 3 % of memory; while if the unit is 16 bytes, the bitmap occupies approximately
0.8 % of memory.

Issues include internal fragmentation, although now the average wasted memory per allocation will be only n/2 bits (in
- . . - . . 8m
addition to the memory of the bitmap itself), and finding a block of m bytes requires one to find a sequence of — zeros.
n
A sample bitmap is shown here where gray indicates unallocated (0) and red indicates allocated (1).
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While bitmaps may not be appropriate for dealing with real-time memory allocation (finding large contiguous blocks of
memory can be very slow—especially if memory is fragmented), they are a candidate for secondary memory—especially
when there is no requirement for the blocks to be contiguous.

5.2.2.2 Linked lists

An alternate approach is to consider some form of linked list. This linked list could be stored in one of two ways: as a
separate linked list, or as suggested above, by embedding the linked list into the memory that is either free or allocated.
We will take the second approach.

Thus, as an initialization, the linked list would contain a single entry. Assuming there are 4 KiB of memory available
starting at address ©x00003000, it would be a single list with one block. This would be prefixed with a header with eight
bytes, where:

1. four bytes stores the size (4088 = 4096 — 8), and
2. the next four initially points to NULL.

How do we track an allocation of 512 bytes? We split the block of size 4096 into two blocks: one of size 520 (512 + 8)
and one of size 3576 (of which 3568 = 3576 — 8 is available). The address of the 9™ byte in the allocated block is retuned.
If our memory started at address ©x3008, this would be 0x00003008. In addition, we may use one bit to flag whether the
block is allocated or deallocated.

Question: s it better to store both the size and the memory location of the next block? After all, can we not just add the
size of the current block to determine the location of the next?

1. Allocating extra memory requires more space, but
2. Having to calculate an offset with each step of the linked list is an unnecessary operation, and this may be
detrimental.

Suppose we have 1 MiB of memory, and we expect, on average, 1000 allocations. The additional memaory for this header
would be just under 1 % of the available memory.

Question: Do we require a singly linked list or a doubly linked list?

Suppose we want to possibly merge a deallocated block back together with adjoining entries. In this case, it would be
necessary to look both forward and back in the linked list to determine whether or not it can be merged with the block
immediately before and/or the block immediately after.
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5.2.2.3 External fragmentation

One significant issue with any variable sized memory allocator is that blocks must be broken up into smaller sub-blocks
in order to accommodate requests. This may lead to a situation where the allocated memory is scattered between blocks of
available memory, and as allocated blocks are freed, they are now returned to the pool in a “checkerboard” pattern, as
shown in Figure 5-2.

H Il I Il Bl EE

Figure 5-2. Allocated memory (interspersed between available memory.

Consequently, while N bytes may be available, it may not be possible to satisfy a request for N bytes because there is no
single contiguous block of size N or greater. This can lead to situations where even moderately-sized requests cannot be
satisfied. Such a situation is referred to as external fragmentation. There are two possible solutions that can alleviate such
a situation:

1. coalescence, and
2. allowing small amounts of internal fragmentation.

We will discuss both of these here.

5.2.2.3.1 Coalescence

When memory is deallocated, the allocator can determine whether or not there are nearby blocks that are also available, in
which case, the two available blocks are coalesced into a single larger available block. In this case, the memory in Figure
5-2 would have larger blocks available, as shown in Figure 5-3.

Figure 5-3. The memory allocated in Figure 5-2 with adjacent available blocks coalesced.

This, however, may require significantly more overhead either at allocation time or at deallocation time as the available
blocks must be sorted in some manner, and maintaining an ordered list will always require some overhead.

5.2.2.3.2 Allowing internal fragmentation

If a request is made for a block of size n bytes, but the block that is being allocated is slightly larger, say n + 10 bytes, it
might be better to tag the entire block as being allocated where the 10 bytes left over constitutes a form of internal
fragmentation. This might be more efficient than splitting the block into two blocks, one of size n and one of size 10, and
then trying to coalesce them together when the one is deallocated. It is unlikely that there would be a request for memory
of size 10 or less so the second block would probably never be allocated anyway. This is even more useful in an embedded
system if it is known that there will never be requests for memory of size less than m bytes, in which case, it is pointless
make such a split.

5.2.2.3.3 Summary of external fragmentation

External fragmentation is an issue that needs to be dealt with in variable-sized allocators. Two general means of alleviating
this issue are to coalesce two available blocks back together as a single available block, and to not allow blocks to be split
below a minimum size (resulting, however, in internal fragmentation). We will consider these when we consider the various
allocation schemes.

5.2.2.4 Basic variable-sized allocation schemes

As soon as the first deallocation occurs, unless that deallocation is immediately adjacent to the final block of available
memory, we now have some external fragmentation of available memory. Thus, with any subsequent allocation, there is a
question of which block of available memory should be sub-divided in order to accommodate the request.
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There are four algorithms we will look at:

first fit,
next fit,
best fit, and
worst fit.

HowppE

5.2.2.4.1 First fit

First fit starts at the beginning of memory and finds the first block large enough to accommaodate the request. Once a block
is found, it is divided into two blocks, one allocated and the other still unallocated. It is a relatively fast algorithm. The run
time is O(n) where n is the number of unallocated blocks.

Problem: We are iterating through all blocks of both allocated and unallocated memory. If we are searching only for the
next available block of unallocated memory, why do we waste time stepping through allocated blocks?

Solution: We could have two doubly linked lists: one for all blocks, and another for unallocated blocks only. Thus, we
would have previous_unallocated_block, previous_block, next_block, and next_unallocated_block.
These two fields are, however, not necessary when a block is allocated, so it does not affect the header size of an allocated
block; however, it will require that unallocated blocks be at least a minimum size.
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Figure 5-4. When a block is unallocated, the memory is used to store pointers to the previous and next unallocated
blocks,
while when the memory is allocated, all memory beyond the immediate previous and next blocks is available to the user.

5.2.2.4.2 Next fit

One issue with first fit is that it will quickly shrink the initial blocks of available memory into chunks that may be too small
to allocate and this may result in a number of small unallocated blocks at the start of memory. Consequently, an alternative
is next fit. Rather than always starting from the start of memory, searching for an available block, the allocator tracks the
last block that was sub-divided and with the next request for memory, begins by checking that block. Like first fit, the run
time is still O(n) where n is the number of unallocated blocks.

Note: We will describe first fit and next fit as sequential fits, as any implementation requires the collection of
unallocated blocks to be iterated through sequentially.

5.2.2.4.3 Best fit
As an alternative, consider finding the smallest possible block that can satisfy the request? This would require searching
through all available blocks—an operation which could be potentially ®(n)!

Problem: How could we reduce this to ®(In(n))? We could keep the blocks in order of size, but this would still require
walking through the list—an O(n) solution. Recall that the blocks themselves represent nodes, and what node-based data
structure was used for storing linearly ordered data?

Solution: How about an AVL tree or a red-black tree? Once again, we could use the unallocated memory portion to store
information relevant to either tree structure.
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Figure 5-5. An AVL node (storing the height) and a red-black tree (storing a single bit with the color), together
with a block when either is allocated where all memory beyond the two block pointers is available to the user.

Now, the best fit runs in ®(In(n)) time—possibly even better than first fit or next fit which will run in O(n) time.

One problem with best fit is that it tends to leave significant fragments of unusably small memory around—an extreme
case of external fragmentation. If we wanted to leave the largest possible hole, we could use the opposite strategy.

5.2.2.4.4 Worst fit

Suppose instead we now instead always allocate any new memory in the largest possible block of unallocated memory.
The unallocated component of the block will be large; hopefully large enough that it can be used for another memory
allocation later (as opposed to being too small to be useful).

Problem: This requires us to keep a sorted list from largest to smallest, but we are only interested in ever accessing the
largest of these. What data structure can we use to keep track of these?

Solution: A max heap could be used here. If we want to maintain the smallest possible blocks size for unallocated blocks,
we could use a leftist heap (a binary heap structure); however, if more memory is available, we could use either a binomial
or even Fibonacci heap structure.

Note: We will describe best fit and worst fit as branching fits, as any implementation requires the collection of
unallocated blocks to be stored in a tree-based data structure.

5.2.2.4.5 Summary of linked list memory management

We have seen four techniques for allocating memory through linked lists. Such allocation strategies are not, however,
always appropriate for real-time systems. In each case, it may be necessary to iterate through many available blocks before
one is found. Thus, it would be very difficult to ensure a (small) upper bound for the time it takes to allocate memory using
such strategies.

5.2.2.5 Summary of variable-sized allocation strategies

Variable-sized allocation strategies are more flexible than fixed-sized strategies. They are more likely to be implemented
as a linked list, though it is possible to use some form of bitmap. A consequence of variable-sized allocations is that external
fragmentation may occur, a problem that can be partially fixed by coalescence or allowing some internal fragmentation.
Four strategies for where to allocate a memory request are first-fit, next-fit, best-fit and worst-fit. The next topics look at
more advanced schemes.

5.2.3 Advanced memory allocation algorithms
We will look at several other advanced memory allocation algorithms, including:

1. quick-fit,
2. binary buddy,

3. Doug Lea’s malloc,
121



4. half-fit,
5. two-level segregate fit, and
6. smart memory allocator.

5.2.3.1 Quick fit

It might be reasonable to keep additional lists for common requests: for example, if a particular data structure is known to
require blocks of size 1024, then any available block that is of size 1024 up to perhaps 1152 could be additionally stored
in a separate list. When a request of size 1024 occurs, it might be simpler to allocate the entire block out of that list,
regardless of size, and accept the balance as internal fragmentation.

5.2.3.2 Binary buddy

Binary buddy is a scheme that, at its simplest, divides memory into 2" blocks of K bytes each. Memory can be allocated in
blocks of size K, 2K, 4K, and up to 2"K. Blocks can only be allocated, however, along integral multiples of 2. For example,
if h = 3, blocks can be allocated only in the following according to the following shown in Figure 5-6.
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1

Figure 5-6. Possible groupings of blocks allocatable using binary buddy when h = 3.

The name comes from the restriction that when a block of memory is split into two, this creates two binary buddies, and
when it comes time to coalesce deallocated blocks together, a block can only be coalesced with its “buddy”. This allows
for a very easy scheme of not only dividing memory, but more importantly being able to coalesce deallocated memory into
larger available blocks, and this can be achieved using a perfect binary tree and doubly linked lists. To initialize the system:

1. Create an array of h + 1 doubly linked lists, but we only require a head-pointer—no tail pointer or counter is
necessary. The k™ linked list is associated with blocks of size 2 N for k = 0, 1, ..., h. The memory blocks
themselves can be used to store the next and previous pointers required for a doubly linked list.

2. Place the entire memory block into the h'" linked list, with the remaining linked lists being empty.

3. Create a perfect binary bit-tree (allocation tree) of height h stored as an array where the bits indicate whether a
particular block or a portion thereof has been allocated. Set all the bits to 0 indicating that there are no allocated
or partially-allocated blocks.

