
  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECE 204 Numerical methods 

 

FINAL EXAMINATION 
Douglas Wilhelm Harder  dwharder@uwaterloo.ca EIT 4018  x37023 

 

1. The exam will be graded out of 50. 

2. No notes and no calculators. 

3. Turn off all electronic media and store them under your desk. 

4. If there is insufficient room, use the back of the last page. 

5. You may ask only one question during the examination: “May I go to the washroom?” 

6. Asking any other question will result in a deduction of 5 marks from the exam grade. 

7. If you think a question is ambiguous, write down your assumptions and continue. 

8. Do not leave during first hour or after there are only 15 minutes left. 

9. Do not stand up until all exams have been picked up. 

10. If a question only asks for an answer, you do not have to show your work to get full marks; 

however, if your answer is wrong and no rough work is presented to show your steps, no 

part marks will be awarded. 

11. The questions are approximately in the order of the course material. 

  



  

  

1 [2] Add the two numbers stored as double-precision floating-point numbers 

1 01101001101 10100000…0 
1 01101001111 01000000…0 

showing the addition in binary and write the resulting representation in binary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 [3] Solve the following system of linear equations using Gaussian elimination with partial 

pivoting. Zero marks will be awarded if partial pivoting is not used.   

3.5 0.6 3.3 17.5

1.5 1.8 0.3 2.1

5 2 1 5

 
 

  
  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 [3] Find the quadratic polynomial at2 + bt + c in the variable t that passes through the three points 

(–1, y–1), (0, y0) and (1, y1). You will find a, b and c in terms of the three unknowns y–1, y0, and y1. 

You will need to use a Vandermonde matrix to find your solution, but you need not use partial 

pivoting if you prefer not to. 

 

 

 

 

  



  

  

4 [2] Write down the 2nd-order Taylor series approximation of e0 + h and use this to approximate 

the value of e0.1. The correct answer, to 10 decimal digits, is 1.105170918. What is the ratio that 

must be calculated to find the relative error of using the 2nd-order Taylor series approximation of 

e0.1? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 [3] Approximate the integral of y(t) = t2 + 1 from 0 to 1 by first using two steps of the trapezoidal 

rule, and then one step of Simpson’s rule. Recall that the error of the composite trapezoidal rule is 

proportional to the 2nd derivative while the error of Simpson’s rule is proportional to the 4th 

derivative, so what can you say about the second approximation? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 [2] You have a reasonably exact reading at the previous time step, y(t – h), and you have another 

reasonably exact reading at the next time step, y(t – 2h), but an error in transmission resulted in 

the reading y(t) to be lost. You will estimate the reading using the average 
( 2 ) ( )

2

y t h y t h  
 . 

What is the error of this approximation? You suspect the error is O(h), so you will use a zeroth-

order Taylor  series, so, for example, y(t + h) = y(t) + y(1)()h.  

 

 

  



  

  

7 [3] Continuing from Question 6, you instead estimate the reading using the weighted average 

2 ( ) ( 2 )y t h y t h   . What is the error of this approximation? You suspect the error is O(h2), so 

you will use a first-order Taylor  series, so, for example, y(t + h) = y(t) + y(1)(t)h + ½ y(2)()h2. 

Which formula should you use, that in Question 6 or 7? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 [4] Use two steps of Newton’s method to approximate the root of f (x) = x3 – x2 + x – 2 starting 

with the approximation x0 = 1. Suppose you factor out the root you find, and applying Newton’s 

method one more time, this time again starting with x0 = 1, and you find it does not converge. What 

can you say about the two remaining roots, and what should you use as an initial point to find those 

two remaining roots?  

 

 

 

 

 

 

 

 

 

 

 

 

 

9 [2] Suppose you wanted to find a simultaneous root to the system of non-linear equations 

x2 + 4y2 – x + y = 1 and 3x2 + 2y2 + x – y = 2 and you intend to use Newton’s method in two 

dimensions, and your first approximation of that simultaneous root is x = y = 0.5. What is the 

system of linear equations you must solve (do not solve it). 

