
You may rip this last page off, but hand it in.
Floating-point representations: ±EENMMM represents ±N.MMM×10EE−49 and
the 64 bits seeeeeeeeeeebbbbbb · · · b represents

(−1)s1.bbbbbb · · · b× 2eeeeeeeeeee−01111111111

where 0b01111111111 = 1023 = 0x3ff. Recall 1 is +491000 or 0x3ff0000000000000.
Given n real or complex numbers or vectors x1, . . . , xn and n real or complex
numbers w1, . . . , wn, then

∑n
k=1 wkxk is:

1. a linear combination of the x-values if there are no restrictions on the
weights,

2. a weighted average if
∑n

k=1 wk = 1, and

3. a convex combination if the weights form a weighted average and each
wk ≥ 0.

Fixed-point theorem: To approximate a solution to x = f(x), choose x0 and
let xk ← f (xk−1).
Gaussian elimination with partial pivoting: This is the Gaussian elimina-
tion algorithm but always swapping appropriate rows so that the largest entry
in absolute value is in the pivot position (the row that will be used to eliminate
entries in that column in subsequent rows).
n th-order Taylor series: If h is small, expanding around x yields:

f (x+ h) =

(
n∑

k=0

1

k!
f (k) (x)hk

)
+

1

(n+ 1)!
f (n+1) (ξ)hn+1

where x ≤ ξ ≤ x+h. Otherwise, if x is close to x0, expanding around x0 yields:

f (x) =

(
n∑

k=0

1

k!
f (k) (x0) (x− x0)

k

)
+

1

(n+ 1)!
f (n+1) (ξ) (x− x0)

n+1

where x0 ≤ ξ ≤ x.
The examples of binary search and interpolation search are not required for

this course: they are provided as examples of different bracketing algorithms.

double horner(double const a[],

unsigned int const degree,

double const x) {

// The coefficient of x^k is a[k]

double result{ a[degree] };

for (std::size_t k{degree - 1}; k < degree; --k) {

result = result*x + a[k];

}

return result;

}

1

Noise: Averaging noisy values with zero bias mitigates the effect, while differ-
entiating noisy values magnifies the effect. Use interpolating polynomials if the
data is accurate and precise, but use least squares best-fitting polynomials if
the data is accurate but not precise (that is, the data has significant noise). If
the data is not accurate, we cannot recover the underlying signal.
Evaluating interpolating polynomials: For interpolating between tk and
tk−1 where tk is the time of the most recent data point, shift and scale to
. . . ,−2.5,−1.5,−0.5 and 0.5 to ensure that −0.5 < δ < 0.5 to evaluate the
polynomial at the point tk−1+tk

2 +δh where h is the time step between readings.
Note, you do not have to know these formulas explicitly; rather, you must
understand the idea behind deriving these. For example, why to we shift and
scale so that our choice of δ is such that |δ| < 0.5.

Derivatives:
Centered three-point:

f (1) (x) = f (1) (x) =
f (x+ h)− f (x− h)

2h
− 1

6
f (3) (ξ)h2

Backward two-point:

y(1) (t) =
y (t)− y (t− h)

h
+

1

2
y(2) (τ)h

Backward three-point:

y(1) (t) =
3y (t)− 4y (t− h) + y (t− 2h)

2h
+

1

3
y(3) (t)h2 +O

(
h3
)

Second derivatives:
Centered three-point:

f (2) (x) =
f (x+ h)− 2f (x) + f (x− h)

h2
− 1

12
f (4) (ξ)h2

Backward three-point:

y(2) (t) =
y (t)− 2y (t− h) + y (t− 2h)

h2
+ y(3) (τ)h

Backward four-point:

y(2) (t) =
2y (t)− 5y (t− h) + 4y (t− 2h)− y (t− 3h)

h2
+

11

12
y(4) (t)h2 +O

(
h3
)

2

Integrals:
Two-point (trapezoidal rule):∫ xk

xk−1

f (x) dx =

(
1

2
f (xk−1) +

1

2
f (xk)

)
h− 1

12
f (2) (ξ)h3

Centered four-point:∫ xk

xk−1

f (x) dx =

(
− 1

24
f (xk−2) +

13

24
f (xk−1) +

13

24
f (xk)−

1

24
f (xk+1)

)
h− 11

720
f (4) (tk)h

5+O
(
h6
)

Simpson’s rule:∫ xk+1

xk−1

f (x) dx =

(
1

6
f (xk−1) +

4

6
f (xk) +

1

6
f (xk+1)

)
(2h)− 1

90
f (4) (ξ)h5

Backward three-point (half Simpson’s rule):∫ tk

tk−1

y (t) dx =

(
5

12
y (tk) +

8

12
y (tk−1)−

1

12
y (tk−2)

)
h− 1

24
y(3) (tk)h

4+O
(
h5
)

Backward four-point:∫ tk

tk−1

y (t) dx =

(
9

24
y (tk) +

19

24
y (tk−1)−

5

24
y (tk−2) +

1

24
y (tk−3)

)
h+

19

720
y(4) (tk)h

5+O
(
h6
)

As Simpson’s rule spans two time intervals, it is less useful, but it is inter-
esting with its comparison with the trapezoidal rule applied twice versus one
application of Simpson’s rule.
Any integral formula can be applied repeatedly on the interval [a, b] by dividing
the interval into n equally-spaced sub-intervals of width h = b−a

n and then
setting xk = a+ kh or tk = a+ kh.

3

Least squares: In general, if we want to find the best approximation of an
n-dimensional vector y by a linear linear combination of m vectors v1, . . . ,vm

(where m < n), we create the matrix V = (v1 · · ·vm) and solve V ⊤Vα = V ⊤y.
More specific to this course, having shifted and scaled the n most recent t-
values onto 0,−1,−2, . . . ,−n+1, with y values y = (yk, yk−1, y0−2, . . . , yk−n+1),
we solve V ⊤Vα = V ⊤y for the coefficients of the least-squares best-fitting
polynomial, generally of degree one (linear or α1t + α0) or two (quadratic or
α2t

2 + α1t + α0). We can find the 2 × n or 3 × n matrix to calculate α =(
V ⊤V

)−1
V Ty.

Value being estimated Linear estimation
y(tk) α0

y(tk + h) α0 + α1

y(1)(tk) α1/h∫ tk
tk−h

y(t)dt (α0 − α1/2)h∫ tk+h

tk
y(t)dt (α0 + α1/2)h

Value being estimated Quadratic estimation
y(tk) α0

y(tk + h) α0 + α1 + α2

y(1)(tk) α1/h
y(2)(tk) 2α2/h

2∫ tk
tk−h

y(t)dt (α0 − α1/2 + α2/3)h∫ tk+h

tk
y(t)dt (α0 + α1/2 + α2/3)h

Root finding:

• Bisection: Let mk ← ak+bk
2 and update that endpoint that has the value

of the function have the same sign as f(mk).

• Newton’s method: xk+1 ← xk − f(xk)
f(1)(xk)

.

• Secant method: xk+1 ← xk − f(xk)
f(xk)−f(xk−1)

xk−xk−1

= xk − f(xk)(xk−xk−1)
f(xk)−f(xk−1)

.

4

