

ECE 204 Numerical methods

FINAL EXAMINATION
Douglas Wilhelm Harder dwharder@uwaterloo.ca EIT 4018 x37023

1. The exam will be graded out of 50.

2. No notes and no calculators.

3. Turn off all electronic media and store them under your desk.

4. If there is insufficient room, use the back of the last page.

5. You may ask only one question during the examination: “May I go to the washroom?”

6. Asking any other question will result in a deduction of 5 marks from the exam grade.

7. If you think a question is ambiguous, write down your assumptions and continue.

8. Do not leave during first hour or after there are only 15 minutes left.

9. Do not stand up until all exams have been picked up.

10. If a question only asks for an answer, you do not have to show your work to get full marks;

however, if your answer is wrong and no rough work is presented to show your steps, no

part marks will be awarded.

11. The questions are approximately in the order of the course material.

1 [2] Add the two numbers stored as double-precision floating-point numbers

1 01101001101 10100000…0
1 01101001111 01000000…0

showing the addition in binary and write the resulting representation in binary.

2 [3] Solve the following system of linear equations using Gaussian elimination with partial

pivoting. Zero marks will be awarded if partial pivoting is not used.

3.5 0.6 3.3 17.5

1.5 1.8 0.3 2.1

5 2 1 5

 
 

  
  

3 [3] Find the quadratic polynomial at2 + bt + c in the variable t that passes through the three points

(–1, y–1), (0, y0) and (1, y1). You will find a, b and c in terms of the three unknowns y–1, y0, and y1.

You will need to use a Vandermonde matrix to find your solution, but you need not use partial

pivoting if you prefer not to.

4 [2] Write down the 2nd-order Taylor series approximation of e0 + h and use this to approximate

the value of e0.1. The correct answer, to 10 decimal digits, is 1.105170918. What is the ratio that

must be calculated to find the relative error of using the 2nd-order Taylor series approximation of

e0.1?

5 [3] Approximate the integral of y(t) = t2 + 1 from 0 to 1 by first using two steps of the trapezoidal

rule, and then one step of Simpson’s rule. Recall that the error of the composite trapezoidal rule is

proportional to the 2nd derivative while the error of Simpson’s rule is proportional to the 4th

derivative, so what can you say about the second approximation?

6 [2] You have a reasonably exact reading at the previous time step, y(t – h), and you have another

reasonably exact reading at the next time step, y(t – 2h), but an error in transmission resulted in

the reading y(t) to be lost. You will estimate the reading using the average
(2) ()

2

y t h y t h  
 .

What is the error of this approximation? You suspect the error is O(h), so you will use a zeroth-

order Taylor series, so, for example, y(t + h) = y(t) + y(1)()h.

7 [3] Continuing from Question 6, you instead estimate the reading using the weighted average

2 () (2)y t h y t h   . What is the error of this approximation? You suspect the error is O(h2), so

you will use a first-order Taylor series, so, for example, y(t + h) = y(t) + y(1)(t)h + ½ y(2)()h2.

Which formula should you use, that in Question 6 or 7?

8 [4] Use two steps of Newton’s method to approximate the root of f (x) = x3 – x2 + x – 2 starting

with the approximation x0 = 1. Suppose you factor out the root you find, and applying Newton’s

method one more time, this time again starting with x0 = 1, and you find it does not converge. What

can you say about the two remaining roots, and what should you use as an initial point to find those

two remaining roots?

9 [2] Suppose you wanted to find a simultaneous root to the system of non-linear equations

x2 + 4y2 – x + y = 1 and 3x2 + 2y2 + x – y = 2 and you intend to use Newton’s method in two

dimensions, and your first approximation of that simultaneous root is x = y = 0.5. What is the

system of linear equations you must solve (do not solve it).

10 [2] Using Heun’s method, approximate y(1) with h = 1 for the initial-value problem defined by
     1

2 1

(0) 2

y t y t t

y

   



11 [2] The mid-point method is a variation on Huen’s method, where you are given a system of

initial-value problems
      

 

1

0 0

,t t t

t





w f w

w w

and we approximate wk+1 with the formula:

 0

1 0

1 1

,

,
2 2

k k

k k

k k

t

h h
f t

h



 
   

 

 

s f w

s w s

w w s

Use this technique to approximate y(1) and z(1) with h = 1 given the system of two initial-value

problems
       
       

1

1

2 1

1

(0) 1

(0) 2

y t y t z t

z t y t z t

y

z

  

   





12 [3] Write down the system of linear equations that must be solved to approximate a solution to

the boundary-value problem
         

 

 

2 1
1 0

0 2

1 1

u x u x u x

u

u

   





,

using h = ¼. You should not solve this system of linear equations.