 

 

 

 

 

 

 

  



  

  

10 [2] Using Heun’s method, approximate y(1) with h = 1 for the initial-value problem defined by  
     1

2 1

(0) 2

y t y t t

y

   


  

 

 

 

 

 

 

 

 

 

 

 

 

 

11 [2] The mid-point method is a variation on Huen’s method, where you are given a system of 

initial-value problems   
      

 

1

0 0

,t t t

t





w f w

w w
 

and we approximate wk+1 with the formula: 

 0

1 0

1 1

,

,
2 2

k k

k k

k k

t

h h
f t

h



 
   

 

 

s f w

s w s

w w s

 

 

Use this technique to approximate y(1) and z(1) with h = 1 given the system of two initial-value 

problems 
       
       

1

1

2 1

1

(0) 1

(0) 2

y t y t z t

z t y t z t

y

z

  

   





 

 

 

 

 

 

 

 

 

  



  

  

12 [3] Write down the system of linear equations that must be solved to approximate a solution to 

the boundary-value problem 
         

 

 

2 1
1 0

0 2

1 1

u x u x u x

u

u

   





, 

using h = ¼. You should not solve this system of linear equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 [3] Show how we convert the heat-conduction equation in one dimension into a finite-difference 

equation starting with    
2

2
, ,u t x u t x

t x


 


 
. You must explain each step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 [2] Provide two justifications for using adaptive techniques (for example, the Dormand-Prince 

method) as being more appropriate to getting an acceptable approximation to an initial-value 

problem as compared to fixed step size methods (for example, the 4th-order Runge Kutta method). 

 

 

 

 

 

  



  

  

15 [1] In the wave equation    
2

2 2

2
, ,u t c u t

t


 


x x , suppose we are applying this to model 

incoming radio signals sent from the space craft Voyager 1. What is c? 

 

 

16 [2] You have a function that you are attempting to maximize, and you have evaluated the 

function at three points: (0, 1), (1, 1.25) and (2, 0.5). Apply one step of successive parabolic 

interpolation to find a better approximation of the maximum of this function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17 [1] What is the benefit of the golden-ratio search over simply dividing the interval [a, b] into 

three equal sub-intervals (so a, a + (b – a)/3, a + 2(b – a)/3 and b)? 

 

 

 

 

18 [3] Suppose you are attempting to use gradient descent to find a minimum of the function 

f (x, y) = x2 – xy – 3x + 4y + 2y2 + 1. What is the function of one variable that you would 

subsequently have to find the minimum of if you started with the initial point x0 = 1 and y0 = –1. 

Suppose you used another function like successive parabolic interpolations to find an 

approximation of that minimum in one dimension. How would you use this to find the next 

approximation x1 and y1? Do not find the actual minimum of your function of one variable, just 

assume that you have found an appropriate approximation and explain how you would use that to 

get the next step. 

 

 

 

 

 

  



  

  

19 [2] Suppose you are trying to find a global minimum of a signal y(t) on the interval [0, 10] and 

you know the signal is sinusoidal with a minimum period of 2. Explain why you cannot just use 

successive parabolic interpolation to find that minimum starting with the points t = 0, t = 5 and 

t = 10. You can give a graphical example where such an approach may fail. 

 

 

 

 

 

 

 

 

 

 

 

20 [1] Suppose that a polynomial is of degree n and its coefficients are being stored in an array of 

that capacity. What is the run-time of the algorithm that divides out the root r resulting in a 

polynomial of degree n – 1? 

 

 

 

 

 

 

 

 

 

21 [3] For each of the seven tools we learned, give one application of that tool in this course. 

  



  

  

Floating-point representations 

  ±EEMNNN   ±M.NNN × 10EE – 49 

  seeeeeeeeeeebbbbbb…b (-1)s 1.bbbbbb…b × 10eeeeeeeeeee – 01111111111 

where 011111111112 = 1023. 

 

Fixed-point theorem:   Solving x = f(x), choose x0 and let  1k kx f x  . 

     
 

   1 1

0

1 1

! 1 !

n k nk n

k
f x h f x h f h

k n


 



 
   

 
   where x x h   . 

      
 

   1 1

0 00

1 1

! 1 !

n kk n n

k
f x f x x x f h

k n


 



 
   

 
   where 0x x  . 

