
You may rip this last page off, but hand it in.
Floating-point representations: ±EENMMM represents ±N.MMM×10EE−49 and
the 64 bits seeeeeeeeeeebbbbbb · · · b represents

(−1)s1.bbbbbb · · · b× 2eeeeeeeeeee−01111111111

where 0b01111111111 = 1023 = 0x3ff. Recall 1 is +491000 or 0x3ff0000000000000.
Given n real or complex numbers or vectors x1, . . . , xn and n real or complex
numbers w1, . . . , wn, then

∑n
k=1 wkxk is:

1. a linear combination of the x-values if there are no restrictions on the
weights,

2. a weighted average if
∑n

k=1 wk = 1, and

3. a convex combination if the weights form a weighted average and each
wk ≥ 0.

Fixed-point theorem: To approximate a solution to x = f(x), choose x0 and
let xk ← f (xk−1).
Gaussian elimination with partial pivoting: This is the Gaussian elimina-
tion algorithm but always swapping appropriate rows so that the largest entry
in absolute value is in the pivot position (the row that will be used to eliminate
entries in that column in subsequent rows).
n th-order Taylor series: If h is small, expanding around x yields:

f (x+ h) =

(
n∑

k=0

1

k!
f (k) (x)hk

)
+

1

(n+ 1)!
f (n+1) (ξ)hn+1

where x ≤ ξ ≤ x+h. Otherwise, if x is close to x0, expanding around x0 yields:

f (x) =

(
n∑

k=0

1

k!
f (k) (x0) (x− x0)

k

)
+

1

(n+ 1)!
f (n+1) (ξ) (x− x0)

n+1

where x0 ≤ ξ ≤ x.
The examples of binary search and interpolation search are not required for

this course: they are provided as examples of different bracketing algorithms.

double horner(double const a[],

unsigned int const degree,

double const x) {

// The coefficient of x^k is a[k]

double result{ a[degree] };

for (std::size_t k{degree - 1}; k < degree; --k) {

result = result*x + a[k];

}

return result;

}

1

Noise: Averaging noisy values with zero bias mitigates the effect, while differ-
entiating noisy values magnifies the effect. Use interpolating polynomials if the
data is accurate and precise, but use least squares best-fitting polynomials if
the data is accurate but not precise (that is, the data has significant noise). If
the data is not accurate, we cannot recover the underlying signal.
Evaluating interpolating polynomials: For interpolating between tk and
tk−1 where tk is the time of the most recent data point, shift and scale to
. . . ,−2.5,−1.5,−0.5 and 0.5 to ensure that −0.5 < δ < 0.5 to evaluate the
polynomial at the point tk−1+tk

2 +δh where h is the time step between readings.
Note, you do not have to know these formulas explicitly; rather, you must
understand the idea behind deriving these. For example, why to we shift and
scale so that our choice of δ is such that |δ| < 0.5.

Derivatives:
Centered three-point:

f (1) (x) =
f (x+ h)− f (x− h)

2h
− 1

6
f (3) (ξ)h2

Backward two-point:

y(1) (t) =
y (t)− y (t− h)

h
+

1

2
y(2) (τ)h

Backward three-point:

y(1) (t) =
3y (t)− 4y (t− h) + y (t− 2h)

2h
+

1

3
y(3) (t)h2 +O

(
h3
)

Second derivatives:
Centered three-point:

f (2) (x) =
f (x+ h)− 2f (x) + f (x− h)

h2
− 1

12
f (4) (ξ)h2

Backward three-point:

y(2) (t) =
y (t)− 2y (t− h) + y (t− 2h)

h2
+ y(3) (τ)h

Backward four-point:

y(2) (t) =
2y (t)− 5y (t− h) + 4y (t− 2h)− y (t− 3h)

h2
+

11

12
y(4) (t)h2 +O

(
h3
)

2

Integrals:
Two-point (trapezoidal rule):∫ xk

xk−1

f (x) dx =

(
1

2
f (xk−1) +

1

2
f (xk)

)
h− 1

12
f (2) (ξ)h3

Centered four-point:∫ xk

xk−1

f (x) dx =

(
− 1

24
f (xk−2) +

13

24
f (xk−1) +

13

24
f (xk)−

1

24
f (xk+1)

)
h− 11

720
f (4) (tk)h

5+O
(
h6
)

