
Instructions

• You may rip off the last three pages as soon as you sit down.

• There are 53 marks available. It will be marked out of 50.

• No aides.

• Turn off all electronic media and store them under your desk.

• You may ask only one question during the examination: “May I go to the washroom?”

• Asking any other question will result in a deduction of 5 marks from the exam grade.

• If you think a question is ambiguous, write down your assumptions and continue.

• Do not leave during first hour or after there are only 15 minutes left.

• Do not stand up until all exams have been picked up.

• There are questions on both sides of the pages.

• If a question only asks for an answer, you do not have to show your work to get full marks;
however, if your answer is wrong and no rough work is presented to show your steps, no part
marks will be awarded.

• Answer the questions in the spaces provided. If you require additional space to answer a question,
please use the provided blank page and refer to this page in your solutions.



1. [1] Multiply the following two numbers shown in the double-precision floating-point representa-
tion:

c010000000000000 1 10000000001 0000000000...0
3fe0000000000000 0 01111111110 0000000000...0

Each row is the same number, only the first is in the hexadecimal representation, and the second
is in the binary representation. You may give your answer in either hexadecimal or in binary, as
you wish.

Solution: The first number is −22 = −4 and the second is 2−1 = 0.5, so the answer is −21,
which is c0000...0 or 1100000...0. Half a mark for the sign, and half a mark for the correct
exponent. If the mantissa is anything other than all zeros, deduct half a mark.

2. [3] Show that the error of the approximation of the second derivative

y(2)(t) ≈ y(t)− 2y(t− h) + y(t− 2h)

h2

is equal to y(3)(t)h+O(h2) where you will use, for example,

y(t− h) = y(t)− y(1)(t)h+
1

2
y(2)(t)h2 − 1

6
y(3)(t)h3 +O(h4).

You should recall that O(16h4) = O(h4), O(h4)±O(h4) = O(h4) and that, for example, O(h4)
5h

=
O(h3). You must show and explain each step in your calculations. You will not be using the
intermediate-value theorem.

Solution:

y(t− h) = y(t)− y(1)(t)h+
1

2
y(2)(t)h2 − 1

6
y(3)(t)h3 +O(h4)

y(t− 2h) = y(t)− y(1)(t)(2h) +
1

2
y(2)(t)(2h)2 − 1

6
y(3)(t)(2h)3 +O((2h)4)

= y(t)− 2y(1)(t)h+ 2y(2)(t)h2 − 4

3
y(3)(t)h3 +O(h4)

Adding −2 times the first to the second yields

−2y(t− h) + y(t− 2h) = −y(t) + y(2)(t)h2 − y(3)(t)h3 +O(h4)

Bringing y(t) to the other side:

y(t)− 2y(t− h) + y(t− 2h) + y(3)(t)h3 +O(h4) = y(2)(t)h2

Rearranging yields

y(2)(t)h2 = y(t)− 2y(t− h) + y(t− 2h) + y(3)(t)h3 +O(h4)

y(2)(t) =
y(t)− 2y(t− h) + y(t− 2h)

h2
+ y(3)(t)h+O(h2)

(a) One mark for correctly writing out the expansion of y(t− 2h).

(b) One mark for adding the two equations together.

(c) One mark for isolating the second derivative, dividing by h2, and getting the result.

Do not give marks out if they get the correct answer at the end without clearly showing that
they got to the solution correctly. On the mid-term, some students wrote the correct result,
but their calculations demonstrated that they did not actually arrive at that solution.



3. [4] Write down the system of linear equations as a numeric augmented matrix that must be
solved to find ∆u0 when trying to find the minimum of the function

x4 + y4 + z4 + xyz + xy − 2yz

where u =

 x
y
z

 and when using the gradient and Newton’s method starting with the initial

approximation u0 =

 −11
1

.

Assume the solution to the system of linear equations is ∆u0 =

 0.19
−0.06
−0.11

. What is the next

approximation of the minimum u1?

Solution: The gradient is

∇⃗(f)(u) =

 4x3 + yz + y
4y3 + xz + x− 2z
4z3 + xy − 2y


The Jacobian of the gradient is

J(∇⃗(f))(u) =

 12x2 z + 1 y
z + 1 12y2 x− 2
y x− 2 12z2


Evaluating these at u0, we have that we are solving

J(∇⃗)(f)(u) =

 12 2 1
2 12 −3
1 −3 12

∆u0 =

 2
0
−1


The given value of ∆u0 is very close to the solution, so a student could theoretically check
their solution.

Thus, u1 =

 0.81
0.94
0.89

.

(a) One mark for correctly or almost correctly calculating the gradient by taking the three
partial derivatives. Ignore one or two very small errors, but for habitual mistakes, take
off half a mark and if it is not even close to the correct answer, a full mark.

(b) One mark for correctly or almost correctly calculating the Jacobian of the gradient.

(c) One mark for correctly substituting the values (please try to take into account previous

mistakes). It is important that the right-hand vector must be −∇⃗(f)(u0), so half a
mark off if the student forgets to negate the vector entries.

(d) One mark for correctly calculating u1.