Averaging noisy values with zero bias mitigates the effect, while differentiating noisy values 

magnifies the effect. 
 double horner( double a[], unsigned int degree; double x ) { 

    double result{a[0]}; 
     for ( std::size_t k{1}; k <= degree; ++k ) { 
         result += result*x + a[k]; 

    } 
    return 0; 
} 

Formula of interest: 

   
       1 3 21

2 6

f x h f x h
f x f h

h


  
          

       1 21

2

y t y t h
y t y h

h


 
   

   
         1 3 2

3 4 2 1

2 3

y t y t h y t h
y t y h

h


   
      

   
         2 4 2

2

2 1

12

f x h f x f x h
f x f h

h


   
         

         2 3

2

2 2y t y t h y t h
y t y h

h


   
   

            
321 1 1

d
2 2 12

b

a

f x x f a f b b a f b a
 

     
 



         
54

0 1 2

1 1
d 4

6 2880

b

a

f x x f f f b a f b a       

         
54

0 1 2 3

1 1
d 3 3

8 6480

b

a

f x x f f f f b a f b a        

           
1

2 2

1

1
d 2

2 12

b n

ka

b a
f x x f a f a kh f b h f h





   
      

  
  

     
1

2 2
4 4

0 2 1 2

1 1

1
d 4 2

3 180

n n
b

k k n

k ka

b a
f x x f f f f h f h





 

 
 

    
 
 
 

   

                     
2

4 4

2

1 1 25 25 1 1 11
d

24 2 24 24 2 24 80

b n

ka

f x x f a h f a f a h f a kh f b h f b f b h h f b a h




  
                

  
  

>> A = vander( -n:0, 2 ); # n + 1 points 
>> detAtA = round( det( A'*A ) );   % This should be an integer 
>> round( detAtA*inv( A'*A )*A' )   % This should be an integer matrix 
>> ans/detAtA 
 

For five points, 4 3 –1

1
10

2 2n n n na
y y y y   




 and 4

0

2 –12 2 4

0

6

1

n n n na
y y y y   




. 

Goal Estimation 

Estimate y(tn + h) a0 + a1 

Estimate the rate of change of y over time a1/h 

Estimate the integral  d
n

n

t

t h
y t t

  (a0 – a1/2)h 

Estimate the integral  d
n

n

t h

t
y t t



  (a0 + a1/2)h 

 

  



  

  

For five points, 4 3 –2 –1

2

2

1

–

4

2 – 2n n n n ny y y y
a

y  
 ,  4 3 –2 –1

1

40

70

26 – 27 13 54n n n n na
y y y y y  

 and 

1 –2 –3 4

0

3

35

31 9 5 3n n n n na
y y y y y   

 . 

Goal Estimation 

Estimate y(tn + h) a0 +  (a1 +  a2) 

Estimate the rate of change of y over time at time 

tn + h 
(a1 + 2a2)/h 

Estimate the acceleration of y over time at time tn 2a2/h
2 

Estimate the integral  d
n

n

t

t h
y t t

  (a0 – a1/2 + a2/3)h 

Estimate the integral  d
n

n

t h

t
y t t



  (a0 + a1/2 + a2/3)h 

 
2 4

2

b b ac

a

  
 or 

2

2

4

c

b b ac




 

 

Method Requirements 
Iteration step Rate of 

convergence 

Is convergence 

guaranteed? 

Bisection  
An interval [a, b] with f(a) 

having the opposite sign of f(b) 

Let 
2

a b
c


  and update whichever endpoint has 

the same sign as f(c). 

O(h) Yes 

Bracketed 

secant  

An interval [a, b] with f(a) 

having the opposite sign of f(b) 

Let 
   
   

af b bf a
c

f b f a





 and update whichever 

endpoint has the same sign as f(c). 

O(h) Yes 

Secant 
Two initial approximations x0 

and x1 with |f(x0)| > |f(x1)| 
Let 

   
   

2 1 1 2

1 2

k k k k

k

k k

x f x x f x
x

f x f x

   

 





. O(h) No 

Newton’s An initial approximation x0 Let 
 

   
1

1 1

1

k

k k

k

f x
x x

f x







  . O(h2) No 

Muller’s 

Three initial approximations 

x0, x1 and x2 with 

|f(x0)| > |f(x1)| > |f(x2)| 

The root of the interpolating quadratic polynomial 

passing through (xk, f(xk)), (xk–1, f(xk–1)) and 

(xk–2, f(xk–2)) 

O(h1.839) No 

Inverse 

quadratic 

interpolation 

Three initial approximations 

x0, x1 and x2 with 

|f(x0)| > |f(x1)| > |f(x2)| 

Evaluate the interpolating quadratic polynomial 

passing through (f(xk), xk), (f(xk–1), xk–1) and 

(f(xk–2), xk–2) and evaluate this at 0. 