Simpson’s rule:∫ xk+1

xk−1

f (x) dx =

(
1

6
f (xk−1) +

4

6
f (xk) +

1

6
f (xk+1)

)
(2h)− 1

90
f (4) (ξ)h5

Backward three-point (half Simpson’s rule):∫ tk

tk−1

y (t) dx =

(
5

12
y (tk) +

8

12
y (tk−1)−

1

12
y (tk−2)

)
h− 1

24
y(3) (tk)h

4+O
(
h5
)

Backward four-point:∫ tk

tk−1

y (t) dx =

(
9

24
y (tk) +

19

24
y (tk−1)−

5

24
y (tk−2) +

1

24
y (tk−3)

)
h+

19

720
y(4) (tk)h

5+O
(
h6
)

As Simpson’s rule spans two time intervals, it is less useful, but it is inter-
esting with its comparison with the trapezoidal rule applied twice versus one
application of Simpson’s rule.
Any integral formula can be applied repeatedly on the interval [a, b] by dividing
the interval into n equally-spaced sub-intervals of width h = b−a

n and then
setting xk = a+ kh or tk = a+ kh.

3

Least squares: In general, if we want to find the best approximation of an
n-dimensional vector y by a linear combination of m vectors v1, . . . ,vm (where
m < n), we create the matrix V = (v1 · · ·vm) and solve V ⊤Vα = V ⊤y. More
specific to this course, having shifted and scaled the n most recent t-values onto
0,−1,−2, . . . ,−n + 1, with y values y = (yk, yk−1, y0−2, . . . , yk−n+1), we solve
V ⊤Vα = V ⊤y for the coefficients of the least-squares best-fitting polynomial,
generally of degree one (linear or α1t+α0) or two (quadratic or α2t

2+α1t+α0).

We can find the 2× n or 3× n matrix to calculate α =
(
V ⊤V

)−1
V Ty.

Value being estimated Linear estimation
y(tk) α0

y(tk + h) α0 + α1

y(1)(tk) α1/h∫ tk
tk−h

y(t)dt (α0 − α1/2)h∫ tk+h

tk
y(t)dt (α0 + α1/2)h

Value being estimated Quadratic estimation
y(tk) α0

y(tk + h) α0 + α1 + α2

y(1)(tk) α1/h
y(2)(tk) 2α2/h

2∫ tk
tk−h

y(t)dt (α0 − α1/2 + α2/3)h∫ tk+h

tk
y(t)dt (α0 + α1/2 + α2/3)h

Root finding:

• Bisection: Let mk ← ak+bk
2 and update that endpoint that has the value

of the function have the same sign as f(mk).

• Newton’s method: xk+1 ← xk − f(xk)
f(1)(xk)

.

• Secant method: xk+1 ← xk − f(xk)
f(xk)−f(xk−1)

xk−xk−1

= xk − f(xk)(xk−xk−1)
f(xk)−f(xk−1)

.

Newton’s: Given an initial approximation x0, let x1 ← x0 − f(x0)
f(1)(x0)

. O(h2).

4

Fixed-point iteration for systems of linear equations: Given a square
n× n matrix A, if DA is the matrix corresponding to the diagonal entries of A,
and Aoff consists of all the off-diagonal entries of A (so A = DA+Aoff), the we

can rewrite Ax = b as the equation x = D−1
A

(
b−Aoffx

)
.

Jacobi: Set xk+1 ← D−1
A (b−Aoffxk).

Successive over-relaxation: Given the approximation xk−1 and having it-
erated an algorithm once more to get the approximation xk, we can move
an addition 100α% in the direction of the newer approximation by updating
xk ← (1 + α)xk − αxk−1.
Newton’s method in two dimensions: Given functions f(x, y) and g(x, y)
and an approximation to a simultaneous root (xk, yk), we can solve(

∂
∂xf (xk, yk)

∂
∂yf (xk, yk)

∂
∂xg (xk, yk)

∂
∂y g (xk, yk)

)(
∆xk

∆yk

)
=

(
−f (xk, yk)
−g (xk, yk)

)
and then let xk+1 ← xk +∆xk and yk+1 ← yk +∆yk.
Newton’s method in n dimensions: More generally, approximating f(x) =
0, given an approximation xk, solve J(f)(xk)∆xk = −f(xk) and then let xk+1 ←
xk +∆xk.