4. [3] Show that one step of Newton’s method for finding the root of a real-valued function of a
real variable is O(h2) where h = r − xk if xk is the current approximation of the root r using
this method. You will show that r−xk+1 is a scalar multiple of (r−xk)

2 and finding that scalar
multiple. Recall that

f(r) = f(xk) + f (1)(xk)(r − xk) +
1

2
f (2)(ξ)(r − xk)

2.

Solution:

f(r) = f(xk) + f (1)(xk)(r − xk) +
1

2
f (2)(ξ)(r − xk)

2

0 = f(xk) + f (1)(xk)(r − xk) +
1

2
f (2)(ξ)(r − xk)

2

0 =
f(xk)

f (1)(xk)
+ r − xk +

1

2

f (2)(ξ)

f (1)(xk)
(r − xk)

2

1

2

f (2)(ξ)

f (1)(xk)
(r − xk)

2 = r −
(
xk −

f(xk)

f (1)(xk)

)
1

2

f (2)(ξ)

f (1)(xk)
(r − xk)

2 = r − xk+1

The scalar multiple is 1
2

f (2)(ξ)

f (1)(xk)
.

(a) One mark for having f(r) = 0 and dividing by f (1)(xk).

(b) One mark for rewriting the expressions so that it is clear that we have one step of

Newton’s method through xk − f(xk)

f (1)(xk)

(c) One mark for clearly deducing the scalar multiple. The student doesn’t have to explic-
itly point it out, but they should show that r − xk+1 = C(r − xk)

2.



5. [1] If x5 =


1.5
−1.2
1.8
2.4

 is one approximation of a solution to a system of linear equations, and

our next approximation is x6 =


1.2
−1.4
1.7
2.5

 is our next approximation, suppose we want to use

successive over-relaxation by going an extra 10% in the direction of the better approximation.
Find the updated vector x6.

6. [2] Use the 4th-order Runge Kutta method to approximate y(0.2) with h = 0.2 for the initial-value
problem

y(1)(t) = 3t(t− 0.1)y(t)

with the initial condition y(0) = −2.

Solution:

s0 ← f(0,−2) = 0

s1 ← f(0.1,−2 + 0.1s0) = f(0.1,−2) = 0

s2 ← f(0.1,−2 + 0.1s1) = f(0.1,−2) = 0

s3 ← f(0.2,−2 + 0.1s2) = f(0.2,−2) = 3 · 0.2 · 0.1 · −2 = −0.12

y1 ← −2 + 0.2
0 + 2 · 0 + 2 · 0− 0.12

6
= −2− 0.004 = −2.004

(a) One mark for correctly determining that the slopes are evaluated at (0,−2), (0.1,−2),
(0.1,−2) and (0.2,−2), getting the slopes to be the values shown. Ignore minor little
errors in arithmetic, but don’t ignore incorrect applications of the formulas.

(b) One mark for correctly calculating y1, but take into account any mistakes in the calcu-
lations above.



7. [4] Given the system of initial-value problems

y(1)(t) =

(
y1(t) + y2(t)
y1(t)− y2(t)

)

with the initial condition y(0) =

(
0
1

)
, perform one step of the Euler-Heun adaptive solving

method with h = 0.1 and determine the scaling factor a if the maximum error we are willing to
accept per unit time is ϵabs = 0.25, determine whether or not the approximation you found is
sufficiently accurate, and in either case, determine what is the value of h you will use with the
next iteration? Note: all calculations are straight-forward and can be easily done by hand.

Solution:

s0 = f(0,y0) =

(
1
−1

)
s1 = f(0.1,y0 + 0.1s0) = f

(
0.1,

(
0
1

)
+ 0.1

(
1
−1

))
= f

(
0.1,

(
0.1
0.9

))
=

(
1

−0.8

)
Thus, we have that

y =

(
0
1

)
+ 0.1

(
1
−1

)
=

(
0.1
0.9

)
and

z =

(
0
1

)
+ 0.1

(
1

−0.9

)
=

(
0.1
0.91

)

Thus, ∥y − z∥2 =

∥∥∥∥( 0
0.01

)∥∥∥∥ = 0.01, and the vector entry could be ±0.01 depending on

whether the student calculates ∥y− z∥2 or ∥z− y∥2, but the 2-norm remains the same.

Thus a = 0.1·0.25
0.02

= 0.025
0.02

= 1.25.

Therefore, the approximation is sufficiently accurate, and with the next iteration we will use
the step size h← 0.1 · 0.9 · 1.25 = 0.1125, but they don’t have to multiply this out.

(a) One mark for getting the two slope vectors correct.

(b) One mark for getting the two approximations correct and correctly calculating ∥y−z∥.

(c) Correctly calculating a and making the appropriate deduction from its value, but do
try to take into account previous errors.

(d) One mark for writing out 0.1 · 0.9 · a, where a is whatever value the student found
previously.



8. [3] Suppose we are using Heun’s method and the 4th-order Runge-Kutta method (rk4) to ap-
proximate a solution y(tk+h) where our approximation of y(tk) is yk. These two techniques give
us two approximations of y(tk+h), and let us label these as y and z, respectively. You know that
Heun’s method is O(h3) for a single step and that the rk4 method for a single step is O(h5).
Given y and z, we want to find that best scaling factor ah so that the error in approximating
y(t+ ah) is ahϵabs. Recall that for a method that is O(hm), this means the error 2|y− z| ≈ Chm

for some C, and we want to ensure that C(ah)m = ahϵabs. Find the scaling factor a. Explain
why we are using 2|y − z| and not just |y − z|.