This allocation tree and the association between the bits and the blocks they represent shown in Figure 5-7.
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Figure 5-7. Each of the blocks and their corresponding bits in the perfect binary bit-tree.
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On a 32-bit system, this would require 4(h + 1) + 2" -2 bytes, so if h = 10, this would require 300 bytes allowing up to
210 = 1024 separate blocks to be allocated. In the limit, this will require approximately %% additional memory, and if

K = 32 bytes, the overhead would be less than 1% so long as h > 10.
122



After initialization, our memory-allocation scheme is initialized, we have the set-up shown in Figure 5-8.
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Figure 5-8. Binary-buddy memory allocation scheme following the initialization when h = 3.
Now, when a request for n bytes of memory comes, let k be the smallest power of 2 such that n < 2¥K.

1. Ifthe k™ linked list is empty,
a. ifall linked lists from k + 1 to n are empty, deny the request—the requested memory cannot be allocated,
b. otherwise, let k> k be the next non-empty linked list and iterate j from k™ down to k + 1:
i. pop an unallocated block from the j linked list, flag it as allocated in the allocation tree, and
push both halves onto the (j — 1) linked list in reverse order;
2. pop a block off of the k" list, mark the corresponding bit in the binary bit-tree to 1.

Thus, the run time of an allocation is O(h). For example, if a request for a block of size n < K is made, the state of our
memory-allocation scheme would be what is shown in Error! Reference source not found..
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Figure 5-9. The state of our memory allocation scheme after one block of size K was allocated.

Now, if a request is made for a block of memory n <K, K <n < 2K or K < n < 2K, such a block could be immediately
allocated by popping a block off of the corresponding list and flagging it as allocated. You will note that the scheme ensures
only the smallest possible block is ever broken into two, ensuring that larger unallocated blocks are not unnecessarily split
in two.

If this is followed by a request for a block requiring size 2K, followed by two additional requests for blocks of size K, we
would see the state change as indicated in Figure 5-10.
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Figure 5-10. The state after allocating blocks of size 2K, K and K, in that order.

When a block of memory is freed, it is flagged as being unallocated. To determine the size of the freed block, it is necessary
to start at the corresponding leaf node for that block and walk up the allocation tree until a bit is found indicating that that
block is allocated. Next comes the most useful aspect of the binary-buddy allocation scheme: we can now check the sibling
of the freed block, and if it too is unallocated, we can coalesces the two into a single unallocated block. Removing an
unallocated sibling from its linked list in ®(1) time is why a doubly linked list is required. The coalesced block may also
be subsequently merged with any unallocated sibling. Thus, we have the following algorithm:
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1. Assume that the size of the deallocated block is K, and starting at that leaf node in the allocation tree, move up
the tree until a node is found that is flagging the corresponding block as being allocated. Let the depth of that
node be k; and

2. iterate j from h—kto 1, where

a. ifthe sibling of the node is also flagged as allocated, we are finished,
b. otherwise
i. pop the sibling from the j™ linked list,
ii. flag the parent as unallocated, and
iii. push the parent block onto the (j — 1)™ linked list.

In our example, if the deallocation of blocks followed the same order in which they were allocated, the first block two
deallocations would only see those blocks placed into their respective linked lists, but the third block deallocated would
see it coalesce with its sibling, and that block itself would again be coalesced with its sibling. Finally, the deallocation of
the last block allocated would see coalescence occur until the entire block of memory is indicated as being free. These are
shown in Figure 5-11. Recall that freed blocks would be placed back at the front of their respective linked lists, and in the
last two cases, the freed block is coalesced with the surrounding blocks.
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Figure 5-11. The blocks deallocated in the same order they were allocated in Figure 5-9 and Figure 5-10.

The most difficult aspect of this implementation is that of the allocation tree. You may recall that from the implementation
of a binary heap stored as an array, the root would be located at array entry 1 and the children at array entry j would be
located at entries 2j and 2j + 1, while the parent would be located at entry j + 2 using integer division, which rounds down.
In order to translate this into bits, we must do a little more work, as follows: if allocation_tree is an array of 2" -2
bytes (unsigned char) the bit corresponding to entry j inan array is inbyte 3 >> 3andinbit1 << (j & 7), we
could then perform the following operations:

Operation Source code
check the bit allocation_tree[]j >> 3] & (1 << (j & 7))
set the bit allocation_tree[j >> 3] |= (1 << (j & 7))

clear the bit allocation_tree[j >> 3] &= ~((unsigned char) (1 << (j & 7)))

Similarly, if p_block_address contained the address of a block being freed, the corresponding leaf block could be found
by calculating

((size_t) (p_block_address - p_memory_block))/block_size,
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where p_memory_block is the address of the first block in memory, and block_size what we have been referring to as
K. Issues with this scheme include

1. internal fragmentation, and
2. the run time of both allocation and deallocation is O(h).

Itis, never-the-less, a reasonable algorithm. Improvements can be made if, for example, it is known that it is only necessary
to allocate blocks of size K or 2K, one could create a forest, essentially bypassing the unnecessary task of splitting the
entire block of memory. In our scenario, if we restricted allocation to blocks of size K or 2K, our initialized system would
already appear as shown in Figure 5-12.
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Figure 5-12. Binary buddy with restricted allocation size.

Again, internal fragmentation is an issue, but the run time is now ®(1). Such characteristics make binary buddy a reasonable
choice for a real-time system.

5.2.3.3 Doug Lea’s malloc

For allocations of 256 bytes or larger, this allocator uses best fit. If a tie exists, the least-recently used block is chosen. This
is achieved by having a number of bins linking available blocks of either exact or approximate increasing size (16, 24, 32,
..., 512,576, 640, ..., 2%). Adjacent freed blocks are coalesced into larger blocks.

For allocations under 256 bytes (small allocations), if a perfect fit is not found, it uses a next fit algorithm beginning at the
location of the most recent small allocation. The motivation for this second approach requires us to take a small diversion.

It has been observed that approximately 10 % of code is executed 90 % of the time in any application. Most of the
other 90 % of the code is initialization, clean up, dealing with special cases, etc. One consequence of this is the
introduction of caching. Main memory is not as fast as a processor, so if a processor was to read the next instruction
from memory, it would have to wait many cycles doing nothing before that instruction is read (sometimes called
processor stalling). This is a consequence of processor speed increasing faster than that of main memory. One solution
was to introduce smaller amounts of faster memory called caches. Main memory is divided into, for example, 4 KiB
pages and a cache holds a fixed number of frames for these pages. When an access to main memory is made, it is
checked whether or not the page is in a frame of the cache. If so, it is immediately read; otherwise we have a page
miss, the page is loaded from main memory into a frame of the cache, and computing continues.

If processors were accessing addresses randomly scattered throughout memory, such a scheme would be useless;
however, it is the above observation that makes caches a reasonable strategy.

Now, for small allocations, these could come from some node-based data structure such as a tree. It would be much
more preferable, given the design of caches, to have all such allocations in the immediate vicinity of other allocations
so that as many as possible can fit into one page of memory.

Note: There are now multiple levels of caches, each one faster than the previous. The slowest, a level-1 cache (L1)
has the largest frames, while the faster caches (levels 2, 3 and even 4, or L2, L3 and L4) will have smaller frames.
For more information on Doug Lea’s malloc, see http://gee.cs.oswego.edu/dl/html/malloc.html. Reading this document,
you will see that we have exited the world of computer science and entered the realm of computer engineering: there are
many different requirements and constraints imposed by hardware, and there is no ultimate or ideal solution. Instead,
minimizing space and time requirements, there are others compromises that must be struck in order to most efficiently deal
with hardware design.
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One example: Be willing to allow internal fragmentation to avoid alignment issues (even though main memory is byte
addressable, 32- and 64-bit processors will read words at a time (4 or 8 bytes). For optimal performance, allocations should
be aligned with these addresses.
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Caveat: the smallest allocable block is 16 bytes in 32-bit systems and 24 bytes in 64-bit systems. Therefore, any application
making significant use of allocations significantly smaller than these sizes should consider using an alternate approach to
memory allocation.

5.2.3.4 Half fit
This is a dynamic memory allocation algorithm that is designed for real time systems. With any real time system, it is
necessary to know the worst-case execution time and this is an algorithm that allows this.

Strategy: available blocks are placed into bins storing sizes in the range 2%, ..., 2**1—1fork=0, 1, 2, ... . A bit-vector is
used to record which bins are empty. When a request comes in, a block is taken from the bin where that request is
guaranteed to fit. Thus, any request of size 9 to 16 bytes would take a block from the bin storing blocks of size 16 to 32.
No searching is performed. If the bin is empty, the next available bin is used. If necessary, the block is divided into allocated
and free parts, the free part being reinserted into the appropriate bin. During deallocation, the freed block is coalesced with
any surrounding block that is also unallocated. Unlike binary buddy, this requires the coalescing of at most three blocks.

This prevents very small fragments from being left over, but there is also the issue that for a sufficiently large request,
there may be a block which could satisfy the request, but that request is denied. For example, there may be a free block of
size 1100, but a request for a block of size 1050 would examine the bin for blocks of size 2048, ..., 4095.

See Takeshi Ogasawara, An Algorithm with Constant Execution Time for Dynamic Storage Allocation.

5.2.3.5 Two-level segregated fit

This design has two levels of bins: the higher level is in powers of two, while each of these bins in turn is divided into 2"
bins for some reasonably small value of M. Each of these bins stores available blocks of that size. If a request comes in for
a specific amount of memory, the most-significant bit indicates the overall bin, and the next M bits indicates the second-
level bin. For example, a request for

618 = 1001101010, bytes

would examine bin 9 at the higher level and there it would check bins 3, 4, 5, ..., 15 (where M = 4). Of course, if bin 9 was
empty, we would proceed to look at bins 10, 11, etc.

Where possible, freed bins are coalesced. This scheme allows the wasted memory to be reduced to a minimum while still
allowing ®(1) allocation and deallocation.

See M. Masmano et al., TLSF: a New Dynamic Memory Allocator for Real-Time Systems.

5.2.3.6 Smart fit

This algorithm uses a novel approach: divide allocations into short-lived and long-lived blocks, growing a separate heap
for each. The authors suggest that two factors can be looked at determine which category a request falls into: the size of
the request and the number of allocation events.
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There are other features which you can read about in Ramakrishna et al., Smart Dynamic Memory Allocator for Embedded
Systems.

5.2.3.7 Summary of advanced memory allocation strategies
Algorithms such as first-, next-, best- and worst-fit all have weaknesses akin to those of linked lists. Additional structures
such as those observed can often help improve the run time of memory allocators.

5.2.4 Summary of allocation strategies

We have discussed how bitmaps and linked lists can be used for allocating memory, and how one consequence of variable
sized blocks is external fragmentation. We first looked at four simple algorithms and then we also considered six more
advanced algorithms.

