
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECE 204 Numerical methods 

Sections 001, 002 

MIDTERM EXAMINATION 
Douglas Wilhelm Harder  dwharder@uwaterloo.ca EIT 4018  x37023 

2019-02-25T10:15:00P1H15M 
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1. You may rip off the last page as soon as you sit down. 

2. There are 39 marks. 

3. No aides. 

4. Turn off all electronic media and store them under your desk. 

5. You may ask only one question during the examination: “May I go to the washroom?” 

6. Asking any other question will result in a deduction of 5 marks from the exam grade. 

7. If you think a question is ambiguous, write down your assumptions and continue. 

8. Do not leave during first half hour or after there are only 15 minutes left. 

9. Do not stand up until all exams have been picked up. 

10. If a question only asks for an answer, you do not have to show your work to get full 

marks; however, if your answer is wrong and no rough work is presented to show your 

steps, no part marks will be awarded. 

11. The questions are in the order of the course material. 

  



1 [3] List the six tools that we will use in this course for approximating solutions numerically. 

 

 

 

 

 

 

 

2 [2] Sum the following two double-precision floating-point numbers and write the result in the 

same format: 

8ac7000000000000    8adf000000000000 
 

 

 

 

 

 

 

3 [2] Multiply the following two floating-point numbers and write the result in the same format: 

-501050    -512100 
 

 

 

 

 

 

4 [4] Author a function that implements fixed-point iteration where the function keeps iterating 

until the difference between two successive approximations is less than eps, but not iterating 

beyond the given maximum number of iterations. If the maximum number of iterations is 

reached without the first requirement being met, throw a std::runtime_error exception. 

You do not have to check if f(x) ever returns an infinity or a not-a-number. 

  

double fixed_point( double f( double x ), double x0, double eps, 
                    unsigned int max_iterations ) { 
 

  



5 [4] Demonstrate, using 2nd-order Taylor series, that the error of this approximation of the 

derivative 
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6 [3] Your accurate sensor is relaying information back via a voltage that is then converted to a 

digital signal using an analog-to-digital converter. The sensor sends back a reading each 30 ms. 

The last three readings are 15, 4, –1. If the current time of the last reading is 415970 ms since the 

system was turned on, what is a reasonable estimation as to when the reading was most recently 

zero. 

 

First explain how you will go about finding that time (1 mark) and the find that time (2 marks). 

 

 

 

 

 

 

 

 

 

 

7 [3] Explain what tools we used and how we got from there to the formula for Simpson’s rule, 
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and, and similarly, how we got to the approximation 
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8 [4] Suppose you have three samples read by a sensor that samples one reading per second, but 

between the first and second readings, it is known that the approximately steady current is 

abruptly switched off. Initially the current is 5 mA, and for the two next readings, the current is 

0 mA. Find an approximation of the charge passing a point during these two seconds using the 

composite trapezoid rule and Simpson’s rule. What is the maximum possible error of the 

approximation given by the composite trapezoidal rule, and what is the maximum possible error 

for the approximation given by Simpson’s rule? 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

9 [3] Given a very noisy power signal (watts) where the last five readings are 9 W (most recent), 

8 W, 8 W, 9 W and 10 W (least recent) taken at 100 ms apart, and you know that the concavity is 

essentially zero on this interval, what is a reasonable approximation of the integral of the energy 

(joules) used during the last 100 ms? Find the approximation as a real number.  



  

10 [1] Assuming that a function is continuous and differentiable, what is it about the bisection 

method and the constrained secant method that guarantee convergence to a root, while Newton’s 

method and the second method may not converge to a root even if there is a root in the 

neighborhood of the initial approximations of the root. 

 

 

 

 

 

 

 

 

 

 

11 [2] Apply one iteration of the constrained secant method to find a better approximation of the 

root of the polynomial x2 – 3 on the interval [1, 2]. 

 

 

 

 

 

 

 

 

 

 

 

12 [2] Demonstrate that if the absolute error for an approximation x0 of a root r is |x0 – r|, show 

that after one iteration of Newton’s method, the absolute error is now proportional to |x0 – r|2 

assuming that the second derivative is bounded between the approximation x0 and the root r. 

 

 

 

  



13 [6] Newton’s method in one variable has a single initial point x0, while the secant method 

requires two initial points x0 and x1. Newton’s method finds a tangent line at the initial point to 

find the next approximation, while the secant method uses a secant line through the two points to 

find the next approximation. 

 

Now, Newton’s method in two dimensions has a single initial point (x0, y0) and then finds two 

tangent planes at that point, with the simultaneous root of those two tangent planes being the 

next approximation to the root. Generalize the secant method so that it, too, may converge to a 

solution for a system of two equations in two unknowns. You need only explain your steps to 

how you would take the initial points and how you would find the next approximation. 
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Floating-point representations 

  ±EEMNNN   ±M.NNN × 10EE – 49 

  seeeeeeeeeeebbbbbb…b (-1)s 1.bbbbbb…b × 10eeeeeeeeeee – 01111111111 

where 011111111112 = 1023. 

 

Fixed-point theorem:   Solving x = f(x), choose x0 and let  1k kx f x  . 

Gaussian elimination with partial pivoting is the Gaussian elimination algorithm but always 

swapping appropriate rows so that the largest entry is in the row that will be used to eliminate 

that term in all subsequent rows. 
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Averaging noisy values with zero bias mitigates the effect, while differentiating noisy values 

magnifies the effect. 
 double horner( double a[], unsigned int degree; double x ) { 

    double result{a[0]}; 
     for ( std::size_t k{1}; k <= degree; ++k ) { 
         result += result*x + a[k]; 

    } 
    return 0; 
} 

Formula of interest: 
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Goal Estimation 

Estimate y(tn) 0.6 yn + 0.4 yn – 1 + 0.2 yn – 2 – 0.2 yn – 4 

Estimate y(tn + h) 
0.8 yn + 0.5 yn – 1 + 0.2 yn – 2 – 0.1 yn – 3 – 

0.4 yn – 4 

Estimate the rate of change of y 

over time 
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Goal Estimation 
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Estimate the acceleration of y over time at 

time tn 
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Method Requirements 
Iteration step Rate of 

convergence 

Is convergence 

guaranteed? 

Bisection  
An interval [a, b] with f(a) 
having the opposite sign of f(b) 

Let 
2

a b
c


  and update whichever endpoint 

has the same sign as f(c). 

O(h) Yes 

Bracketed 

secant  

An interval [a, b] with f(a) 

having the opposite sign of f(b) 

Let 
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endpoint has the same sign as f(c). 

O(h) Yes 

Secant 
Two initial approximations x0 
and x1 with |f(x0)| > |f(x1)| 

Let 
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Newton’s An initial approximation x0 Let 
 

   
1

1 1

1

k

k k

k

f x
x x

f x







  . O(h2) No 

 

Given a function f(x, y) and an approximation to a root (xk, yk), we can solve 
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and then let xk+1 ← xk + xk, yk+1 ← yk + yk. 

 