Solution: Because one step of Heun’s method is O(h3), then the error is Ch3 ≈ 2|y−z|, and
we want C(ah)3 = ahϵabs. Thus, a3Ch3 = ahϵabs. Thus, substituting in the first equation,
we have a32|y − z| = ahϵabs. Thus, solving this for a, we have a2 = hϵabs

2|y−z| or

a =

√
hϵabs

2|y − z|
.

We use |y− z| because z is only approximately better an approximation than y, but it is not
equal to y(tk+h). Thus, —y - z— may underestimate the error of y, and thus we will double
this difference to ensure we are overestimating and not underestimating the error of y.

(a) One mark for correctly having m = 3 in the formula C(ha)m and substituting to get
a32|y − z|.

(b) One mark for the isolation of a to include the square root.

(c) One mark for a reasonable description or argument as to why we use 2|y−z|, hopefully
referring to not under-estimating the error, but rather over-estimating it.



9. [2] Convert this third-order initial-value problem into a system of first-order initial-value prob-
lems:

x(3)(t) = −x(t) + x(1)(t) + 1

x(0) = 11

x(1)(0) = 12

x(2)(0) = 13

Solution: Define w(t) =

 w0(t)
w1(t)
w2(t)

 =

 x(t)
x(1)(t)
x(2)(t)

 and thus

w(1)(t) =

 w1(t)
w2(t)

−w0(t) + w1(t) + 1



where w(0) =

 11
12
13

.

(a) One mark for correctly writing down the vector-valued system of ordinary differential
equations.

(b) One mark for the correct initial condition.

10. [3] Suppose you are approximating a solution to a boundary-value problem using the shooting
method. The right boundary value is given as ub = 2. You calculated the initial slope to be
s0 = 0.6 and with this initial slope, the approximation of u(b) = 2.4. You then calculate your
next slope s1 = 0.1 and with this initial slope, the approximation of u(b) = 1.9. What method
would you use to calculate the next initial slope s2, and what value is the value of s2.

What are the halting conditions if you are given ϵstep and ϵabs?

Solution:

(a) One mark for saying that we use the secant method.

(b) One mark for for determining that s2 = 0.2 (however the student finds it).

(c) One mark for something approaching: We will stop once |sk+1 − sk| < ϵstep and the
approximation of u(b) with the initial slope sk+1 is closer than ϵabs of 2, or to use the
notation in class, |usk+1

(b)− 2| < ϵabs.



11. [3] Show how we get from the heat equation in one spatial dimension ∂
∂t
u(x, t) = α∇2u(x, t) to

the equation

uk,ℓ+1 ← uk,ℓ + α∆t
uk−1,ℓ − 2uk,ℓ + uk+1,ℓ

h2

Describe each step, and be sure to indicate what it is that uk,ℓ is approximating. You may assume
that xk = a+ kh and tℓ = t0 + ℓ∆t.

Solution: First, we are approximating u(xk, tℓ) with uk,ℓ.

Next, we realize that the Laplacian is just the second partial with respect to the space variable
x.

Next, we substitute the approximations of the partial derivatives into the equation:

u(xk, tℓ +∆t)− u(xk, tℓ)

∆t
= α

u(xk − h, tℓ)− 2u(xk, tℓ) + u(xk + h, tℓ)

h2

These are now replaced with

uk,ℓ+1 − uk,ℓ

∆t
= α

uk−1,ℓ − 2uk,ℓ + uk+1,ℓ

h2

We now multiply both sides by ∆t and bring the one term to the right side:

uk,ℓ+1 = uk,ℓ + α∆t
uk−1,ℓ − 2uk,ℓ + uk+1,ℓ

h2

(a) One mark for noting that we are approximating u(xk, tℓ) with the unknown uk,ℓ.

(b) One mark for substituting in the two approximations of the partial derivatives.

(c) One mark for replacing the variables, multiplying by ∆t and isolating uk,ℓ+1.

12. [3] Assume that the initial values for a system described by the heat equation (given in the
previous question) are shown as given below in the table:

k uk,0 uk,1

0 u0,0 = 1.5 u0,1 = 1.5
1 u1,0 = 1.5 u1,1

2 u2,0 = 2.5 u2,1

3 u3,0 = 3.5 u3,1

4 u4,0 = 2.5 u4,1

5 u5,0 = 1.5 u5,1

6 u6,0 = 1.5 u6,1

7 u7,0 = 1.5 u7,1

8 u8,0 = 1.5 u8,1(insulated)



Assuming α > 0,

(a) Which entries for ℓ = 1 will see the value go up from the previous value at that point? Just
list the k values.

(b) Which entries for ℓ = 1 will see the value go down from the previous value at that point?
Just list the k values.

(c) Which entry will see the largest change from the previous value (either up or down)? Just
give the k value.

(d) What will the value of u8,1 at the insulated boundary be?

This question does not require any explicit calculations. Note that the correct answers are
independent of h > 0 and ∆t > 0.