5.3 Case study: FreeRTOS

The real-time operating system FreeRTOS (see http://www.freertos.org/) comes with five dynamic memory allocation
schemes, existing in the files heap_1. c through heap_5. c. Before we go through these, we should consider how casting
works in C. Suppose we have a data structure:

typedef struct block_link {
struct block_link *p_next_free; /* The next free block in the list. */
size t size; /* The size of the free block. */

} block_link_t;

Suppose that each of the fields is four bytes in size. In that case, suppose we take an arbitrary pointer ptr and it is pointing
to an arbitrary location in memory, as is shown in Figure 5-13.

tr
P n bytes

A
\__ —

Figure 5-13. A pointer storing the address of a block of memory.
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If we now cast that pointer
block_link_t *p_cast_ptr = (block_link_t *) p_ptr;

then the compiler will treat this as a record of 8 bytes, as sis shown in Figure 5-14.

\ n bytes

Figure 5-14. A block of memory cast as a specific record.
Thus, if we now assign:

p_cast_ptr->p_next_free = NULL;
p_cast_ptr->size = 42;

then those values will be stored in the first eight bytes overwriting whatever was there previously, as is shown in Figure
5-15.

e ——

tr
P \ n bytes
|

00000000 | 00000023 |

Figure 5-15. The memory in Figure 5-13 with the first eight bytes overwritten with NULL and 42.

| Problem: What happens if the block of memory is less than the size of the structure?

5.3.1 Allocation only
The allocation strategy used in heap_1.c simply allocates memory from an array and never allows any form of
deallocation:

1. First it checks to determine whether or not the allocated memory should be aligned with the word size of main
memory. If so, it increases the size of n to a multiple of the word size.

2. Secondly, it ensures that the memory allocated neither exceeds the total memory that can be allocated nor causes
an overflow.

3. Finally, if configured, it sets a hook (the error handling mechanism for FreeRTOS whereby this user-defined
function is called) if the allocation failed.

While apparently trivial, it is best for numerous embedded systems where

1. all tasks are created and
2. all memory including that for queues and semaphores is allocated

when the system boots. Therefore memory deallocation will never be needed. As deallocation is unnecessary, there is no
need for an implementation of the code to handle it. One implementation is here:

void *pvPortMalloc( size_t n ) {
void *p_block = NULL;

#if portBYTE_ALIGNMENT != 1
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if ( n & portBYTE_ALIGNMENT MASK ) {
n += ( portBYTE_ALIGNMENT - ( n & portBYTE_ALIGNMENT MASK ) );

}
ttendif

vTaskSuspendAll(); {
if ( ( ( xNextFreeByte + n ) < configTOTAL_HEAP_SIZE ) &&
( ( xNextFreeByte + n ) > xNextFreeByte ) ) {
p_block = &( xHeap.ucHeap[ xNextFreeByte ] );
XNextFreeByte += n;

}
} xTaskResumeAll();

#if ( configUSE_MALLOC_FAILED HOOK == 1 )
if ( p_block == NULL ) {
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();

}
f#tendif

return p_block;

}

5.3.2 Best fit without coalescence

This simply allocates memory using a simple best fit strategy where it maintains a list of unallocated blocks sorted in the
order of the size. When a block is deallocated, it is simply placed back into the list. No attempt is made to coalesce adjacent
free blocks. When a block is allocated, the linked list structure is left untouched.

typedef struct block_link {
struct block_link *p_next_free; /* The next free block in the list. */
size t size; /* The size of the free block. */

} block_link_t;

The code is reasonably straight-forward; however we will look at how the programmers used a macro to avoid an
unnecessary function call while still maintaining functional independence and coherence. The names of fields, parameters
and local variables have been simplified for clarity.

#define prvInsertBlockIntoFreeList( p_block ) {
p_block_link_t *p_itr;
size_t s;
s = p_block->size;
for ( p_itr = &xStart; p_itr->p _next_free->size < s; p_itr = p_itr->p_next_free ) {

/* Just iterate to the correct position. */
}

p_block->p_next_free = p_itr ->p_next_free;
p_itr->p_next_free = p_block;

P i i G

}

In C++, this could be avoided by using inline functions. Visually, the blocks are stored as is shown in Figure 5-16. The list
is actually a linked list with sentinels where the first (xStart) and last (xEnd) nodes are dummy nodes with the first
having a size set to 0 and the last having a size set to the size of allocated memory. Thus, any allocated block will always
be larger than the first and less than or equal to the last in size.

xStart xEnd
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Figure 5-16. Storage of blocks in heap_2.c in FreeRTOS.
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Such a scheme can be used if most of the blocks dynamically allocated and deallocated after system initialization falls
within a fixed number of block sizes. If blocks of memory for data structures such as queues may have arbitrary size, this
scheme will quickly result in significant amount of fragmentation.

5.3.3 Standard library malloc and free

The third implementation creates a thread safe wrapper of the standard library implementations of malloc and free.

void *pvPortMalloc( size_t n ) {
void *p_block;

vTaskSuspendAll(); {
p_block = malloc( n );
traceMALLOC( p_block, n );
} xTaskResumeAll();

#if ( configUSE_MALLOC_FAILED HOOK == 1 )
if ( p_block == NULL ) {
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();

}
ftendif

return p_block;

}

void vPortFree( void *p_block ) {
if ( p_block != NULL ) {
vTaskSuspendAll(); {
free( pv );
traceFREE( pv, © );
} xTaskResumeAll();

}

5.3.4 First fit with coalescence

In this implementation, we use a first-fit model, but also, the unallocated blocks are stored in address order. Consequently,
at the same time a block is being deallocated, it can be checked with its neighbors to determine whether or not it can be
coalesced. The schemes are similar to those already described, so we will focus on coalescence. Consider the memory
allocated in Figure 5-17. Here, those blocks marked in red are allocated; those in black are unallocated. A linked list joins
those that are unallocated and each block (allocated or unallocated) has a header with the size of the block and a pointer,
which is only used if the block is unallocated.

xStart xEnd

el S e T wly 161-—561-_L1—aﬁaNULL

Figure 5-17. First-fit with coalescence.
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When an allocated block is freed, one would walk through the linked list until you have pointers to both the unallocated
block immediately preceding the freed block in memory, and the one immediately following the freed block:

1. Ifall three are contiguous, they will be joined into a single block (so if the block of size 40 is unallocated, it would
be merged with the two surrounding blocks forming one of size 16 + 40 + 24 = 80).

2. Ifthe previous block is contiguous with the deallocated block, those two would be merged (so if the second block
of size 16 is deallocated, it would be merged with the block of size 24).

3. If the next block is contiguous with the deallocated block, the would be merged (not shown).

4. Otherwise, the deallocated block becomes a link in the linked list (so if the block of size 56 is deallocated, it
becomes another node in the linked list).

The routine for doing the coalescence is quite straight-forward and readable:

static void prvInsertBlockIntoFreeList( block_link_t *p_block ) {
block_link_t *p_itr;
uint8_t *p_previous;

for( p_itr = &xStart; p_itr->p _next_free < p_block; p_itr = p_itr->p next_free ) {
// Find right block
}

p_previous = (uint8_t *) p_itr;

// Test if the block can be merged with the previous block
// - increase the size of the previous block
// - treat the previous block as if it is the one being freed

if ( (p_previous + p_itr->size) == (uint8_t *) p_block ) {
p_itr->size += p_block->size;
p_block = p_itr;

}

p_previous = (uint8_t *) p_block;

// Test if the block can be merged with the following block

// - if we're at the end, just point to the trailing sentinel

// - increase the size of the block being freed

// - have block being freed point to the block after the following block

if ( (p_previous + p_block->size) == (uint8_t *)( p_itr->p_next_free ) ) {
if ( p_itr->p_next_free != pxEnd ) {
p_block->size += p_itr->p_next_free->size;
p_block->p_next_free = p_itr->p_next_free->p_next_free;
} else {
p_block->p_next_free = pxEnd;
}
} else {
p_block->p_next_free = p_itr->p_next_free;
}

// Update the next pointer of the block prior to the block
// being freed, but only if we are not filling a gap
if ( p_itr != p_block ) {

p_itr->p_next_free = p_block;

}
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The source code had (uint8_t *) p_itr->p_next_free, so, very quickly, is this equivalent to:
1. casting p_itr as a pointer to an byte and then accessing the field p_next_free, or
2. accessing the field p_next_free and casting it as a pointer to a byte?
Thatis, isit ((uint8_t *) p_itr)->p_next_free or (uint8_ t *)( p_itr->p_next_free )?

Almost no thought will make it clear that the first is absurd in this case—uint8_t is a primitive data type and not a
structure, it has no fields—but what if it was a structure? The notation

(uint8_t *)( p_itr->p_next_free )
while, arguably unnecessary for an experienced programmer, is still easier to immediately recognize without
additional thought.

5.3.5 First fit with coalescence over multiple regions

This final version is identical to that described in the previous section, only it does not require the block of available
memory to be one large contiguous block. The available memory can itself be separated throughout the memory of the
system.

5.3.6 Summary of the case study

In summary, FreeRTOS includes five possible schemes for dynamic memory allocation. Only the first, the most trivial, is
real-time while the other tasks are O(n) in the number of blocks that have been deallocated.

5.4 Other features: clearing and reallocation
In addition to malloc, there are two other related functions: calloc (clear allocate) and realloc (reallocation).

By default, asking for memory through malloc will have the operating system find an appropriate block of memory, mark
it as allocated, and return a pointer to the first address of that block. The contents of that block, however, are not modified.
It contains whatever data may have previously been in that memory, which may or may not be meaningful or bogus data.
The call calloc sets all the bits in that block to zero.

Suppose you allocated an array of size n, but then realize later you require an array of size n + m. Normally, this would
require you to create a new array, copy the information over, and then destroy the old array. However, what if there is
memory available immediately after the memory currently allocated? Could not the operating system just expand the
block of memory that has been allocated? The realloc command attempts to do this. If it is successful, the allocated
memory is expanded. If that memory is not available, the operating system finds a sufficiently large block of memory and
copies over the contents of the original array into that larger block (for example, using memcpy).

132



#include <stdio.h>
#tinclude <stdlib.h>

int main( void ) {
int i;

int *p_data = (int *)malloc( 1@*sizeof( int ) );
printf( "The address of 'p_data' is %p\n", p_data );

for (1 =0; 1< 20; ++1i ) printf( "%d ", p_data[i] );
printf( "\n" );

for (i =0; 1< 10; ++i ) p_data[i] = i*i;

p_data = (int *)realloc( p_data, 20*sizeof( int ) );
printf( "The address of 'p_data' is %p\n", p_data );

p_data = (int *)realloc( p_data, 1000000*sizeof( int ) );
printf( "The address of 'p_data' is %p\n", p_data );

for (1 =0; 1< 20; ++i ) printf( "%d ", p_data[i] );
printf( "\n" );

free( p_data );

return 0;

}
The output is

$ gcc example.c

$ ./a.out

The address of 'p_data' is ©@xacaa@le
0O000O0OOOOOO

The address of 'p_data' is ©xacaa@l®

90149 16 25 36 49 64 81 135121 © 0 © 0 © 0 © @ O
The address of 'p_data' is Ox2b696c62a010

90149 16 25 36 49 64 81 135121 © 0 © 0 © 0 © 0 O

$

The first ten entries happen to be zero, but when realloc is called and the block of memory is expanded, it happens that the
next entry is non-zero: 00000000 00000010 00001111 11010001

5.4.1 Reallocation in C++ and the move constructor and move assignment

operator

Can you call realloc in C++? Generally, no: recall that when memory is allocated, it is also necessary to call any
constructors. As objects may have pointers to themselves, it may not be possible to simply copy the memory over. The
vector class in C++ will allocate new memory and move the objects over; indeed, in C++-11, there is a hew move
constructor and a new move assignment operator—two functions that may assume that the previous objects are being
destroyed anyway. A copy constructor may have to make a deep copy of larger data structures while the move constructor
may be much easier. For example:

The copy constructor for a binary search tree would have to make a complete copy of the entire tree—an ®(n) operation.
The move constructor, however, would only have to copy over the address of the root and a few other variables—an ©(1)
operation.
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5.5 Summary of dynamic memory allocation

The previous topic was on memory allocation. We discussed static allocation—memory that can be allocated by the
processor either as (1) global variables or static local or member variables allocated in a region adjacent to the instructions;
or (2) as local variables allocated relative to a frame on a call stack. Dynamic memory allocation is more complex and has
issues associated with it that are not applicable to static memory allocation.