Initial-value problems (IVPs): Given the ordinary-differential equation
(ODE) and initial value

y(1)(t) = f(t, y(t)) and y(t0) = y0,

we will approximate yk+1 ≈ y(tk+1).

Given the system of ODEs and initial values

y(1)(t) = f(t,y(t)) and y(t0) = y0

we will approximate yk+1 ≈ y(tk+1).

Euler’s method:

yk+1 ← yk + hf(tk, yk) yk+1 ← yk + hf(tk,yk)

Heun’s method:

s0 ← f(tk, yk) s0 ← f(tk, yk)
s1 ← f(tk + h, yk + hs0) s1 ← f(tk + h,yk + hs0)
yk+1 ← yk + h s0+s1

2 yk+1 ← yk + hs0+s1

2

The 4th-order Runge-Kutta method:

5

s0 ← f(tk, yk) s0 ← f(tk, yk)
s1 ← f

(
tk + 1

2h, yk + 1
2hs0

)
s1 ← f

(
tk + 1

2h,yk + 1
2hs0

)
s2 ← f

(
tk + 1

2h, yk + 1
2hs1

)
s2 ← f

(
tk + 1

2h,yk + 1
2hs1

)
s3 ← f (tk + h, yk + hs2) s3 ← f (tk + h,yk + hs2)
yk+1 ← yk + h s0+2s1+2s2+s3

6 yk+1 ← yk + hs0+2s1+2s2+s3

6

A single step of these three methods are O(h2), O(h3) and O(h5), respectively;
however, multiple steps are one order less: O(h), O(h2) and O(h4), respectively.

For Euler’s method, the error of one step may be found from Taylor series:

y(t+ h) = y(t) + y(1)(t)h+
1

2
y2(τ)h2

where

y(tk+1) = yk + f(tk, yk)h+
1

2
y2(τ)h2

assuming that yk is exact.

The adaptive Euler-Heun method Given an ODE and an initial value to-
gether with a maximum absolute error per unit step ϵstep, start with an initial
step size h and determine both minimum and maximum step sizes hmin and
hmax, respectively. Also, let k ← 0.

1. If h < hmin, set h← hmin, and if h > hmax, set h← hmax.

2. Given yk, calculate s0 ← f(tk, yk) and s1 ← f(tk + h, yk + hs0).

3. Estimate y(tk + h) with

• y ← yk + hs0 (the worse approximation), and

• z ← yk + h s0+s1
2 (the better approximation).

4. Let a← hϵstep
2|y−z| , and

• if a ≥ 1 or h = hmin, let tk+1 ← tk + h and let yk+1 ← z and then
set k ← k + 1, and we will continue with the next step;

• otherwise a < 1 and we will try again.

5. If 0.9a ≤ 0.5, set h← 0.5h (don’t shrink h by more than a factor of two),
else if 0.9a ≥ 2, set h← 2h (don’t grow h by more than a factor of two),
else set h← 0.9ah.

6

Given a system of ODEs and initial values with a similar set-up:

1. If h < hmin, set h← hmin, and if h > hmax, set h← hmax.

2. Given yk, calculate s0 ← f(tk,yk) and s1 ← f(tk + h,yk + hs0).

3. Estimate y(tk + h) with

• y← yk + hs0 (the worse approximation), and

• z← yk + hs0+s1

2 (the better approximation).

4. Let a→ hϵstep
2∥y−z∥2

where ∥ · ∥2 is the 2-norm (or Euclidean norm), and

• if a ≥ 1 or h = hmin, let tk+1 ← tk + h and let yk+1 ← z and then
set k ← k + 1, and we will continue with the next step;

• otherwise a < 1 and we will try again.

5. If 0.9a ≤ 0.5, set h← 0.5h (don’t shrink h by more than a factor of two),
else if 0.9a ≥ 2, set h← 2h (don’t grow h by more than a factor of two),
else set h← 0.9ah.

Boundary-value problems (BVPs)Given a 2nd-order ODE u(2)(x) = f(x, u(x), u(1)(x))
with two boundary conditions u(a) = ua and u(b) = ub, we can approximate a
solution to this BVP as follows.
First, create the IVP u(1)(x) = f(x, u(x), u(1)(x)) with the two initial conditions
u(a) = ua and u(1)(a) = s where s is an initial slope we can choose. Let us
use any technique you wish (preferably Dormand Prince), and let us(x) be
an approximation to the solution of this IVP with the initial slope s. Then
the approximation of u(b) using the this technique and initial slope is us(b).
Proceed as follows:

1. Let s0 = ub−ua

b−a and find us0(b). If us0(b) = ub, we are done, otherwise,
continue.