Solution: The correct solutions:

(a) k = 1, 5

(b) k = 3

(c) k = 3

(d) 1.5

Grading. The student does not have to show how the student got any of these answers.

(a) For the first three, starting with 2, −0.5 for any missing point or any value that should
not be there, to a minimum of 0.

(b) One mark for the correct value 1.5; no formula required. If the student writes down
the correct formula, but does not calculate it correctly, subtract 0.5.



13. [4] For finding an approximation of a boundary-value problem where the ordinary differential
equation is linear, we converted the ordinary differential equation into a finite-difference equation
that gave us a system of n− 1 linear equations in the n− 1 unknowns u1 through un−1. Suppose
we had a non-linear second-order differential equation u(2)(x)u(x) = sin(x). We can substitute
our divided-difference approximation of the second derivative, but we then get u(xk− h)u(xk)−
2u(xk)

2 + u(xk + h)u(xk) = h2 sin(xk), which is not a linear equation. We can still approximate
u(xk) by an unknown uk, but how can we find approximations of uk where xk = a + kh and
h = b−a

n
? Specifically, what do we do about the first and last equations

u(x0)u(x1)− 2u(x1)
2 + u(x2)u(x1) = h2 sin(x1)

u(xn−2)u(xn−1)− 2u(xn−1)
2 + u(xn)u(xn−1) = h2 sin(xn−1)

the boundary conditions are Dirichlet with u(a) = u(x0) = 13 and u(b) = u(xn) = 15? Hint: the
tools we would use were taught in this course. Please do not try to actually solve for any of the
values u1 through un−1.

Solution: This is quite straight-forward: turn it into a root-finding problem and apply
Newton’s method in n− 1 dimensions.

uk−1uk − 2u2
k + uk+1uk − h2 sin(xk) = 0

with the first and last being

13u1 − 2u2
1 + u2u1 − h2 sin(x1) = 0

un−2un−1 − 2u2
n−1 + 15un−1 − h2 sin(xn−1) = 0

We would begin with an initial approximation of the solution, so say for example, uk =
ua + k ub−ua

n
, and this would form an n− 1 dimensional vector u1 through un−1. The entries

of the Jacobian matrix would be, for example,
13− 4u1 + u2 13u2 0 · · · 0 0

u2 u1 − 4u2 + u3 u3u2
. . . 0 0

...
...

. . . . . .
...

...
0 0 0 · · · un−1 un−2 − 4un−1 + 15


(a) One mark for saying Newton’s method in n dimensions.

(b) One mark for converting the equation into a finite difference equation depending on uk

and then specifically showing that we could substitute 13 and 15 into the appropriate
positions.

(c) Two more marks for any reasonable discussion on the matter, such as, for example, the
initial guess of the solution, or the Jacobian matrix, or just one line of the Jacobian
matrix. These should be two distinct ideas that demonstrate some insights into the
problem.



Figure 1: A rectangular region on a silicon wafer insulated along the boundary except where voltages
are explicitly prescribed.

14. [2] Write down the system of linear equations as an augmented matrix that must be solved to
approximate the steady-state potential in Figure 1; that is, the solution to Laplace’s equation.
Do not attempt to solve this system of linear equations.

Solution: Based on Project 4, the solution should be
3 −1 −1 0 0 0 10
−1 2 0 −1 0 0 0
−1 0 4 −1 −1 0 5
0 −1 −1 4 0 −1 0
0 0 −1 0 3 −1 0
0 0 0 −1 −1 2 0


An alternative solution is 

1 −1
3
−1

3
0 0 0 10

3

−1
2

1 0 −1
2

0 0 0
−1

4
0 1 −1

4
−1

4
0 5

4

0 −1
4
−1

4
1 0 −1

4
0

0 0 −1
3

0 1 −1
3

0
0 0 0 −1

2
−1

2
1 0


or one could also negate all the entries.

(a) One mark for correct diagonal entries, with only 0.5 if one or two entries are wrong,
and 0 otherwise.

(b) One mark for correct off-diagonal and vector entries, with only 0.5 if one or two entries
are wrong, and 0 otherwise.

15. [4] The error of one step of Euler’s method is 1
2
y(2)(τ)h2 where t ≤ τ ≤ t+h. If we have the initial



condition y(t0) = y0, then show how we can determine that in approximating tf with n steps has
an error that is O(h). Specifically, show how we go from summing the n errors

∑n
k=1

1
2
y(2)(τk)h

2

to 1
2
(tf − t0)hy

(2)(τ) and explain what interval each of the τk are found on, and why we know

that t0 ≤ τ ≤ tf . Recall h =
tf−t0

n
. Explain your reasoning and which tools you are using.



16. [1] Circle true or false. At least one of the techniques we have seen for finding minima is
guaranteed to find a global minimum. True or False?

Solution: False.

17. [2] Apply two steps of the golden ratio to find the minimum of p(x) = x2 − 13x + 16 starting
with interval [0, 10] and assuming that 1

ϕ
= 0.6. Only calculate one new x value for the second

step. For your information,

p(0) = 16, p(2) = −6, p(4) = −20, p(6) = −26, p(8) = −24, p(10) = −14

and

p(0.4) = 10.96, p(2.4) = −9.44, p(3.6) = −17.84, p(6.4) = −26.24, p(7.6) = −25.04, p(9.6) = −16.64

Solution: First, ℓ = 4 and r = 6, and p(4) = −20 > p(6) = −26, so discard the left
boundary and continue with [4, 10].