13 [3] Show how we convert the heat-conduction equation in one dimension into a finite-difference

equation starting with    
2

2
, ,u t x u t x

t x


 


 
. You must explain each step.

14 [2] Provide two justifications for using adaptive techniques (for example, the Dormand-Prince

method) as being more appropriate to getting an acceptable approximation to an initial-value

problem as compared to fixed step size methods (for example, the 4th-order Runge Kutta method).

15 [1] In the wave equation    
2

2 2

2
, ,u t c u t

t


 


x x , suppose we are applying this to model

incoming radio signals sent from the space craft Voyager 1. What is c?

16 [2] You have a function that you are attempting to maximize, and you have evaluated the

function at three points: (0, 1), (1, 1.25) and (2, 0.5). Apply one step of successive parabolic

interpolation to find a better approximation of the maximum of this function.

17 [1] What is the benefit of the golden-ratio search over simply dividing the interval [a, b] into

three equal sub-intervals (so a, a + (b – a)/3, a + 2(b – a)/3 and b)?

18 [3] Suppose you are attempting to use gradient descent to find a minimum of the function

f (x, y) = x2 – xy – 3x + 4y + 2y2 + 1. What is the function of one variable that you would

subsequently have to find the minimum of if you started with the initial point x0 = 1 and y0 = –1.

Suppose you used another function like successive parabolic interpolations to find an

approximation of that minimum in one dimension. How would you use this to find the next

approximation x1 and y1? Do not find the actual minimum of your function of one variable, just

assume that you have found an appropriate approximation and explain how you would use that to

get the next step.

19 [2] Suppose you are trying to find a global minimum of a signal y(t) on the interval [0, 10] and

you know the signal is sinusoidal with a minimum period of 2. Explain why you cannot just use

successive parabolic interpolation to find that minimum starting with the points t = 0, t = 5 and

t = 10. You can give a graphical example where such an approach may fail.

20 [1] Suppose that a polynomial is of degree n and its coefficients are being stored in an array of

that capacity. What is the run-time of the algorithm that divides out the root r resulting in a

polynomial of degree n – 1?

21 [3] For each of the seven tools we learned, give one application of that tool in this course.

Floating-point representations

 ±EEMNNN ±M.NNN × 10EE – 49

 seeeeeeeeeeebbbbbb…b (-1)s 1.bbbbbb…b × 10eeeeeeeeeee – 01111111111

where 011111111112 = 1023.

Fixed-point theorem: Solving x = f(x), choose x0 and let  1k kx f x  .

     
 

   1 1

0

1 1

! 1 !

n k nk n

k
f x h f x h f h

k n


 



 
   

 
 where x x h   .

      
 

   1 1

0 00

1 1

! 1 !

n kk n n

k
f x f x x x f h

k n


 



 
   

 
 where 0x x  .

Averaging noisy values with zero bias mitigates the effect, while differentiating noisy values

magnifies the effect.
 double horner(double a[], unsigned int degree; double x) {

 double result{a[0]};
 for (std::size_t k{1}; k <= degree; ++k) {
 result += result*x + a[k];

 }
 return 0;
}

Formula of interest:

   
       1 3 21

2 6

f x h f x h
f x f h

h


  
     

       1 21

2

y t y t h
y t y h

h


 
 

   
         1 3 2

3 4 2 1

2 3

y t y t h y t h
y t y h

h


   
 

   
         2 4 2

2

2 1

12

f x h f x f x h
f x f h

h


   
     

         2 3

2

2 2y t y t h y t h
y t y h

h


   
 

            
321 1 1

d
2 2 12

b

a

f x x f a f b b a f b a
 

     
 