O(h1.839)  

 

Given uk, 1k k u u  and then for each entry,  1; off; , 1

,

1
k i i i k

i i

u v A
a

   u . 

Given uk, calculate 
1;k iu 

 as above, but then set  1; ; 1;1k i k i k iu u u     . 

Given a function f(x, y) and an approximation to a root (xk, yk), we can solve 

   

   

 

 

, ,
,

,
, ,

k k k k

k k k

k k k
k k k k

f x y f x y
x f x yx y

y g x y
g x y g x y

x y

  
            
        
 
  

 

and then let xk+1 ← xk + xk, yk+1 ← yk + yk. 

 

 1 ,k k k ky y hf t y     1 ,k k k kh t  y y f y  O(h) 

 

 

0

1 0

0 1

1

,

h,

2

k k

k k

k k

s f t y

s f t y hs

s s
y y h



  


 

 

 

 

0

1 0

0 1

1

,

h,

2

k k

k k

k k

t

t h

h



  


 

s f y

s f y s

s s
y y

 
O(h2) 

 

 

 

 

0

h h
1 02 2

h h
2 12 2

3 2

0 1 2 3

1

,

,

,

,

2 2

6

k k

k k

k k

k k

k k

s f t y

s f t y s

s f t y s

s f t h y hs

s s s s
y y h



  

  

  

  
 

 

 

 

 

 

0

h h
1 02 2

h h
2 12 2

3 2

0 1 2 3

1

,

,

,

,

2 2

6

k k

k k

k k

k k

k k

t

t

t

t h h

h



  

  

  

  
 

s f y

s f y s

s f y s

s f y s

s s s s
y y

 
O(h4) 



  

  

 

With n, calculate y1, …, yn, with 2n, calculate z1, …, z2n, and use |yn – z2n| appropriately to estimate 

the error of z2n. If the error is small enough, extrapolate to get an even better approximation. The 

approximation of the error depends on the error of the method used. 

 

Given a target error per unit step in time of abs, ensure the error contributed to the total error when 

approximating yk+1 is less than 
absh . Do this by finding a better approximation zk+1, and 

overestimating the error of yk+1 by 2|yk+1 – zk+1| and calculating 
1 12 k k

absa
y z

h

 




. Based on the 

magnitude of a, either recalculate yk+1 or continue to approximate yk+2, in either case using 0.9ah. 

 

Given               1 1
, , ,...,

n n
y t f t y t y t y t


  with          

   11 1 1

0 0 0, ,...,
n n

y t y y t y y t y
 

   , define 

 

 

 

 

 
   

   

0

1

1

1
1

n
n

y tw t

w t y t
t

w t y t




  
  
      
  

      

w , 
 

 

0

1

0

0

1

0

n

y

y

y

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If           2 1
, ,u x f x u x u x ,   au a u  and   bu b u , solve two IVPs with 

1.   au a u  and    1
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
 with solution  0u x , and 
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 1 0
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and then continue with the initial slope 
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with solution uk+1(x) with an approximation of ub of uk+1(b). 

 

Given                2 1

1 0u x x u x x u x g x     and xk = a + kh and uk approximates u(xk), we have  

          2 2

1 1 0 1 12 4 2 2 2k k k k k k kx h u x h u x h u h g x          . 

 

If the ode has constant coefficients, the super-diagonal, diagonal and sub-diagonal entries are all  
2

1 0 0 12 , 4 2 , 2d h d h d h          . 

Apply this twice to get an approximation of the error of the better approximation. 
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For 1, 2 and 3 dimensions, each point is the average of the 2, 4 or 6 points immediately surrounding 

it. 

 

  



  

  

For an appropriate value of 1

2
1   (generally the reciprocal of the golden ratio), calculate 

c1 = b –  (b – a) and c2 = a + (b – a) and choose the appropriate sub-interval to continue the 

algorithm. 

 

Given three approximations to a local minimum, we find that  
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