Second, ℓ = 6 while r = 7.6, and p(6) = −26 < p(7.6) = −25.04, so discard the right
boundary and continue with [4, 7.6].

(a) One mark for calculating ℓ and r correctly, and determining that we should continue
with the right-hand interval [4, 10]. Half a mark off if either of these is wrong, but try
to account for previous mistakes.

(b) One mark for calculating ℓ and r correctly, and determining that we should continue
with the right-hand interval [4, 7.6]. Half a mark off if either of these is wrong, but try
to account for previous mistakes.

18. [4] The most trivial formula to approximate a double integral would be similar to a Riemann
sum: ∫ b

a

∫ d

c

f(x, y)dxdy ≈ f(a, c)(b− a)(d− c)

Propose a better formula that could be used to approximate this double integral
∫ b

a

∫ d

c
f(x, y)dxdy,

possibly considering a generalization of the trapezoidal rule. Next, suppose we wanted a better
approximation of this integral. How could you use the techniques we saw in this class to find a
better approximation? You don’t have to write down the explicit formulas (which likely will use
a double sum), but rather, you just have to explain your ideas.



Solution: This is an exploratory question. Basically, give one mark per useful or distinctive
idea. For example, you could use the four corner values to find the interpolating polynomial
ax + by + cxy + d. Alternatively, you could divide one of the intervals, say, [a, b] into steps,
and then a composite integral rule along the other interval, and then add these up.

Alternatively, you could break both of the intervals [a, b] and [c, d] into smaller parts, and
apply the Riemann sum formula on each smaller rectangle, but this is worth only one mark.

I can’t think of any others, but the students may surprise you.



19. [2] Suppose you found an approximation to an initial-value problem y(1)(t) = −y(t) using the
4th-order Runge Kutta method where you found that with the initial condition y(0) = 1, the
approximation of y(1) with a single step is y(1) ≈ 0.375. Write down the system of linear
equations that must be solved to find the cubic spline connecting (0, 1), (1, 0.375) with the
slopes at these two points being given by the ordinary differential equation.

Solution: The cubic polynomial is ax3 + bx2 + cx+ d, and its derivative is 3ax2 + 2bx+ c.
The derivatives at the two points are −1 and −0.375, respectively. Thus, we have one of the
two forms:

d = 1

c = −1
a+ b+ c+ d = 0.375

3a+ 2b+ c = −0.375

or they may write down the matrix
0 0 0 1
0 0 1 0
1 1 1 1
3 2 1 0

 a =


1
−1

0.375
−0.375


(a) One mark for the matrix.

(b) One mark for the vector.

Give part marks as the get close to the correct solution.



20. [2] What is the direction from the point

 x
y
z

 =

 1
2
3

 that has the steepest rate of descent

of the polynomial x2 + 3xy + 2y2 − 4yz + 3z2 − x+ 2z + 125432.

Solution: The gradient is

 2x+ 3y − 1
3x+ 4y − 4z
−4y + 6z + 2

, and this evaluated at the given point is

 2 + 6− 1
3 + 8− 12
−8 + 18 + 2

 ,

so the direction of maximum decrease is

 −7
1

−12

 .

(a) One mark for correctly calculating the gradient (−0.5 per error in the derivative or
major calculation error.

(b) One mark for negating the vector to get the direction of maximum decrease.



USE THIS PAGE IF ADDITIONAL SPACE IS REQUIRED
Clearly state the question number being answered and refer the marker to this page.



YOU MAY RIP THESE LAST THREE PAGES OFF

Floating-point representations: ±EENMMM represents ±N.MMM× 10EE−49 and the 64 bits

seeeeeeeeeeebbbbbb · · · b

represents
(−1)s1.bbbbbb · · · b× 2eeeeeeeeeee−01111111111

where 0b01111111111 = 1023 = 0x3ff. Recall 1 is +491000 or 0x3ff0000000000000.
Fixed-point theorem: To approximate a solution to x = f(x), choose x0 and let xk ← f (xk−1).
Gaussian elimination with partial pivoting: This is the Gaussian elimination algorithm but
always swapping appropriate rows so that the largest entry is in the pivot position (the row that will
be used to eliminate that term in all subsequent rows).
n th-order Taylor series: If h is small, expanding around x yields:

f (x+ h) =

(
n∑

k=0

1

k!
f (k) (x)hk

)
+

1

(n+ 1)!
f (n+1) (ξ)hn+1

where x ≤ ξ ≤ x+ h. Otherwise, if x is close to x0, expanding around x0 yields:

f (x) =

(
n∑

k=0

1

k!
f (k) (x0) (x− x0)

k

)
+

1

(n+ 1)!
f (n+1) (ξ) (x− x0)

n+1

where x0 ≤ ξ ≤ x.

double horner( double a[], unsigned int const degree, double const x ) {
// The coefficient of xˆk is a[k]
double result{ a[degree] };

for ( std::size_t k{degree - 1}; k < degree; --k ) {
result = result*x + a[k];