We have looked at a number of memory allocation algorithms spanning a wide gambit of ideas and approaches. Numerous
data structures are used to try to efficiently allow the allocation of memory in the shortest time and with minimal internal
and external fragmentation.

Note that it is not necessary to have an operating system in order to perform dynamic memory allocation. Recall that a
microprocessor need have only a single executing task.
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Problem set
5.1 What is the minimal interface required for a dynamic memory allocator ADT?

5.2 Recall that the difference between O(n) and ®(n) is that the first describes a situation in which the worst-case run time
is linear, but the system may end early, and the second describes a situation where the run-time is always linear. For each
of the following, determine which is the most appropriate Landau symbol to use:

find the maximum entry in an array,

find the average value of the entries in an array,

find if an array contains a specific entry,

find if an array contains an entry in a given range, and

determine if the entries of an array are monotonically increasing.

aprwbdE

5.3 What are the run times of the following algorithms:

first-fit,
best-fit,
worst-fit, and
next fit.

N o ok

5.4 Explain why it may be prudent to have separate memory allocators in an embedded system. For example, one providing
fixed-sized blocks of memory

5.5 Can the run-time of a memory allocation scheme ever be worse than ®(n) where n is the number of unallocated blocks?

5.6 The dynamic memory heap grows normally from one end of an available block of memory. How could you use this
larger block of memory to have two separate allocation schemes?

5.7 In the previous question, we considered growing two different heaps. For one, you may have a more simple memory
allocation scheme running in ®(1) time, while the other is O(n) in the number of unallocated blocks. For example, one
may allow the allocation of arbitrarily sized blocks, while the other allocates only fixed-sized blocks. What could be done
if no more memory is available?

5.8 List some of the advantages of using an automatic memory allocation scheme (using garbage collection) as opposed to
a manual memory allocation scheme (using explicit calls to allocate and deallocate memory).

5.9 A reference counting scheme may be appropriate for a real-time system, as incrementing or decrementing the number
of pointers that store the address of a block of memory can be done in ®(1) time. Unfortunately, this may also requires the
user to explicitly set some pointers to NULL once they are no longer required (such as in a cyclic list). Can this still be
considered automatic memory management?

5.10 What are some constraints on the memory allocation requirements of a real-time system if that system is to use some
form of reference counting scheme?

5.11 What is the most significant issue of a mark-and-sweep based algorithm for garbage collection with respect to real-
time systems? If a mark-and-sweep algorithm was to be used, what additional requirement would you have to have on any
task that is associated with hard deadlines?
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5.12 In Java, you can only access an entry in an array by using the indexing operator; for example, you can only ever use
array[9] to access the 10™ entry in the array. In C++, you could do something more interesting such as

Java C

int *p_itr = p_array; // the variable will iterate
for (int i =0; 1 < 10; ++i ) { // through the array
p_array[i] = ©;
} for (1 =0; i< 10; ++i ) {
*p_itr++ = 0;

}

What are some pitfalls that Java can avoid by requiring the user to always access array entries using an array index (with
respect to garbage collection)?

5.13 Explain how you would implement a realloc function in the half-fit memory allocation scheme.
5.14 Explain how you would implement a realloc function in the binary buddy memory allocation scheme.
5.15 Starting with an initial contiguous block of 64 KiB, perform the memory allocation:

allocate 28 KiB,
allocate 10 KiB,
allocate 15 KiB,
deallocate 10 KiB,
allocate 8 KiB,
allocate 3 KiB,
deallocate 8 KiB,
allocate 7 KiB,

. deallocate 28 KiB, and
10. allocate 20 KiB,

© NGk WNE

using first-, next-, best- and worst-fit algorithms, both with coalescing of adjacent blocks and non-coalescence of adjacent
blocks. If an algorithm cannot allocate a given block, attempt to allocate that block immediately following any subsequent
deallocations.

Note that with next fit, if a block is broken into two (the first half allocated, the second half not), the next request for
memory inspects the second half first.
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5.16 The best-fit algorithm in FreeRTOS uses a sorted list, but that sorted list uses a linear ordering. Create a data structure
that casts a node as one in a balanced binary search tree. Note that you have a choice between red-black trees and AVL
trees where with

1. red-black trees, you only require one additional bit to indicate the color of the node (red or black); and
2. AVL trees, you must store the heights of the left and right sub-trees.

The latter normally requires a field that can hold numbers as large as 2 In(n) where n is the maximum number of nodes in
the tree (this overestimates the maximum height of an AVL tree with n nodes). Therefore, four bits could be used to store
the maximum height of an AVL tree with up to n = 1808 nodes. Better yet, because the difference in height is really all that
matters, instead, we could come up with a different scheme:

1. 0=00; indicates the node is balanced,
2. 1=01; indicates the node is right-heavy, and
3. 2 =10 indicates the node is left-heavy.

Thus, if the height of the left sub-tree was increased by one as a result of an insertion:

1. if the balance was 0, the balance becomes 2,
2. if the balance was 1, the balance becomes 0, and
3. if the balance was 2, the tree is now AVL unbalanced.

Thus, an AVL tree can be represented with only two additional bits (as opposed to storing the height of each node).

5.17 The worst-fit algorithm requires a heap. A leftist heap is a node-based data structure that requires references to both
children; however, both finding a node within any heap with n nodes is usually an O(n) operation. If we are implementing
worst fit without coalescence, this is not an issue: we are only putting nodes into the tree and popping the top. If we want
to coalesce adjacent memory blocks when one is deallocated, however, we have a problem: we must remove the nodes
from the heap. What additional information is required in the heap for this purpose?

How many addresses does your scheme require for each entry in the heap?
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6 Threads and tasks

Previously, when you have created an executable, the function main( void ) begins running and it may call additional
functions which call other functions, and so on; however, such an execution path is serial: at any one time, only one
instruction is being executed by the processor. This makes, for example, the run-time analysis of programs relatively easy,
as we are reduced to solving a recurrence relation, most of which fall into a small collection that can be solved by the
master theorem. However, this leads to a number of issues.

With respect to the non-functional requirements of real-time systems, tasks allow a system to be scalable and ensures
reasonable performance by allowing each task to focus on one purpose, with scheduling ensuring that the appropriate task
runs at the appropriate time. At the same time, creating a proper framework for organizing and managing tasks ensures
scalability.

Thus, we will look at how

you would implement an embedded system using a single sequence of execution,
threads are created in various systems and what information is required,

threads may be used to solve problems,

how we can track the relationship between threads, and

the volatile keyword in C.
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We start with the weaknesses of having just a single sequence of execution.

6.1 Weaknesses in single threads

Consider the following example which tries to describe how an embedded system could be implemented with a single
thread:

int main( void ) {
int i, j;
queue ql, qg2;

queue_init( &gl );
queue_init( &q2 );
init();

for (1=20; 1; ++i ) {
if ( sensor_1_ready() ) {
queue_push( &ql, get_sensor_value_1() );
¥

for ((j =0; j<10; ++j ) {
if ( sensor_2_ready() ) {
queue_push( &g2, get_sensor_value_2() );
break;

¥
emergency_flag = process_data( ql, q2 );

if ( emergency_flag ) {
critical_response();

}

if ( communications_ready() ) {
while ( !queue_empty( &gl ) ) {
send( queue_front( &ql ) );
queue_pop( &ql );

}

if ( (i &127) == 0 ) {
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check_system_stability();

}

Here, two sensors are being read whenever they are ready, a response occurs if an issue arises from the processing of that
data, the data is sent to some destination if the communications port is ready, and every-so-often, check that the system is
still stable (once every 128 cycles), perhaps taking steps to rectify the situation.

There are numerous weaknesses in this arrangement:

1. The system check is of low priority, but what happens if the system check occurs just when an issue that requires
an immediate response occurs?

2. Suppose the system check usually takes only 20 ps, but

3. It seems also that the communications system is not really of high priority, so sending a packet containing data
may result in, again, the system not responding to a more critical situation.

Now, this is with only two sensors and one response: what happens if there are multiple sensors and multiple possible
responses based on input from those sensors? We cannot continue to easily make the system both responsive and more
complex. Instead, we will try to break the problem down into individual tasks and to then execute each task separately.
There are numerous independent tasks that are going on, including:

getting data from the sensors,

determining if there is a critical situation requiring an immediate response,
sending data off site, and

periodically checking system stability.
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Let’s discuss how to do this.

6.2 Creating threads and tasks
Remember that main(...) is nothing more than a function. When we start executing a thread, it is necessary start executing
something, but what?

The easiest way to start a new task is to say: run this function, but run it as a new task.

The general mechanism of creating multiple threads is to pass an initialization function a pointer or reference to another
function that is to be executed not as a function call, but as a second parallel thread of computation or task. The term thread
is appropriate, as each thread is, in itself, still a sequential sequence of instructions being executed.

The terms threads and tasks will be used interchangeably in this course, as such independent sequences of execution
are called

1. “threads” in operating systems such as Linux, the pthread.h library, and in Java, but
2. “tasks” in the Keil RTX RTOS and other embedded systems.

The name is related to the focus of application: from an operating systems point-of-view, the focus is on independent
execution, while in embedded systems, the focus is on achieving separate goals. We will use both terms.

Thus,

a task is a sequence of instructions that may be executed independent of other such tasks or threads on
One Or More Processors.

Separate threads will therefore have
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1. separate states of the processor (registers),
2. some means of differentiating them (thread identifiers), and
3. additional information.

If two threads or tasks are being executed on the same processor, we will require some mechanism of choosing (that is,
scheduling) which is to be executing at any one time. This is the subject of the next topic. Now we will focus on the
purpose and generation and use of tasks and threads. At this point, we will now look at the generation of

threads in POSIX,

threads in Java,

tasks in the Keil RTX RTOS, and
threads in the CMSIS-RTOS RTX.

>R

Following this, we will see applications of multiple tasks and threads.

