
  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECE 204 Numerical methods 

Sections 001/002 

FINAL EXAMINATION 
Douglas Wilhelm Harder  dwharder@uwaterloo.ca EIT 4018  x37023 

 

1. The exam will be graded out of 51. 

2. No aids (including, no calculators). 

3. Turn off all electronic media and store them under your desk. 

4. If there is insufficient room, use the back of the last page and clearly indicate that is 

where you are answering the question. 

5. You may ask only one question during the examination: “May I go to the washroom?” 

6. Asking any other question will result in a deduction of 5 marks from the exam grade. 

7. If you think a question is ambiguous, write down your assumptions and continue. 

8. Do not leave during first hour or after there are only 15 minutes left. 

9. Do not stand up until all exams have been picked up. 

10. If a question only asks for an answer, you do not have to show your work to get full 

marks; however, if your answer is wrong and no rough work is presented to show your 

steps, no part marks will be awarded. 

11. The questions are in the order of the course material. 

  



  

  

1 [2] Multiply the two numbers stored as double-precision floating-point numbers 

1 01111111111 10100000…0 
1 10000000001 01000000…0 

showing the multiplication in binary, write the resulting representation in binary and determine 

the corresponding number in decimal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 [4] Demonstrate that if the absolute error for an approximation x0 of a root r is |x0 – r|, show 

that after one iteration of Newton’s method, the absolute error is now proportional to |x0 – r|
2
 

assuming that the second derivative is bounded between the approximation x0 and the root r. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 [4] Show that the error of the approximations 
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   and    
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are both O(h
2
) by using the appropriate 3

rd
 and 4

th
-order Taylor series, respectively. 

 

 

 

 

  



  

  

4 [2] You have a sensor that is sending back a reasonably accurate power reading, and you know 

that there are no significant fluctuations or discontinuities in the power use. At any one time, you 

would like to know a reasonably accurate measurement of the total energy use up to that point in 

time. What algorithm would you use? Justify your answer. 

 

 

 

 

 

 

 

 

 

 

 

5 [1] How would you find the best approximation of the vector 
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2

 
 
 
 
 

  as a linear combination of 

the two vectors 
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 and 
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6 [3] Write down the system of equations that must be solved in order to find a better 

approximation of the simultaneous root of the following two algebraic equations 

x
2
 + xy + y

2
 – 3 = 0 

      x
3
 – 4xy – 5 = 0 

assuming your initial guess is x = 1.7 and y = 0.0. 

 

 

  



  

  

7 [3] For a given IVP, you have applied Euler’s method with n = 4 and then again with n = 8 steps 

to get the approximations at the following points: 

 

tk 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 

yk 1  0.98  0.96  0.9  0.82 

zk 1 0.99 0.97 0.94 0.9 0.85 0.79 0.72 0.64 

 

What is a reasonable approximation of the error of z8, and what is the best estimate of y(0.75) 

given the information in this table? 

 

 

 

 

 

 

 

 

 

 

 

8 [3] Apply one step of Heun’s method to this system to approximate y(2) and z(2): 
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9 [2] Write the following 3
rd

-order IVP as a system of 1
st
-order IVPs: 
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10 [1] List all the restrictions on an IVP (i.e., the ODE and the initial conditions) that may allow us 

to use methods such as 4
th

-order Runge Kutta but prevent us from using an adaptive technique 

like Euler-Heun, Runge-Kutta-Fehlberg or Dormand-Prince? 

 

 

 

 

 

 

 

 

 

 

 

 

11 [3] Given the IVP,  
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approximate y(0.1) using one step of Euler’s method and one step of the backward Euler’s 

method. Given your knowledge of the actual solution to this IVP, which is likely closer to the 

correct answer? 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 [4] Using the shooting method and two steps of Euler’s method, approximate the value of 

u(0.5) for the boundary-value problem  
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13 [2] Explain, in your own words, why when applying the shooting method for a non-linear BVP 

          2 1
, ,u t f t u t u t  with   au a u  and   bu b u , once we have found two slopes s0 and s1, 

why we apply the secant method to the problem    

 ˆ
b bu s u  

to find the appropriate initial slope s. 