2. Let s1 =
2ub−us0 (b)−ua

b−a and find us1(b). If us1(b) = ub, we are done,
otherwise, continue.

3. Define the function f(s) = ub − us(b), which is a function of a single
variable s, and use s0 and s1 as the first two approximations for the
secant method.

Linear boundary-value problems (BVPs) Given a 2nd-order linear ODE
(LODE) c2(x)u

(2)(x) + c1(x)u
(1)(x) + c0(x)u(x) = g(x) with two boundary

conditions u(a) = ua and u(b) = ub, we convert the LODE into a linear finite-
difference equation and let xk = a + hk for h = b−a

n , so if we define pk =
2c2(xk) − hc1(xk), qk = −4c2(xk) + 2h2c0(xk) and rk = 2c2(xk) + hc1(xk), we
have

pkuk−1 + qkuk + rkuk+1 = 2h2g(xk)

7

For Dirichlet boundary conditions, the corresponding linear equations are:

q1u1 + r1u2 = 2h2g(x1)− p1ua

pn−1un−2 + qn−1un−1 = 2h2g(xn−1)− rn−1ub

For Neumann boundary conditions, the corresponding linear equations are:(
q1 +

4

3
p1

)
u1 +

(
r1 −

1

3
p1

)
u2 = 2h2g(x1) +

2

3
hp1u

(1)
a(

pn−1 −
1

3
rn−1

)
un−2 +

(
qn−1 +

4

3
rn−1

)
un−1 = 2h2g(xn−1)−

2

3
hrn−1u

(1)
b

after which

u0 ← −
2

3
hu(1)

a +
4

3
u1 −

1

3
u2

un ←
2

3
hu

(1)
b +

4

3
un−1 −

1

3
un−2

and this simplifies for insulated boundary conditions where u
(1)
a = 0 or u

(1)
b = 0.

Heat equation: For the heat equation ∂u
∂t = α∇2u, we have uinit(x), ua(t)

and ub(t), and we convert the partial-differential equation (PDE) into a finite-
difference equation with xk ← a+kh and tℓ ← t0+ℓ∆t so that uk,0 ← uinit(xk),

uk,ℓ+1 ← uk,ℓ +
α∆t

h2
(uk−1,ℓ − 2uk,ℓ + uk+1,ℓ)

where u0,ℓ ← ua(tℓ) and un,ℓ ← ub(tℓ).

Laplace’s equation: On a grid xj = ax + jh and yk ← ay + kh, we convert
the PDE into the linear finite difference equation:

4uj,k − uj−1,k − uj+1,k − uj,k−1 − uj,k+1 = 0

replacing any points on the boundary with their boundary value. Note that each
value is the average of the surrounding points. If there are insulated boundaries,
each entry must be the average of all the points around it that are not insulated
boundary points.

On a grid xi = ax + ih, yj ← ay + jh and zk ← az + kh we convert the PDE
into the linear finite difference equation:

6ui,j,k − ui−1,j,k − ui+1,j,k − ui,j−1,k − ui,j+1,k − ui,j,k−1 − ui,j,k+1 = 0

replacing any points on the boundary with their boundary value. Note that each
value is the average of the surrounding points. If there are insulated boundaries,
each entry must be the average of all the points around it that are not insulated
boundary points.

8

Newton’s: Use Newton’s method on f (1)(x).
Golden ratio search: To minimize, given an interval [a, b] with a maximum
on that interval, let m1 ← b − (b − a)/ϕ and m2 ← a + (b − a)/ϕ and update
a← m1 if f(m2) < f(m1) and update b← m2 otherwise.
Successive parabolic interpolation: Formula not necessary: given three
points, find the interpolating polynomial ax2 + bx+ c and let the next point be
− b

2a .

Newton’s: Use Newton’s method on ∇⃗f .
Gradient descent: Calculate or approximate ∇⃗f(xk), and then use a one-

dimensional algorithm to find a minimum of f(xk−s∇⃗f(xk)) and when we find

the value sk that gives us the minimum, set xk+1 ← xk − sk∇⃗f(xk).

9