6.2.1 Threads in POSIX
In POSIX, the signature for the command for generating a new thread is

pthread_create( pthread_t *p_thread,
const pthread_attr_t *p_attributes,
void *(*start_routine)( void * ),
void *p_arguments );

where
1. thread isa pointer to a pthread identifier and identifier will be assigned a value when the thread is created,
2. the attributes may specify various characteristics about the thread, but this can be NULL to use the default values,
3. the start routine is any function that takes a single untyped pointer that returns an untyped pointer, and
4. the argument that is passed to the function is passed as the fourth argument.

Any arguments to the thread that is to begin executing as a separate thread must therefore be reinterpreted as a pointer,
usually to a structure of some sorts. When the thread exits, it may want to return information to the thread that created it.
As an example, we may have two arguments and two return values. In this case, we would define structures such as:

typedef struct {
typename paraml;
typename param2;
} parameters_t;

typedef struct {
typename retl;
typename ret2;
} return_t;

Next, to create the thread, we create an instance of our parameters (making sure that they remain in scope for the full
duration of the existence of the thread being created).

parameters_t args;

some_value;
another_value;

args.paraml
args.param2

pthread_t thread_id; // Will be assigned in pthread_create

pthread_create( &thread_id, NULL, function_name, &args );
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// This function and the created function are now running in parallel

Neither thread is guaranteed to be the one that continues running once pthread_create returns.
The function that is to be run as a separate thread must be expecting a pointer to its arguments:

void *function_name( void *p_void_arg ) {
// The argument is an arbitrary pointer (a "void pointer")
// - cast it to a pointer to an instance of 'parameters_t'
parameters_t *p_args = (parameters_t *)p_void_arg;
// Now you can use p_args->paraml and p_args->param2
while (1) {

// Infinite loop

}
}

If the thread is to exit, we can call pthread_exit(..):
void *function_name( void *p_void_arg ) {
// the argument is an arbitrary pointer (a "void pointer")
// - cast it to a pointer to an instance of 'parameters_t'
parameters_t *p_args = (parameters_t *)p_void_arg;

// Now you can use p_args->paraml and p_args->param2

// If you want to exit, you can call 'pthread_exit(...)'
// - you must point to something that exists outside this thread

return_t* p_ret = (return_t *) malloc( sizeof( return_t ) ); // See footnote 13

p_ret->retl = value;
p_ret->ret2 = value;

pthread_exit( p_ret );
}

local variable as an argument. The second thread can then modify the value of that local variable.

One possibility for returning a value is for the creating thread to have a local variable and then pass the address of that

If the thread exits, the calling thread must, at some point, join with it:
pthread_create( &thread_id, NULL, function_name, &args );
// This function and the created function are now running in parallel
void *p_void_ret;
pthread_join( thread_id, &p_void_ret );
return_t *p_ret = (return_t *)p_void ret;

// You can now use ret->retl and ret->ret2

13 Under best practices, it is undesirable—or forbidden—to allocate memory dynamically at any time after task
initialization. Ideally, the memory for the return value should have been allocated at the time the task was initialized.
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The pthread_join(...) will not return until after pthread_exit(...) is called by the created thread. Consequently, if
the created thread never exits, the function pthread_join(...) will never return.

As a short-cut, if a thread has no return values, it need not call pthread_exit(..). Instead, it simply returns NULL
and the second argument of pthread_join(...) isNULL

6.2.2 Threads in Java

We will take a minute to look at how parallel threads can be run in Java. In C, for a file to be convertible into an executable,
it must have a int main(..) function. In Java, each file holds exactly one class and the name of the file must be the name
of the class. For a class to be executable, it must have a public static void main(..) method.

file_name.c ClassName.java
int main( int argc, char *argv[] ) { public class Class_name {
// Some code public static void main( String[] args ) {
// Some code
return EXIT_SUCCESS; }
} }

In C, any function can be executed as a thread. In Java, however, only classes that have a public void run() method
can be executed and it is that method that is run.

file_name.c ClassName. java

int run( void *void_arg ) { public class ClassName implements Runnable {
arg_t *arg = (arg_t *)void_arg; ClassName(..) {
// Some code // Constructor

} }

public void run() {
// Some code

}
}
Somewhere else: Somewhere else:
pthread_t t; Thread t = new Thread( new ClassName(..) );
arg_t ang = .. t.start();

pthread_create( &t, NULL, run, &args );

For the new thread to execute, the thread class start () function looks in the class for the run() function and calls it.
Now, it could simply always look for the run() function each time a new thread is created, but this could be quite
problematic: a newbie programmer may come along and say “Hey, this is a silly function name. Let’s change it to public
void start().” The .java file would still compile into a .class file, and it would only be later on that the error
would be caught.

Note that in C, the arguments are passed through an additional argument to pthread_create, while in Java, any
arguments would be passed to the constructor of the class. Difference instances of the ClassName class could be passed
different parameters in the constructor.

Now, to execute a class as a new thread requires the existence only one function; however, suppose a class, such as a graph
data structure, has a large number of members. In this case, each time, you’d have to check whether or not all the methods
were implemented, and this could cause problems.
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Java’s solution is to introduce interfaces. All an interface is a collection of signatures, and if you state that a class
implements that interface, it must have implementations of all the signatures; if it doesn’t, the compilation fails. Now, any
class needing that interface need only check if the class has that interface. The class could not compile if there was a
missing implementation or a changed name.

Note that one of the major design decisions around Java was to create a version of C++ that improved on many of the
error-prone aspects of C++. For example: they removed pointers; you could no longer use public: and private: labels,
instead, visibility each method had to be identified individually; it was a truly object-oriented programming language
where all classes are derived from an ultimate Object class using only single inheritance, etc. The introduction of
interfaces was only one more of these adjustments to reduce errors in programming and development.

Note the difference between the object-oriented design and the procedural design:

Procedural Object-oriented
The function pthread_create is called A Thread object is created

A reference to the thread is created as a thread identifier The object created is the reference to the thread
passed as an argument

The characteristics of the thread are specified in a pointer  The characteristics of the thread are additional arguments

to a structure to the thread constructor

A function pointer is passed as an argument An instance of a class implementing the Runnable
interface is passed as an argument to the thread
constructor

The arguments to the function are passed as an untyped The arguments to the thread being created are passed in
pointer the constructor of the runnable class
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6.2.3 Tasks in the Keil RTX RTOS
In the Keil RTX, task generation is similar to that of POSIX pthread library, but there are four options:

1. The task does not take arguments, such as
#include <rtl.h>

int main( void ) {
OS_TID task_id;

task_id = os_tsk_create( task_name, priority );

if ( task_id == 0 ) {
// task was not created

}

// Continue executing

}

__task void task_name( void ) {
// Executing...
}

2. The task takes arguments,

#tinclude <rtl.h>

int main( void ) {
0S_TID task_id;
argument_t *p_arguments;

// Initialize p_arguments;
task_id = os_tsk_create_ex( task_name, priority, p_arguments );

if ( task_id == 0 ) {
// task was not created

}

// Continue executing

}

__task void task_name( void *p_void_arg ) {
// Executing...
}

3. The task does not take any arguments, but the call task passes a stack defined in user space, and
4. The task takes arguments, and the calling task passes a stack defined in user space.

Recall that each thread will require its own function call stack. In the first two instances, the operating system provides
each of the tasks with their own call stack. In the latter two, the user can choose a different sized call stack and pass it in.
We will discuss the difference between user space and kernel space later in the course.

We will discuss priority at a future point in time when it comes to scheduling tasks where one may be more important
than another.
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6.2.4 Threads in the CMSIS-RTOS RTX

There are multiple operating systems for the same hardware, and there is a more primitive operating system for all Cortex-
M microcontroller called the CMSIS-RTOS RTX. Like POSIX, CMSIS is a common interface to interacting with any Cortex-
M microcontroller and it stands for Cortex Microcontroller Software Interface Standard. (Recall that POSIX stands for
Portable Operating System Interface for Unix). The CMSIS-RTOS RTX does not have all the features of the Keil RTX and
it does not have the concept of a task and the scheduler has many fewer priorities.

// Thread creation in the CMSIS-RTOS RTX
#include "cmsis_os.h"

void thread_name( void const *p_arguments );
osThreadDef( thread_name, osPriorityNormal, 1, 0 );
void main( void ) {
osThreadId thread_id;
thread_id = osThreadCreate( osThread(thread_name), NULL);
if ( thread_id == NULL ) {
// thread was not created
}
// Executing...

osThreadTerminate( thread_id );

}

// Thread creation in the Keil RTX
#include <rtl.h>

int main( void ) {
OS_TID tsk_id;

tsk_id = os_tsk_create_ex( task_name, priority, p_arguments );
// Continue executing

}

__task void task2( void ) {

}

6.2.5 Summary of thread and task creation

We have looked at some aspects of thread and task creation and thread interaction. Next, we will look at the purposes
behind threads. We will learn about priorities later.
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6.3 Applications of threads and tasks

We have previously discussed the concepts of the procedural programming paradigm. One requirement of this paradigm
is that a function (or procedure) performs exactly one well defined task with defined input and a defined transformation
on that input. When you consider all the different goals of the initial example we gave of an embedded system implemented
as a single loop, this strongly suggests we are doing something wrong here, too.

A thread or tasks preforms a sequence of instructions that may be performed, for the most part, independent of other
sequences of instructions achieving a well-defined goal. Threads or tasks may, however, still share information throughout
execution.

Threads and tasks can be used to

1. solve different problems posed by the system,
2. break down a larger problem into smaller problems, and
3. specifically, solving a divide-and-conquer algorithm.

The benefit of breaking problems into independent threads and tasks is that they can be executed, at least potentially, in
parallel. Such parallelism may be achieved through either:

1. having multiple cores or dependent processors,
2. having independent processors possibly remote from each other, and
3. artificially through task scheduling.

For the balance of this talk, we will introduce the first two, while in the next topic, we will discuss scheduling.

6.3.1 Parallel execution

Consider a repetition loop where each iteration is independent of the others. In this case, such a program could be run in
parallel: in the extreme case, each iteration could be run on a separate processor, and the execution time would be reduced
to the execution time of one statement. In most real-time applications, there is less of an emphasis on parallel computation,
but it is useful to consider at least a few results.

Suppose that a particular task can be executed in 5 s, and this contains a loop that executes a significant number of times
in such a way that it can be parallelized. If the initialization and finalization code requires 400 ms and the code within the

5
loop is negligible, the most such a block of code could be sped up is by a factor of a ~12.5. It is not possible to do

better than this, and it will not be possible to achieve this limit, either. However, if you had two processors, the time
required would be 400 ms for the initialization and finalization, and the remaining instructions normally taking 4.6 s would
be performed on two processors, thereby taking only 2.3 s, for a total of 2.7 s, or a speed up of 46 %.

Amdahl’s law gives the theoretical maximum improvement of a system if you improve only one component of it. If you
apply this to parallel computation, you are only able to improve that component that is parallelizable. The application of
this law, in this case, is that if you use n processors and B is the proportion of time that is strictly serial, so the time to
execute with n processors is:

T(n):T(l)(B+%(1— B)j

. 1
In our example here, B = % =0.08 and T(2)=T (1)(8 + H(l_ B)j =2.7 . If we continue to double the number of

processors, we get the following run times:
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Processors Run time

1 5

2 2.7

4 1.55

8 0.975
16 0.6875
32 0.54375

64 0.471875
128 0.4359375

Note the diminishing returns: as you throw more and more processors at the problem, the improvement becomes
negligible. In the next topic, we will see how parallel computation can significantly improve the run time of a divide-and-
conquer algorithm.