}

return result;
}

Noise: Averaging noisy values with zero bias mitigates the effect, while differentiating noisy values
magnifies the effect. Use interpolating polynomials if the data is accurate and precise, but use least
squares best-fitting polynomials if the data is accurate but not precise (that is, the data has significant
noise). If the data is not accurate, we cannot recover the underlying signal.
Evaluating interpolating polynomials: For interpolating between tk and tk−1 where tk is the
time of the most recent data point, shift and scale to . . . ,−2.5,−1.5,−0.5 and 0.5 to ensure that
−0.5 < δ < 0.5 to evaluate the polynomial at the point tk−1+tk

2
+ δh where h is the time step between

readings. Note, you do not have to know these formulas explicitly; rather, you must understand the
idea behind deriving these. For example, why to we shift and scale so that our choice of δ is such that
|δ| < 0.5.
Derivatives:
Centered three-point:

f (1) (x) = f (1) (x) =
f (x+ h)− f (x− h)

2h
− 1

6
f (3) (ξ)h2

Backward two-point:

y(1) (t) =
y (t)− y (t− h)

h
+

1

2
y(2) (τ)h

Backward three-point:

y(1) (t) =
3y (t)− 4y (t− h) + y (t− 2h)

2h
+

1

3
y(3) (t)h2 +O

(
h3
)

Second derivatives:



Centered three-point:

f (2) (x) =
f (x+ h)− 2f (x) + f (x− h)

h2
− 1

12
f (4) (ξ)h2

Backward three-point:

y(2) (t) =
y (t)− 2y (t− h) + y (t− 2h)

h2
+ y(3) (τ)h

Backward four-point:

y(2) (t) =
2y (t)− 5y (t− h) + 4y (t− 2h)− y (t− 3h)

h2
+

11

12
y(4) (t)h2 +O

(
h3
)

Integrals:
Two-point (trapezoidal rule):∫ xk

xk−1

f (x) dx =

(
1

2
f (xk−1) +

1

2
f (xk)

)
h− 1

12
f (2) (ξ)h3

Centered four-point:∫ xk

xk−1

f (x) dx =

(
− 1

24
f (xk−2) +

13

24
f (xk−1) +

13

24
f (xk)−

1

24
f (xk+1)

)
h− 11

720
f (4) (tk)h

5 +O
(
h6
)

Simpson’s rule:∫ xk+1

xk−1

f (x) dx =

(
1

6
f (xk−1) +

4

6
f (xk) +

1

6
f (xk+1)

)
(2h)− 1

90
f (4) (ξ)h5

Backward three-point (half Simpson’s rule):∫ tk

tk−1

y (t) dx =

(
5

12
y (tk) +

8

12
y (tk−1)−

1

12
y (tk−2)

)
h− 1

24
y(3) (tk)h

4 +O
(
h5
)

Backward four-point:∫ tk

tk−1

y (t) dx =

(
9

24
y (tk) +

19

24
y (tk−1)−

5

24
y (tk−2) +

1

24
y (tk−3)

)
h+

19

720
y(4) (tk)h

5 +O
(
h6
)

As Simpson’s rule spans two time intervals, it is less useful, but it is interesting with its comparison
with the trapezoidal rule applied twice versus one application of Simpson’s rule.
Any integral formula can be applied repeatedly on the interval [a, b] by dividing the interval into n
equally-spaced sub-intervals of width h = b−a

n
and then setting xk = a+ kh or tk = a+ kh.



Least squares: In general, if we want to find the best approximation of an n-dimensional vector
y by a linear linear combination of m vectors v1, . . . ,vm (where m < n), we create the matrix
V = (v1 · · ·vm) and solve V TV α⃗ = V Ty. More specific to this course, having shifted and scaled the
n most recent t-values onto 0,−1,−2, . . . ,−n + 1, with y values y = (yk, yk−1, y0−2, . . . , yk−n+1), we
solve V TV α⃗ = V Ty for the coefficients of the least-squares best-fitting polynomial, generally of degree
one (linear or α1t+ α0) or two (quadratic or α2t

2 + α1t+ α0). We can find the 2× n or 3× n matrix

to calculate α⃗ =
(
V TV

)−1
V Ty.

Value being estimated Linear estimation
y(tk) α0

y(tk + h) α0 + α1

y(1)(tk) α1/h∫ tk
tk−h

y(t)dt (α0 − α1/2)h∫ tk+h

tk
y(t)dt (α0 + α1/2)h

Value being estimated Quadratic estimation
y(tk) α0

y(tk + h) α0 + α1 + α2

y(1)(tk) α1/h
y(2)(tk) 2α2/h

2∫ tk
tk−h

y(t)dt (α0 − α1/2 + α2/3)h∫ tk+h

tk
y(t)dt (α0 + α1/2 + α2/3)h

References to both binary search and interpolation search are not applicable to this course. Instead,
they are introduced into the course to demonstrate parallels between the binary search and bisection
method, and interpolation search and the bracketed secant method.
Bisection: Given an interval [a, b] with f(a) and f(b) having opposite signs, let m← a+b

2
and update

whichever endpoint has the same sign as f(m). O(h).

Bracketed secant: Given an interval [a, b] with f(a) and f(b) having opposite signs, let c← af(b)−bf(a)
f(b)−f(a)

and update whichever endpoint has the same sign as f(c). O(h).