         
54

0 1 2

1 1
d 4

6 2880

b

a

f x x f f f b a f b a     

         
54

0 1 2 3

1 1
d 3 3

8 6480

b

a

f x x f f f f b a f b a      

           
1

2 2

1

1
d 2

2 12

b n

ka

b a
f x x f a f a kh f b h f h





   
      

  


     
1

2 2
4 4

0 2 1 2

1 1

1
d 4 2

3 180

n n
b

k k n

k ka

b a
f x x f f f f h f h





 

 
 

    
 
 
 

 

                     
2

4 4

2

1 1 25 25 1 1 11
d

24 2 24 24 2 24 80

b n

ka

f x x f a h f a f a h f a kh f b h f b f b h h f b a h




  
                

  


>> A = vander(-n:0, 2); # n + 1 points
>> detAtA = round(det(A'*A)); % This should be an integer
>> round(detAtA*inv(A'*A)*A') % This should be an integer matrix
>> ans/detAtA

For five points, 4 3 –1

1
10

2 2n n n na
y y y y   




 and 4

0

2 –12 2 4

0

6

1

n n n na
y y y y   




.

Goal Estimation

Estimate y(tn + h) a0 + a1

Estimate the rate of change of y over time a1/h

Estimate the integral  d
n

n

t

t h
y t t

 (a0 – a1/2)h

Estimate the integral  d
n

n

t h

t
y t t



 (a0 + a1/2)h

For five points, 4 3 –2 –1

2

2

1

–

4

2 – 2n n n n ny y y y
a

y  
 , 4 3 –2 –1

1

40

70

26 – 27 13 54n n n n na
y y y y y  

 and

1 –2 –3 4

0

3

35

31 9 5 3n n n n na
y y y y y   

 .

Goal Estimation

Estimate y(tn + h) a0 +  (a1 +  a2)

Estimate the rate of change of y over time at time

tn + h
(a1 + 2a2)/h

Estimate the acceleration of y over time at time tn 2a2/h
2

Estimate the integral  d
n

n

t

t h
y t t

 (a0 – a1/2 + a2/3)h

Estimate the integral  d
n

n

t h

t
y t t



 (a0 + a1/2 + a2/3)h

2 4

2

b b ac

a

  
 or

2

2

4

c

b b ac





Method Requirements
Iteration step Rate of

convergence

Is convergence

guaranteed?

Bisection
An interval [a, b] with f(a)

having the opposite sign of f(b)

Let
2

a b
c


 and update whichever endpoint has

the same sign as f(c).

O(h) Yes

Bracketed

secant

An interval [a, b] with f(a)

having the opposite sign of f(b)

Let
   
   

af b bf a
c

f b f a





 and update whichever

endpoint has the same sign as f(c).

O(h) Yes

Secant
Two initial approximations x0

and x1 with |f(x0)| > |f(x1)|
Let

   
   

2 1 1 2

1 2

k k k k

k

k k

x f x x f x
x

f x f x

   

 





. O(h) No

Newton’s An initial approximation x0 Let
 

   
1

1 1

1

k

k k

k

f x
x x

f x







  . O(h2) No

Muller’s

Three initial approximations

x0, x1 and x2 with

|f(x0)| > |f(x1)| > |f(x2)|

The root of the interpolating quadratic polynomial

passing through (xk, f(xk)), (xk–1, f(xk–1)) and

(xk–2, f(xk–2))

O(h1.839) No

Inverse

quadratic

interpolation

Three initial approximations

x0, x1 and x2 with

|f(x0)| > |f(x1)| > |f(x2)|

Evaluate the interpolating quadratic polynomial

passing through (f(xk), xk), (f(xk–1), xk–1) and

(f(xk–2), xk–2) and evaluate this at 0.

O(h1.839)

Given uk, 1k k u u and then for each entry,  1; off; , 1

,

1
k i i i k

i i

u v A
a

   u .

Given uk, calculate
1;k iu 

 as above, but then set  1; ; 1;1k i k i k iu u u     .

Given a function f(x, y) and an approximation to a root (xk, yk), we can solve

   

   

 

 

, ,
,

,
, ,

k k k k

k k k

k k k
k k k k

f x y f x y
x f x yx y

y g x y
g x y g x y

x y

  
            
        
 
  

and then let xk+1 ← xk + xk, yk+1 ← yk + yk.