6.3.2 Divide-and-conquer algorithms
In your algorithms and data structures course, you have already seen a number of divide-and-conquer algorithms, possibly
including:

1. binary search,
2. quicksort, and
3. merge sort.

There are numerous other applications of this type of algorithm, including:

1. fast integer multiplication,
2. fast matrix-matrix multiplication, and
3. fast Fourier transform.

All of these are recursive functions; that is, the function calls itself. Let’s look at merge sort as implemented in C.

Note that the divide-and-conquer strategy can often be applied even if it does not benefit the overall run-time.
Consider, for example, a matrix-vector multiplication. If

A AL A and v — Vi ’
Az,1 Az,z v,
then we may reduce the multiplication of an n x n matrix and an n-dimensional vector to four multiplications of

n/2 x n/2 matrix and an n/2-dimensional vector. Except where A has a very special shape (such as is the case with the
discrete Fourier transform allowing us to find an n In(n) algorithm), the run time will always be ®(n?).

First, it is wasteful to use such algorithms if the size of the list being sorted is small, say around 30. The overhead of the
additional function calls is too large; thus we use a fast in-place sorting algorithm, such as insertion sort, which sorts the
entries of the array from index a to index b — 1.
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void insertion_sort( double *p_array, size_t a, size_t b ) {
size_t j, k;
bool found = false;
double tmp;

for ( k
tmp

a+1; k< b; ++k ) {
p_array[k];

for ( j = k; !found & j > a; --j ) {
if ( p_array[]j - 1] > tmp ) {
p_array[j] = p_array[j - 1];
} else {
found = true;

}
}

p_array[j] = tmp;

}

We use insertion sort because its runtime is ®(n + d) where d is the number of inversions in the list and where d =
O(n?). In the worst case, insertion sort is ®(n?), but if the number of inversions is small, it will be a very fast algorithm.

Now we can continue implementing merge sort. Recall that in merge sort,

1. if the list is under a certain size, call insertion sort;

2. otherwise,
a. divide the list in two,
b. call merge sort recursively on both halves, and
c. merge the resulting lists.

Having taken our previous advice, we note that the merging process is essentially distinct from the algorithm, so we write
a separate function.

#include <assert.h>
// Merge the entries from a to b - 1 and fromb toc - 1
void merge( double *p_array, size_t a, size_t b, size_t ¢ ) {

assert( a <= b & b <= c );

size_ ti =0, j=a, k =b;
double *p_sorted_array = (double *) malloc( (c - a)*sizeof( double ) );

while ( j < b & k < c ) {
if (p_array[j] <= p_array[k] ) {
p_sorted_array[i] = p_array[j];
++];
} else {
p_sorted_array[i] = p_array[k];
++k;

}

++1;

}

for ( ; j < b; ++i, ++j ) {
p_sorted_array[i] = p_array[j];
}

for ( ; k < ¢c; ++i, ++k ) {
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p_sorted_array[i] = p_array[k];

}

for (i =0, k =a; k<c; ++i, ++k ) {
p_array[k] p_sorted_array[i];

free( p_sorted_array );

Now we can implement merge sort:

void merge_sort( double *p_array, size t a, size t c ) {
assert( a <= ¢ );

if ( ¢ - a < USE_INSERTION_SORT ) {
insertion_sort( array, a, c );
return;

}
size_t b =a + (c - a)/2;

merge_sort( p_array, a, b );
merge_sort( p_array, b, c );
merge( p_array, a, b, c );

}

Note: Why do we use
size t b =a+ (c - a)/2;
instead of
size_t b

(a + ¢)/2;

This is actually more relevant to mechatronics students than the average programmer: the sum (a + b) may overflow,
S0 you may get some interesting results. For example, suppose your type was only eight bits and you call merge sort:
1. withmerge_sort( array, 0, 180 ), the mid-point b is (0 + 180)/2 = 180/2 = 90, but
2. thesecond recursive call ismerge_sort( array, 90, 180 ) and 90 + 180 =270 > 256, so the arithmetic-
logic unit would calculate the mid-point b to be 7.

Now, let us use parallel routines to perform each recursive call separately.

For our merge sort routine, we must pass a pointer to the array and the initial and one-past-the-final positions. Thus, we
must define a structure that holds all of these arguments:

typedef struct {
double *p_array;
size t a;
size t c;

} interval_t;

Now, a user doesn’t want or care that we are using a parallel algorithm, so we will instead provide an interface for the user
that is more natural. Also, we do not have to create a separate thread at this point, because there is only one task being
performed:

void merge_sort( double *p_array, size t n ) {
interval_t arg;
arg.p_array = p_array;
arg.a = 0;
arg.c = n;
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merge_sort_internal( &arg );

}

Our internal merge sort must first recast our argument as a pointer to our argument structure. Following that, we calculate
the mid-point and then prepare the arguments for our recursive calls.

void *merge_sort_interal( void *p_void_arg ) {
// the argument is an arbitrary pointer (a "void pointer")
// - cast it to a pointer to an instance of 'interval_t'

interval_t *p_arg = (interval_t *)p_void_arg;

if ( ( p_arg->c - p_arg->a ) < USE_INSERTION_SORT ) {
insertion_sort( p_arg->array, p_arg->a, p_arg->c );
} else {
size_t b = p_arg->a + (p_arg->c - p_arg->a)/2;

interval_t argl, arg2;
argl.p_array = p_arg->p_array;

argl.a = p_arg->a;
argl.c b;

arg2.p_array = p_arg->p_array;
arg2.a = b;
arg2.c = p_arg->c;

pthread_t other_thread;
// Create a thread to sort the second half
pthread_create( &other_thread, NULL, merge_sort_interal, &arg2 );

merge_sort_interal( &argl );

// Wait for them to finish
pthread_join( other_thread, NULL );

merge( p_arg->p_array, p_arg->a, b, p_arg->c );

}

return NULL;
}

Note that we are using a recursive algorithm to demonstrate threads; however, in general, recursive algorithms should
never be used in an embedded system. This is echoed in Rule 4 of the JpL coding standard:
“There shall be no direct or indirect use of recursive function calls.”
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The execution is shown in Figure 6-1. Depending on the various run times, there could be up to five threads running in
parallel.

merge_sort
n =21
internal
a =0
c =21
v A 4
internal internal
a =9 a =10
c =10 c =21
v A 4 A 4
internal internal internal internal
a =20 a=>5 a =10 a =15
c=25 c =10 c = 15 c =21
} }
insertion_sort insertion_sort insertion_sort internal internal
a =29 a=>5 a = 10 a =15 a = 18
c=5 c+=10 c =15 c =18 c =21
} !
merge i insertion_sort insertion_sort
a=2@ a =15 a =18
b =5 c = 18 c =21
c:le S (S, 2
v
i merge
5 a =15
b = 18
l c*—21
merge
a = 10
b = 15
sz:l
v
merge
a =29
b = 10
c =21

Figure 6-1. Using merge sort to sort an array of size 21 in parallel.

In your algorithms and data structures course, you saw the run time of merge sort was ®(n In(n)); however, if the separate
threads are running on separate cores, the run time is now ®(n).
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6.3.3 Independent versus dependent tasks

The this section, we have looked at using threads and tasks to accomplish independent duties that allow where each thread
can run independently of the others. The only dependence is that the parent thread or task must wait for any descendants
to finish. In such a case, it is likely possible that separate threads and tasks can be run in parallel if we have multiple
processors or cores. Usually, however, tasks cannot run independently of others. For example, tasks may have to share
data or other resources, and this can result in the corrupting the data structure (as we saw when two tasks simultaneously
attempt to modify a linked list). We will look at the issues of synchronization in Chapter 9 and deadlock in Chapter 11.

6.3.4 Application of threads and tasks

We have looked at three applications of threads and tasks:

1. parallel execution,
2. divide-and-conquer algorithms, and
3. accomplishing independent tasks.

In all three cases, the threads and tasks ran in parallel and were independent, thereby allowing for parallel processing. With
sufficiently many cores or processors, algorithms such as quicksort and merge sort can execute in ®(n) time. Next we will
see, at a high level, how to maintain threads, and in subsequent chapters we will look at issues of synchronization, resource
sharing, deadlock and inter-process communication.

6.4 Maintaining threads

With multiple threads and tasks, in general, we need some form of mechanism for handling these information associated
with these. For example, first, whatever mechanism we device to create and handle threads, that mechanism will have to
track

1. thread identifiers, and
2. the relationships between the threads.

The first task to start executing is known as a base thread or base task. That thread usually has an identifier equal to @.
Any thread or task that is spawned by another is a child thread or child task, and the thread or task that spawned that child
is the latter’s parent. As every task can only be spawned by on other task, and there is only one base task, the relationship
is clearly hierarchical and may therefore be represented as a tree structure.

The thread-creation mechanism will have to maintain this relationship, thus, each thread will require a record associated
with it. For example, we may consider a data structure as follows:

typedef size t tid_t;

typedef struct tcb {

tid_t thread_id; 0..1

= TCB
struct tcb *p_sibling; +thread_id:Integer {unique}
struct tcb *p_first_child; > +p_sibling:TCB

+p_first_child:TCB
void *p_call_stack_base; -~
size_t call_stack_capacity; +p_call_stack_base
+call_stack_capacity:Unlimited Natural

void *p_return_value;
bool finished; +p_return_value
} tcb_t; +finished:Boolean
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Such a data structure is called a thread control block (TCB) as appropriate. We will discuss each of these components:

1. the thread identifier,

2. the tree of child threads,
3. the stack, and

4. the return value, if any.

The routine creating threads would track a table of all threads that are currently executing and other routines may access
these entries.

6.4.1 Memory allocation for threads

In many embedded systems, it is often easier to pre-allocate sufficient memory for the thread control blocks (TCBS)
corresponding to the maximum number of threads to be run at any one time. Thus, there will be some mechanism

// Global variables
tcb_t *p_base_tcb; // the address of the TCB for the base thread
size_id thread_count = 1; // the base thread

bool create_thread( tid_t *p_tid, void *(*start_routine)( void * ), void *p_arguments ) {
bool success;

if ( thread_count == THREAD_CAPACITY ) {
success = false;

} else {
++thread_count;

tcb_t *p_new_tcb = next_available_tcb();

success = true;

}

return success;

}
void exit_thread() {
// Kill all descendent threads
// - how this is done is beyond the scope of this course...

--thread_count;

Note: While we may not understand right now, this is potentially unsafe code. In our topic on synchronization and
mutual exclusion, we will discuss this in greater detail and describe the options for making this safe.
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6.4.2 The thread identifier

The thread identifier is unique for each thread and is a means of identifying the thread from others. The base thread is
usually assigned an identifier of @ and each subsequently created thread is assigned the next largest value.