Secant: Given two initial approximations x0 and x1 with |f(x0)| > |f(x1)|, let x2 ← x0f(x1)−x1f(x0)
f(x1)−f(x0)

.

O(h1.618).
Muller’s: Given three initial approximations, interpolate (x0 − x2, y0), (x1 − x2, y1) and 0, y2) and
find the smaller root of the interpolating quadratic, call this δ and set x3 = x2 + δ. O(h1.839).
Inverse quadratic interpolation: Given three initial approximations, interpolate (y0, x0), (y1, x1)
and (y2, x2) and find let x3 be the constant coefficient of this interpolating quadratic polynomial.
O(h1.839).

Newton’s: Given an initial approximation x0, let x1 ← x0 − f(x0)

f (1)(x0)
. O(h2).



Fixed-point iteration for systems of linear equations: Given a square n× n matrix A, if DA is
the matrix corresponding to the diagonal entries of A, and Aoff consists of all the off-diagonal entries
of A (so A = DA + Aoff), the we can rewrite Ax = b as the equation x = D−1

A (b− Aoffx). Let the
entries of xk = (xk,1, xk,2, ..., xk,n).
Jacobi: Set xk ← D−1

A (b− Aoffxk−1).
Successive over-relaxation: Given the approximation xk−1 and having iterated an algorithm once
more to get the approximation xk, we can move an addition 100α% in the direction of the newer
approximation by updating xk ← (1 + α)xk − αxk−1.
Newton’s method in two dimensions: Given functions f(x, y) and g(x, y) and an approximation
to a simultaneous root (xk, yk), we can solve( ∂

∂x
f (xk, yk)

∂
∂y
f (xk, yk)

∂
∂x
g (xk, yk)

∂
∂y
g (xk, yk)

)(
∆xk

∆yk

)
=

(
−f (xk, yk)
−g (xk, yk)

)
and then let xk+1 ← xk +∆xk and yk+1 ← yk +∆yk.
Newton’s method in n dimensions: More generally, approximating f(x) = 0, given an approxi-
mation xk, solve J(f)(xk)∆xk = −f(xk) and then let xk+1 ← xk +∆xk.

Initial-value problems (IVPs): Given the ordinary-differential equation (ODE) and initial value

y(1)(t) = f(t, y(t)) and y(t0) = y0,

we will approximate yk+1 ≈ y(tk+1).

Given the system of ODEs and initial values

y(1)(t) = f(t,y(t)) and y(t0) = y0

we will approximate yk+1 ≈ y(tk+1).

Euler’s method:

yk+1 ← yk + hf(tk, yk) yk+1 ← yk + hf(tk,yk)

Heun’s method:

s0 ← f(tk, yk) s0 ← f(tk, yk)
s1 ← f(tk + h, yk + hs0) s1 ← f(tk + h,yk + hs0)
yk+1 ← yk + h s0+s1

2
yk+1 ← yk + h s0+s1

2

The 4th-order Runge-Kutta method:

s0 ← f(tk, yk) s0 ← f(tk, yk)
s1 ← f

(
tk +

1
2
h, yk +

1
2
hs0
)

s1 ← f
(
tk +

1
2
h,yk +

1
2
hs0
)

s2 ← f
(
tk +

1
2
h, yk +

1
2
hs1
)

s2 ← f
(
tk +

1
2
h,yk +

1
2
hs1
)

s3 ← f (tk + h, yk + hs2) s3 ← f (tk + h,yk + hs2)
yk+1 ← yk + h s0+2s1+2s2+s3

6
yk+1 ← yk + h s0+2s1+2s2+s3

6

A single step of these three methods are O(h2), O(h3) and O(h5), respectively; however, multiple steps
are one order less: O(h), O(h2) and O(h4), respectively.

For Euler’s method, the error of one step may be found from Taylor series:

y(t+ h) = y(t) + y(1)(t)h+
1

2
y2(τ)h2

where

y(tk+1) = yk + f(tk, yk)h+
1

2
y2(τ)h2

assuming that yk is exact.

The adaptive Euler-Heun method Given an ODE and an initial value together with a maximum
absolute error per unit step ϵabs, start with an initial step size h and determine both minimum and
maximum step sizes hmin and hmax, respectively. Also, let k ← 0.



1. If h < hmin, set h← hmin, and if h > hmax, set h← hmax.

2. Given yk, calculate s0 ← f(tk, yk) and s1 ← f(tk + h, yk + hs0).

3. Estimate y(tk + h) with

• y ← yk + hs0 (the worse approximation), and

• z ← yk + h s0+s1
2

(the better approximation).

4. Let a← hϵabs
2|y−z| , and

• if a ≥ 1 or h = hmin, let tk+1 ← tk + h and let yk+1 ← z and then set h ← 0.9ah and
k ← k + 1, and we will continue with the next step;

• otherwise a < 1 and we will try again.

5. If 0.9a ≤ 0.5, set h← 0.5h (don’t shrink h by more than a factor of two),
else if 0.9a ≥ 2, set h← 2h (don’t grow h by more than a factor of two),
else set h← 0.9ah.