 1 ,k k k ky y hf t y    1 ,k k k kh t  y y f y O(h)

 

 

0

1 0

0 1

1

,

h,

2

k k

k k

k k

s f t y

s f t y hs

s s
y y h



  


 

 

 

0

1 0

0 1

1

,

h,

2

k k

k k

k k

t

t h

h



  


 

s f y

s f y s

s s
y y

O(h2)

 

 

 

 

0

h h
1 02 2

h h
2 12 2

3 2

0 1 2 3

1

,

,

,

,

2 2

6

k k

k k

k k

k k

k k

s f t y

s f t y s

s f t y s

s f t h y hs

s s s s
y y h



  

  

  

  
 

 

 

 

 

0

h h
1 02 2

h h
2 12 2

3 2

0 1 2 3

1

,

,

,

,

2 2

6

k k

k k

k k

k k

k k

t

t

t

t h h

h



  

  

  

  
 

s f y

s f y s

s f y s

s f y s

s s s s
y y

O(h4)

With n, calculate y1, …, yn, with 2n, calculate z1, …, z2n, and use |yn – z2n| appropriately to estimate

the error of z2n. If the error is small enough, extrapolate to get an even better approximation. The

approximation of the error depends on the error of the method used.

Given a target error per unit step in time of abs, ensure the error contributed to the total error when

approximating yk+1 is less than
absh . Do this by finding a better approximation zk+1, and

overestimating the error of yk+1 by 2|yk+1 – zk+1| and calculating
1 12 k k

absa
y z

h

 




. Based on the

magnitude of a, either recalculate yk+1 or continue to approximate yk+2, in either case using 0.9ah.

Given               1 1
, , ,...,

n n
y t f t y t y t y t


 with          

   11 1 1

0 0 0, ,...,
n n

y t y y t y y t y
 

   , define

 

 

 

 

 
   

   

0

1

1

1
1

n
n

y tw t

w t y t
t

w t y t




  
  
      
  

      

w ,
 

 

0

1

0

0

1

0

n

y

y

y


 
 
 

  
 
 
 

w and       

   
   

   
   

 

 

 

  

1

0 1

1

21

1

1
12

1

1

,

,

nn

n

w t w t

w tw t

t t t

w tw t

f t tw t





   
   
   
        
   
   
    

w f w

w

.

If           2 1
, ,u x f x u x u x ,   au a u and   bu b u , solve two IVPs with

1.   au a u and    1

0

b au u
u a s

b a


 


 with solution  0u x , and

2.   au a u and    
 1 0

1

2 b au u b u
u a s

b a

 
 


 with solution  1u x ;

and then continue with the initial slope

   

   
1

1

1

b k k k

k k

k k

u u b s s
s s

u b u b







 
 



with solution uk+1(x) with an approximation of ub of uk+1(b).

Given                2 1

1 0u x x u x x u x g x    and xk = a + kh and uk approximates u(xk), we have

          2 2

1 1 0 1 12 4 2 2 2k k k k k k kx h u x h u x h u h g x          .

If the ode has constant coefficients, the super-diagonal, diagonal and sub-diagonal entries are all
2

1 0 0 12 , 4 2 , 2d h d h d h          .

Apply this twice to get an approximation of the error of the better approximation.

 , 1 , 1, , 1,2
2k k k k k

t
u u u u u

h


  


   

 
2

, 1 , , 1 1, , 1,2 2k k k k k k

c t
u u u u u u

h
   

 
     

 

   
2

,1 ,0 1,0 ,0 1,0

1
2

2
k k k k k k

c t
u u tu x u u u

h
 

 
      

 

For 1, 2 and 3 dimensions, each point is the average of the 2, 4 or 6 points immediately surrounding

it.

For an appropriate value of 1

2
1  (generally the reciprocal of the golden ratio), calculate

c1 = b –  (b – a) and c2 = a + (b – a) and choose the appropriate sub-interval to continue the

algorithm.

Given three approximations to a local minimum, we find that

      

           
1 1 2 2

1 1 2 2 1 1

1

2

k k k k k k

k

k k k k k k k k

f x f x x x x x
x

f x f x x x f x f x x x

   

     

  
 

    

and xk+1 = 1
1

2

k k
k k

x x
x x




  .