 

 

 

 

 

 

 

 

14 [2] Write down the systems of equations (using matrices and vectors) to find an 

approximation to the boundary value problem given by  
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with n = 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 [2] In class, it was claimed that the finite-difference method used to approximate a solution to 

a linear BVP is O(h
2
) where h is the width between the points at which the approximation occurs. 

Provide a heuristic justification for this result based on how the finite-difference equations were 

obtained. 

  



  

  

16 [2] Given the state of a system that evolves over time according to the heat-conduction 

diffusing equation on the interval [0, 4] with initial and boundary conditions  

 0

1 0 0

0 1 4

x x
u x

x

  
 

 
,   1au t   and   0bu t  , 

what is the state when t = 0.1 and t = 0.2 when using h = 1? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17 [2] Given the state of a system that evolves over time according to the wave equation on the 

interval [0, 4] with initial and boundary conditions  

 0

1 0 0

0 1 4

x x
u x

x

  
 

 
, ,   1au t   and   0bu t  , 

what is the state when t = 0.1 and t = 0.2 when using h = 1? 

 

 

 

 

 

 

 

 

 

 

 

18 [2] You are given a rectangular wafer that has four constant voltages applied to each of the 

sides, as specified here: 

 
Write down the system of linear equations, using matrices and vectors, that must be solved to 

estimate the potential at the six interior points. 

 

 

 

 



  

  

19 [2] For the golden-ratio search, given that c2 for one step must be the same as c1 for the next 

step if the maximum is determined to be on the interval [c1, b], find the value of . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 [3] Suppose we are finding the root of the interpolating line that connects two points (1000, 5) 

and (1001, 4) and then the root closest to 1001 of the three points (999, 5), (1000, 4) and 

(1001, 1). Explain why, in the first case, it is safe to find the root directly by simply solving the 

equation while in the second, it is better to shift the problem to (–2, 5), (–1, 4) and (0, 1) and then 

find the root as an offset to 1001? The quadratic formula has two roots: which root would you 

choose in this case? 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 [2] Suppose that you have a device where you can control an input voltage and make a 

reading, but that reading is noisy. You’d like to estimate the input voltage that maximizes the 

reading in question. Explain and justify the approach you would use, but you do not have to give 

explicit formulas. 

  



  

  

Floating-point representations 

  ±EEMNNN   ±M.NNN × 10
EE – 49

 

  seeeeeeeeeeebbbbbb…b (-1)
s 
1.bbbbbb…b × 10

eeeeeeeeeee – 01111111111
 

where 011111111112 = 1023. 

 

Fixed-point theorem:   Solving x = f(x), choose x0 and let  1k kx f x   for k = 0, … . 

Gaussian elimination with partial pivoting is the Gaussian elimination algorithm but always 

swapping appropriate rows so that the largest entry is in the row that will be used to eliminate 

that term in all subsequent rows. 
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   where x x h   . 
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   where 0x x  . 

Averaging noisy values with zero bias mitigates the effect, while differentiating noisy values 

magnifies the effect. 
 double horner( double a[], unsigned int degree; double x ) { 

    double result{a[0]}; 
     for ( std::size_t k{1}; k <= degree; ++k ) { 
         result += result*x + a[k]; 

    } 
    return 0; 
} 

Formula of interest: 
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Goal Estimation 

Estimate y(tn) 0.6 yn + 0.4 yn – 1 + 0.2 yn – 2 – 0.2 yn – 4 

Estimate y(tn + h) 
0.8 yn + 0.5 yn – 1 + 0.2 yn – 2 – 0.1 yn – 3 – 

0.4 yn – 4 

Estimate the rate of change of y 

over time 
–1 3 40.2 0.1 – 0.1 – 0.2n n n ny y y y

h

 
 

Estimate the integral  
4

d
n

n

t

t h

y t t


    –1 –2 3 44 0.2 0.2 0.2 0.2 0.2n n n n nh y y y y y    

Estimate the integral  d
n

n

t

t h

y t t


   –1 –2 3 40.5 0.35 0.2 0.05 0.1n n n n nh y y y y y      



  

  

 