Given a system of ODEs and initial values with a similar set-up:

1. If h < hmin, set h← hmin, and if h > hmax, set h← hmax.

2. Given yk, calculate s0 ← f(tk,yk) and s1 ← f(tk + h,yk + hs0).

3. Estimate y(tk + h) with

• y← yk + hs0 (the worse approximation), and

• z← yk + h s0+s1
2

(the better approximation).

4. Let a→ hϵabs
2∥y−z∥2 where ∥ · ∥2 is the 2-norm (or Euclidean norm), and

• if a ≥ 1 or h = hmin, let tk+1 ← tk + h and let yk+1 ← z and then set h ← 0.9ah and
k ← k + 1, and we will continue with the next step;

• otherwise a < 1 and we will try again.

5. If 0.9a ≤ 0.5, set h← 0.5h (don’t shrink h by more than a factor of two),
else if 0.9a ≥ 2, set h← 2h (don’t grow h by more than a factor of two),
else set h← 0.9ah.

Boundary-value problems (BVPs) Given a 2nd-order ODE u(1)(x) = f(x, u(x), u(1)(x)) with two
boundary conditions u(a) = ua and u(b) = ub, we can approximate a solution to this BVP as follows.
First, create the IVP u(1)(x) = f(x, u(x), u(1)(x)) with the two initial conditions u(a) = ua and
u(1)(a) = s where s is an initial slope we can choose. Let us use any technique you wish (preferably
Dormand Prince), and let us(x) be an approximation to the solution of this IVP with the initial slope
s. Then the approximation of u(b) using the this technique and initial slope is us(b). Proceed as
follows:

1. Let s0 =
ub−ua

b−a
and find us0(b). If us0(b) = ub, we are done, otherwise, continue.

2. Let s1 =
2ub−us0 (b)−ua

b−a
and find us1(b). If us1(b) = ub, we are done, otherwise, continue.

3. Define the function f(s) = ub − us(b), which is a function of a single variable s, and use s0 and
s1 as the first two approximations for the secant method.

Linear boundary-value problems (BVPs) Given a 2nd-order linear ODE (LODE) c2(x)u
(2)(x) +

c1(x)u
(1)(x) + c0(x)u(x) = g(x) with two boundary conditions u(a) = ua and u(b) = ub, we convert

the LODE into a linear finite-difference equation and let xk = a + hk for h = b−a
n
, so if we define



for each k = 1, ..., n − 1 the three values pk = 2c2(xk) − hc1(xk), qk = −4c2(xk) + 2h2c0(xk) and
rk = 2c2(xk) + hc1(xk), we have

pkuk−1 + qkuk + rkuk+1 = 2h2g(xk)

For Dirichlet boundary conditions, the corresponding linear equations are:

q1u1 + r1u2 = 2h2g(x1)− p1ua

pn−1un−2 + qn−1un−1 = 2h2g(xn−1)− rn−1ub

For Neumann boundary conditions, the corresponding linear equations are:(
q1 +

4

3
p1

)
u1 +

(
r1 −

1

3
p1

)
u2 = 2h2g(x1) +

2

3
hp1u

(1)
a(

pn−1 −
1

3
rn−1

)
un−2 +

(
qn−1 +

4

3
rn−1

)
un−1 = 2h2g(xn−1)−

2

3
hrn−1u

(1)
b

after which

u0 ← −
2

3
hu(1)

a +
4

3
u1 −

1

3
u2

un ←
2

3
hu

(1)
b +

4

3
un−1 −

1

3
un−2

and this simplifies for insulated boundary conditions where u
(1)
a = 0 or u

(1)
b = 0.

Heat equation: For the heat equation ∂u
∂t

= α∇2u, we have uinit(x), ua(t) and ub(t), and we convert
the partial-differential equation (PDE) into a finite-difference equation with xk ← a + kh and tℓ ←
t0 + ℓ∆t so that uk,0 ← uinit(xk),

uk,ℓ+1 ← uk,ℓ +
α∆t

h2
(uk−1,ℓ − 2uk,ℓ + uk+1,ℓ)

where u0,ℓ ← ua(tℓ) and un,ℓ ← ub(tℓ).

Laplace’s equation: On a grid xj = ax + jh and yk ← ay + kh, we convert the PDE into the linear
finite difference equation:

4uj,k − uj−1,k − uj+1,k − uj,k−1 − uj,k+1 = 0

replacing any points on the boundary with their boundary value. Note that each value is the average
of the surrounding points. If there are insulated boundaries, each entry must be the average of all the
points around it that are not insulated boundary points.

Newton’s: Use Newton’s method on f (1)(x).
Golden ratio search: To minimize, given an interval [a, b] with a minimum on that interval, let
m1 ← b− (b−a)/ϕ and m2 ← a+(b−a)/ϕ and update a← m1 if f(m2) < f(m1) and update b← m2

otherwise.
Successive parabolic interpolation: Formula not necessary: given three points, find the interpo-
lating polynomial ax2 + bx+ c and let the next point be − b

2a
.

Newton’s: Use Newton’s method on ∇⃗f .
Gradient descent: Calculate or approximate ∇⃗f(xk), and then use a one-dimensional algorithm to

find a minimum of f(xk − s∇⃗f(xk)) and when we find the value sk that gives us the minimum, set

xk+1 ← xk − sk∇⃗f(xk).