// Global variables

tcb_t *p_base_tcb; // the address of the TCB for the base thread
size_id thread_count = 1; // the base thread

tid_t next_available_tid = 1; // the base thread was tid @

bool create_thread( tid_t *p_tid, void *(*start_routine)( void * ), void *p_arguments ) {
bool success;

if ( thread_count == THREAD_CAPACITY ) {
success = false;

} else {
++thread_count;

tcb_t *p_new_tcb = next_available_tcb();

p_new_tcb->thread_id = *p_tid = next_available_tid;
++next_available_tid;

success = true;

}

return success;

}
In POSIX, the identifier has type pthread_t. On the RTX for the Keil board, the identifier is
typedef U32 0S_TID; // Defined in RTL.h

that is, an unsigned 32-bit integer. With a 16-bit integer, this would allow for a maximum of 65536 tasks before looping—
a restriction that may be undesirable in an embedded system where sub-tasks may be continually created and destroyed.
With 32 bits, this allows for 4.3 billion threads with unique identifiers.

6.4.3 The hierarchy of children threads

Each thread may have many children. The wrong way to implement such a situation would be to have an array of child
threads or a separate linked list of threads, as each additional memory allocation will be unnecessarily expensive and costly.
Instead, we make an observation:

1. alinked list of children requires only a pointer to the head of the linked list, and
2. the children can be ordered.

Thus, each thread can be assigned a children pointer and a sibling pointer where

1. the children pointer stores the address of the TCB of the first child, and
2. each child stores a pointer to the next child in the list—its sibling.

Each thread would be allocated such a record. For the base thread, the parent would be NULL, while, for all other threads,
this would contain the address of the TCB associated with the thread that created it. As a single thread may have multiple
children,

1. the children pointer will store the address of the first child, and
2. the sibling pointer of that child will store the address of the next child.
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If there are no children, the children pointer will be NULL, and the last child in the list will have its sibling pointer set to
NULL.

For example, suppose:

the base thread o first created two child threads 1 and 2,
child 1 created two child threads 3 and 4,

the base thread creates a third child thread 5, and

that child thread creates a child thread 6 of its own,

PwbdpeE

then the resulting TCBs would look as shown in Figure 6-2

Figure 6-2. The hierarchy of thread control blocks for a base thread and five descendants.
We will require a pointer to the TCB of the currently executing thread. We will then update this appropriately.

// Global variables

tcb_t *p_base_tcb; // the address of the TCB for the base thread
tcb_t *p_running_tcb; // the address of the TCB for the executing thread
size_id thread_count = 1; // the base thread

tid_t next_available_tid = 1; // the base thread was tid o

bool create_thread( tid_t *p_tid, void *(*start_routine)( void * ), void *p_arguments ) {
bool success;

if ( thread count == THREAD_CAPACITY ) {
success = false;

} else {
++thread_count;

tcb_t *p_new_tcb = next_available_tcb();

p_new_tcb->thread_id = *p_tid = next_available_tid;
++next_available tid;

// The new thread has no children
p_new_tcb->p_first_child = NULL;

// Prepend this new TCB onto the linked list of children
p_new_tcb->p_sibling = p_running_tcb->p_first_child;
p_running_tcb->p_first_child = p_new_tcb;

success = true;

}

return success;
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If we wanted to iterate through all the threads, we could use a post-order depth-first traversal using a stacks storing
addresses.

if ( p_base_tcb->p_first_child != NULL ) {
stack_t dft;
stack_init( &dft, MAX_TCB_HEIGHT + 1 );

stack_push( &dft, p_base_tcb->p_first_child );

while ( stack_top( &dft )->p_first_child != NULL ) {
stack_push( &dft, stack_top( &dft )->p_first_child );

}

while ( !stack_empty( &dft ) ) {
tcb_t *p_top = (tcb_t *) stack_top( &dft );
stack_pop( &tcb_1 );

if ( p_top->p_sibling != NULL ) {
stack_push( &tcb_1, p_top->p_sibling );

while ( stack_top( &dft )->p_first_child != NULL ) {
stack_push( &dft, stack_top( &dft )->p_first_child );

¥
}

// Deal with and access the thread associated

// With the TCB pointed to by 'p_top’

// - do not do anything before manipulating the TCB until after the
// stack has been rearranged, as we must still access the TCB

}

stack_destroy( &dft );
}

// Deal with 'p_base_tcb' as necessary or appropriate
// - this may be different from other TCBs

This could also be used to iterate through all descendants of a particular thread. Normally, when doing either a depth-first
traversal using a stack or a breadth-first traversal using a queue, in the worst case, the capacity of the data structure must
be the maximum number of threads, even if the height is significantly less. This could be prohibitively expensive in an
embedded system, and the above implementation requires that the memory allocated only equal the maximum height of
the thread-hierarchy tree. This is possible as follows:

1. Ifthe base thread has a first child thread, push it onto the stack, and
repeatedly push the first child of the current top of the stack onto the stack.
— The stack contains the depth-first traversal down the left side of the tree.
3. Then, while the stack is not empty:
a. Get a pointer to the current TCB at the top of the stack, and pop the top of the stack.
b. If the current TCB has a sibling,
i. push the sibling on top of the stack, and
ii. repeatedly push the first child of the top of the stack onto the stack.
— The stack now continues the depth-first traversal down the left side of the sibling.
c. Manipulate the current TCB.
4. Finally, deal with the base thread, if necessary. Often, this will be handled separately from its descendants.

It is important to not manipulate the TCB prior unit after the stack has been adjusted (as the modifications could include
killing the thread and freeing its TCB), otherwise, if either p_first_child or p_sibling are changed, the traversal
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could become corrupted. To demonstrate how this works, the first image in Figure 6-3 shows the initialization, the second
image is when the first node is manipulated, and the third image is the state of the stack while the second node is being
manipulated. Colors are used to indicate the various nodes and their location in the stack.

2]
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EE

(2] 2] 1+2]o]

Figure 6-3. The initialization and first two steps of a depth-first post-order traversal of a thread-
hierarchy tree. The next node visited would be the purple node in the third image.

This is normally more difficult with a general tree where each node tracks all of its children.

6.4.4 The call stack

The base and the size of the call stack must be assigned by function creating the thread. In an embedded system, there may
be a block of memory available for function stacks, or as in the Keil RTX, the user could allocate the memory for the stack
and pass it into the thread creation function. As this is secondary to our purposes here, we will assume that there is some
mechanism for assigning such stacks.

Recall from our discussion on architectures that an executing task has a call stack. In this case, however, each task must
have its own call stack. How can we achieve this?

There are two solutions:

1. Virtual memory is an advanced design we will revisit in Chapter 18, but it is not one that is used in most operating
systems with real-time requirements.
2. Fix the size of each of the stacks to a maximum amount.

In Unix, you can either limit the stack size or you can make it unlimited—essentially, use as much memory as is accessible,
as much as 2% bytes on a 32-bit processor and 254 bytes on a 64-bit processor, assuming of course that you have that much
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hard drive space (yes, hard drive as virtual memory can swap pages out of main memory onto a hard drive for temporary
storage)—or you can restrict it to a certain amount, and if the stack grows beyond that point, the process is killed.

$ limit

cputime unlimited
filesize unlimited
datasize unlimited

stacksize 10240 kbytes
coredumpsize @ kbytes
memoryuse unlimited
vmemoryuse  unlimited
descriptors 1024
memorylocked 32 kbytes
maxproc 200

$ limit stacksize 1024

stacksize 1024 kbytes
$ limit stacksize unlimited

stacksize unlimited

General-purpose operating systems can achieve unlimited stack sizes through virtual memory (a topic that will be discussed
later, but also one that is a bane of real-time systems). As for fixing the stack size to a maximum possible amount, there
are two approaches here:

1. Statically allocate memory for a fixed number of tasks, where each task is allocated one of the blocks of memory
when it is created.
2. Dynamically allocate memory for a task when it is created.

Dynamic allocation allows different tasks to have different stack sizes, and if all references to memory within the stack are
relative to the base, it is even possible to dynamically change the stack size at run time. For example, in pVision4, if you
edit the file startup_LPC17xx.s, you can either search through the file and find the appropriate line:

; <h> Stack Configuration
H <o> Stack Size (in Bytes) <Ox0-OxFFFFFFFF:8>
;5 </h>
Stack_Size EQU 0x00000200
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size

__initial_sp

or, you may note the Configuration Wizard tab at the bottom, as shown in Figure 6-4.
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1 H Akl bbb bbb b b bbb bbb bbb R bbb bl Ak bk bk b A Sl bbb bbb b b bk bbbk b b A -
2 ; * @Bfile startup_LPC17xx.s |§|
3 ; * @brief CM3I5 Cortex-M3 Core Device Startup File for [
@ 5o NXF LPCl7xx Device Series
5 ; * @version V1.10
& ; * @date 0&6. April 2011
7 R
8 : * @note
] ; * Copyright (C) 2009-2011 ARM Limited. 211 rights reserwved.
io ; =
11 ;" @par
12 s * LRM Limited (AEM) is supplying this software for use with Cortex-M
13 s * processor based microcontroll Thi=s file can be freely distributed
14 s * within development tools that are supporting such ARM based processors.
iz ; *
i€ ; * @par
17 s * THIS5 SCFIWARE IS PRCWIDED "&5 IS". NC WARRANTIES, WHETHER
18 s * QR STATUTCRY, INCLUD BUT NOT LIMI 0, IMPLIED WARRAN
15 E FURFCSE AFPLY
20 : * LE FOR 5P ) =2
< | 3
Text Editorl.-'{\ Configuration Wizard I.-'r
Figure 6-4. Editing startup_LPC17xx.s from pVision (ARM Ltd.
and ARM Germany GmbH), reproduced here for academic purposes.
This allows you to edit the stack and heap sizes in a more convenient interface.
startup_LPC17xxs v X
Epand Al | Coliapse Al | Help [~ Show Grid
Qption Value
= 5tack Configuration
Stack Size (in Bytes) 00000 0200
=-Heap Configuration
Heap Size (in Bytes) 00000 0000
Heap Configuration
TextEditor j, Configuration Wizard /

Figure 6-5. The configuration wizard from pVision (ARM Ltd. and
ARM Germany GmbH), reproduced here for academic purposes.

Now, each task has, in this case, 200 bytes, and if that amount is exceeded, the tasks is killed. You may note the second
line: heap size. As we discussed above, if you want something other than the default, you can also pass in your own stack.
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6.4.5 Return values
When a thread wants to return, there must be somewhere to temporarily store that information. For this, we will include
two fields:

1. afinished flag indicating whether or not the task has exited, and
2. ifit has, a pointer to the returned data type.