Goal Estimation 

Estimate y(tn)  –1 –2 3 45
1

31 9 3 3
35

n n n n ny y y y y    

Estimate y(tn + h) –2 3 401.8 0 .6.8 0.6n n n ny y y y    

Estimate the rate of change of y over time 

at time tn 

–1 –2 3 4254 13

0

40 7 26

7

n n n n ny y y y

h

y  
 

Estimate the acceleration of y over time at 

time tn 
–1 –2 3 4

2

2

7

2 2n n n n ny

h

y y y y   
 

Estimate the integral  
4
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n

n

t

t h

y t t


    –1 –2 3 426 11
4

11 26
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Estimate the integral  d
n

n

t

t h

y t t


  –1 –2 3 4230 137 6 11 22

420

4n n n n nh
y y y y y   

 

 

Method Requirements 
Iteration step Rate of 

convergence 

Is convergence 

guaranteed? 

Bisection  
An interval [a, b] with f(a) 
having the opposite sign of f(b) 

Let 
2

a b
c


  and update whichever endpoint 

has the same sign as f(c). 

O(h) Yes 

Bracketed 
secant  

An interval [a, b] with f(a) 
having the opposite sign of f(b) 

Let 
   
   

af b bf a
c

f b f a





 and update whichever 

endpoint has the same sign as f(c). 

O(h) Yes 

Secant 
Two initial approximations x0 

and x1 with |f(x0)| > |f(x1)| 
Let 
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. O(h) No 

Newton’s An initial approximation x0 Let 
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  . O(h2) No 

 

Given a function f(x, y) and an approximation to a root (xk, yk), we can solve 
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and then let xk+1 ← xk + xk, yk+1 ← yk + yk. 
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O(h

4
) 

 

With n, calculate y1, …, yn, with 2n, calculate z1, …, z2n, and use |yn – z2n| appropriately to 

estimate the error of z2n. If the error is small enough, extrapolate to get an even better 

approximation. The approximation of the error depends on the error of the method used. 

 

Given a target error abs, ensure the error contributed to the total error when approximating yk+1 is 

less than 
0

a

f

bs

h

t t



. Do this by finding a better approximation zk+1, and overestimating the error of 



  

  

yk+1 by 2|yk+1 – zk+1| and calculating 
 1 1 02

abs

k k f

a
y z t t

h

 


 

. Based on the magnitude of a, either 

recalculate yk+1 or continue to approximate yk+2, in either case using 0.9ah. 

 

For stiff ODEs,  1 1 1,k k k ky y hf t y     or  1 1 1,k k k kh t   y y f y . 
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If                2 1

1 0u x x u x x u x g x    ,   au a u  and   bu b u , solve two IVPs: 

1.                2 1

1 0u x x u x x u x g x     with   au a u and    1
0u a   with solution  gu x  and 

2.              2 1

1 0 0u x x u x x u x     with   0u a  and    1
1u a   with solution  0u x . 

Add a scalar multiple c of the solution to IVP 2 to the solution of IVP 1 so that    0g bu b cu b u  . 

 

If           2 1
, ,u x f x u x u x ,   au a u  and   bu b u , solve two IVPs with 

1.   au a u  and    1

0u a s  with solution  0u x  and 

2.   au a u  and    1

1u a s  with solution  1u x  

for appropriate values of the slopes. Define  ˆ
bu s  appropriately and then  
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Given                2 1

1 0u x x u x x u x g x     and xk = a + kh and uk approximates u(xk), we have  

          2 2

1 1 0 1 12 4 2 2 2k k k k k k kx h u x h u x h u h g x          . 

 

If the ode has constant coefficients, the super-diagonal, diagonal and sub-diagonal entries are all  
2

1 0 0 12 , 4 2 , 2d h d h d h          . 

Apply this twice to get an approximation of the error of the better approximation. 
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For 1, 2 and 3 dimensions, each point is the average of the 2, 4 or 6 points immediately 

surrounding it. 

 

For an appropriate value of 1

2
1  , calculate c1 = b –  (b – a) and c2 = a + (b – a) and choose 

the appropriate sub-interval to continue the algorithm. 

 

Given three approximations to a local maximum, we find that  
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and xk+1 = xk + xk+1. 
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