When the thread exits, these will be set:

// Global variables

tcb_t *p_base tcb; // the address of the TCB for the base thread
tcb_t *p_running_tcb; // the address of the TCB for the executing thread
size id thread count = 1; // the base thread

tid_t next_available tid = 1; // the base thread was tid ©

bool create_thread( tid_t *p_tid, void *(*start_routine)( void * ), void *p_arguments ) {
bool success;

if ( thread_count == THREAD_CAPACITY ) {
success = false;

} else {
++thread_count;

tcb_t *p_new_tcb = next_available_tcb();

p_new_tcb->thread_id = *p_tid = next_available_tid;
++next_available_tid;

// The new thread has no children
p_new_tcb->p_first_child = NULL;

// Prepend this new TCB onto the linked list of children
p_new_tcb->p_sibling = p_running_tcb->p_first_child;
p_running_tcb->p_first_child = p_new_tcb;

p_new_tcb->finished = false;

success = true;

}

return true;

}

void exit_thread( void *p_return_value ) {
--thread_count;

// Kill all descendent threads
// - how this is done is beyond the scope of this course...

p_running_tcb->p_return_value = p_return_value;
p_running_tcb->finished = true;
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When the parent thread is ready to get the return value from the child thread, it calls

void *join_thread( tid_t tid ) {
void *p_child_return_value;

tcb_t *p_child_tcb = p_running_tcb->p_first_child;

while ( p_child_tcb != NULL && p_child_tcb->thread_id != tid ) {
p_child_tcb = p_child_tcb->p_sibling );
}

// The child is not found
if ( p_child_tcb == NULL ) {
p_child_return_value = NULL;
} else {
// 'p_child_tcb' now stores the address of the appropriate child's TCB
while ( !( p_child_tcb->finished ) ) {
// Let the child run
// How??? Covered in the next topic on scheduling

}

// Remove the child from the list of children and
// deallocate memory for the p_child_tcb

p_child_return_value = p_child_tcb->p_return_value;

free_tcb( p_child_tcb );
}

return p_child_return_value;

162



6.4.6 Visual example
Suppose we execute the following code using our sample instructions

void sensor_A( void * );
void sensor_B( void * );

int main( void ) {
tid_t thread_id_A, thread_id_B;
create_thread( &( thread_id_A ), sensor_A, NULL );
create_thread( &( thread_id_B ), sensor_B, NULL );

// Do something...

void *return_A
void *return_B

join_thread( thread_id_A );
join_thread( thread_id B );

return EXIT_SUCCESS;
}

Immediately prior to the creation of the first child thread, the base thread is described in its TCB.

thread_count = 1
next_available_tid = 1

p_running_tcb—l
main

thread_id = @
p_sibling —8
p_first_child ~—@&
p_return_value »—1

finished = false

Q
Next, as the first child is created:

thread_count = 2

next_available_tid = 2

pfrunningftcb———————l

main sensor_A
thread_id = @ thread_id = 1
p_sibling “+——8 p_sibling 8
p_first_child p_first_child —4—®
p_return_value «f p_return_value ——®8
finished = false ;1 finished = false
[

At some point, there may be the opportunity for sensor_A to execute. At some point, however, execution will return to
the base thread, and the second child will be created. When the second thread is created, it is pre-ended to the linked list:

thread_count = 3
next_available_tid = 3

p_running_tchAAAAAAE

main sensor_B sensor_A
thread_id = @ thread_id = 2 thread_id = 1
p_sibling T—Q p_sibling p_sibling T8
p_first_child p_first_child +—® p_first_child «~—®&
p_return_value - p_return_value + p_return_value +
finished = false _] finished = false _] finished = false _1
Q Q
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Suppose that while sensor_A is executing, it creates a child thread (let us call it sensor_A_child). In this case, its

thread_count = 4
next_available_tid = 4

p_running_tcb———————l

main sensor_B sensor_A
thread_id = @ thread_id = 2 thread_id = 1
p_sibling +—Q p_sibling p_sibling +T—Q
p_first child p_first_child +~—@& p_first_child ~
p_return_value p_return_value - p_return_value
finished = false —] finished = false _1 finished = false _1
Q Q

[
sensor_A_child
thread_id = 3
p_sibling +T—8
p_first_child ~—®8
p_return_value ——1

finished = false

Q

If we assume that the thread sensor_A_child exits, it will call exit_thread( void * ), passing it a return value,
and setting the finished flag to true.

thread_count = 4
next_available_tid = 4

p_running_tcb———————1

main sensor_B sensor_A
thread_id = @ thread_id = 2 thread_id = 1
p_sibling T p_sibling p_sibling T8
p_first_child p_first_child ——@& p_first_child
p_return_value p_return_value p_return_value
finished = false *1 finished = false 41 finished = false
Q e

@]

[
sensor_A_child
thread_id = 3
p_sibling 1—8
p_first_child ——@
p_return_value «f
finished = true

When sensor_A calls to join, it will receive that return value, free the memory for TCB block, reduce the thread count,
and as it has no more children, setits p_first_child to NULL.

At this point, all three threads will execute. When threads sensor_A and sensor_B finish executing, they will call
exit_thread( void * ) and pass it a return value. For example, if sensor_A finishes first, it will pass
exit_thread(..) the address of a data structure with the return value. This will be stored and the finished field will
be set to true.
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thread_count = 3
next_available_tid = 4

p_running_tcb———————q

main sensor_B sensor_A
thread_id = @ thread_id = 2 thread_id = 1
p_sibling T—Q p_sibling p_sibling T8
p_first_child p_first_child —+4+—@& p_first_child ——®
p_return_value p_return_value « p_return_value <
finished = false _1 finished = false _1 finished = true
Q Q

When the base thread final calls join_thread(...), that stored return value will be returned from the join_thread(...)
function and assigned to the corresponding variable. At this point, that TcB would be taken out of the linked list

(p_sibling for sensor_B would be set to NULL), the block of memory will be deallocated and the thread count would
be reduced to two.

thread_count = 2
next_available_tid = 4

pfrunningftcb———————l

main sensor_B
thread_id = 0 thread_id = 2
p_sibling +T—Q p_sibling Q8
p_first_child p_first_child —4—®
p_return_value «f p_return_value +f
finished = false ;1 finished = false ¥1
] Q

Note that in a real-time system, it is likely that sensor_A or sensor_A will never return—they will loop indefinitely
reading and passing data from the corresponding physical sensor.
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6.4.7 Case study: the TCB in the Keil RTX RTOS

The task control block (TCB) must store all information necessary about executing tasks. In the Keil RTX RTOS, the TCB
is defined in rt_TypeDef. h, reproduced here for academic purposes:

typedef struct 0S_TCB {

/* General part: identical for all implementations. */
us cb_type; /* Control Block Type */
us state; /* Task state */
us prio; /* Execution priority */
us task_id; /* Task ID value for optimized TCB access */
struct 0S_TCB *p_lnk; /* Link pointer for ready/sem. wait list  */
struct 0S_TCB *p_rlnk; /* Link pointer for sem./mbx lst backwards */
struct 0S_TCB *p_dlnk; /* Link pointer for delay list */
struct 0S_TCB *p_blnk; /* Link pointer for delay list backwards  */
uie delta_time; /* Time until time out */
uie interval_time; /* Time interval for periodic waits */
uie events; /* Event flags */
uie waits; /* Wait flags */
void *p_msg; /* Direct message passing when task waits */
us ret_val; /* Return value upon completion of a wait */
/* Hardware dependant part: specific for ARM processor */
us full _ctx; /* Full or reduced context storage */
uie priv_stack; /* Private stack size, 0= system assigned */
u32 tsk_stack; /* Current task Stack pointer (R13) */
u32 *stack; /* Pointer to Task Stack memory block */
/* Task entry point used for uVision debugger */
FUNCP ptask; /* Task entry address */
} *P_TCB;

Thus, the type P_TCB is a pointer to a TCB. In RTL. h, we have the additional definition
#define 0OS_TCB_SIZE 48

You will note that the order of the fields was specifically chosen to align with 32-bit words, as shown in Figure 6-6.
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Figure 6-6. The layout of the OS_TCB.

As discussed in Topic 2, the compiler will explicitly align the 2-byte and 4-byte fields to line up with the word size. It is
quite easy to reorder these fields so that the default memory occupied by this structure is 72 bytes and not 48 bytes. Forcing
the compiler use a sub-optimal compact format, accessing fields that spanned a word boundary would require two fetches.

Consequence: When working in embedded systems or at any other time where memory is at a premium, even the
order of fields in a structure will have an impact on memory use.

Note that 0S_TID is 32 bits, but the internal field task_id is only eight bits. Thus, we may deduce that while individual
tasks are assigned unique identifiers, internally, we can have at most 256 tasks executing at once (the RT X actually restricts
you to only 250 active tasks).

6.4.8 Summary of maintaining threads

In this topic, we have considered how we can, at the bare rudiments of how we could maintain a relationship between
threads, their children, etc. We will continue to build on this structure in the subsequent topic on scheduling.
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6.5 The volatile keyword in C

Consider the following code:

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>

int global_variable = 9;

void read_global( void * );
void write_global( void * );

int main( void ) {
pthread_t threadl, thread2;

pthread_create( &threadl, NULL, (void *) &read_global, NULL );
pthread_create( &thread2, NULL, (void *) &write_global, NULL );

pthread_join(threadl, NULL);
pthread_join(thread2, NULL);

printf( "Exiting main...\n" );
return EXIT_SUCCESS;
}

void write_global( void *p_void_arg ) {
int i;

for (1i=3;1i>8; --1i) {
printf( "%d\n", i );
sleep( 1 );

¥

global_variable = 1;
printf( "Exiting writer...\n" );

}

void read_global( void *p_void_arg )
while ( global_variable == ©
// Do nothing

{
) o
}

sleep( 1 );
printf( "Exiting reader...\n" );

}

What this does—and we’ll get into thread later—is there is a shared global variable global_variable. The two functions
write_global and read_global run in parallel. The first waits 10 seconds and then changes the value of the global
variable, the second waits for the global variable to change. When we compile and execute it, it works as expected:

$ gcc test.c -1lpthread
$ ./a.out

3

2

1

0

Exiting writer...
Exiting reader...
Exiting main...

$
No problem, so let’s do it again, but this time with some optimizations turned on:

$ gcc -0 test.c -lpthread
$ ./a.out

3

2

167



1
0
Exiting writer...

and it appears to be hanging—it doesn’t exit. Why? The optimizer looked at:

while ( global_variable == 0 ) {
// Do nothing
}

and said—nothing in the body of this while loop is changing the value of the variable global_variable, so just change
it to:

if ( global_variable == 0 ) {
while ( true ) {
// Do nothing

¥
}

After all, nothing in the body of this while loop is changing the value of the variable, so why check it each time? The
problem is, the variable is being changed, but not in this loop. We must give the optimizer a hint that the variable
global_variable may change elsewhere, and we do so by flagging it as volatile:

volatile int global_variable = 0;

Now the code executes as expected. This will become relevant in subsequent chapters when we start looking at
communication between tasks and peripheral devices.

6.6 Summary of threads and tasks

In this topic, we have considered the concept of tasks and threads, how to create them, and even some limited form of
synchronization, whereby one thread must wait for another to finish. We have considered the issues of parallelization of
algorithms and creating divide-and-conquer algorithms through multiple threads, the additional overhead required,
maintaining the relationship between the threads and those that they spawn. Finally, we looked at the volatile keyword.
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Problem set
6.1 In creating a thread or task, this requires:

© © N

some mechanism of sending back information about the thread or task identifier,
options regarding the creation of the thread,

arguments to be passed to the thread,

memory allocated for a call stack, and

10. the ad