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3 Tools 
We would like to find solutions to mathematical equations used by engineers to model the real world. Unfortunately, 

from calculus, you are aware that there are many problems that simply have no solutions. Consequently, we would 

like to approximate such solutions in the computer. Similarly, we will also want to simulate the real world using 

computers, and there is always variability in the real world. 

Consequently, we required to use floating-point numbers in a computer to approximate these solutions and to run 

simulations. There is always the problem, however, that the flaws with floating-point representations will produce 

an approximation or simulation that is horribly incorrect. For example, something as simple as approximating a 

derivative can be frustrating, as we know from calculus that 

 
   

0

d
lim

d 2h

f x h f x h
f x

x h

  
  . 

Thus, if we keep choosing smaller and smaller values of h, we should get better and better approximations: 

>> cos(1)              % The correct answer 
   0.540302305868140 
 
>> % A for-loop with 'i' going from 0 to 17 
>> for i = 0:17 
    h = 10^-i;                         % h = 1.0, 0.1, 0.01, 0.001, etc. 
    (sin(1 + h) - sin(1 - h))/(2*h) 
end 
 
   0.454648713412841 
   0.539402252169760 
   0.540293300874733 
   0.540302215817690 
   0.540302304967710 
   0.540302305856999 
   0.540302305895857 
   0.540302305673812 
   0.540302308449370 
   0.540302302898255 
   0.540302247387103 
   0.540301137164079 
   0.540290034933832 
   0.540123501480139 
   0.544009282066327 
   0.555111512312578 
   0.555111512312578 
   0 
 

It seems to get a better and better answer as h starts to get smaller, but as h gets too small, the accuracy begins to 

drop off—our approximation of the derivative of sine at 1 is getting worse. 
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Tabulating this data, the issue becomes more clear: 

h h Approximation 

10
–1 

0.1 0.497363752535389 

10
–2 

0.01 0.536085981011869 

10
–3 

0.001 0.539881480360327 

10
–4 

0.0001 0.540260231418621 

10
–5 

0.00001 0.540298098505865 

10
–6 

0.000001 0.540301885121330 

10
–7 

0.0000001 0.540302264040449 

10
–8 

0.00000001 0.540302302898255 

10
–9 

0.000000001 0.540302358409406 

10
–10 

0.0000000001 0.540302247387103 

10
–11 

0.00000000001 0.540301137164079 

10
–12 

0.000000000001 0.540345546085064 

10
–13 

0.0000000000001 0.539568389967826 

10
–14 

0.00000000000001 0.544009282066327 

10
–15 

0.000000000000001 0.555111512312578 

10
–16 

0.0000000000000001 0.000000000000000 
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To see what is happening, it is easier to look at the binary, where the correct answer is 

         0.10001010010100010100000001111101101010000011010001100 

h Approximation 

2–1 0.010011111110001001100000110000100011011000001001110100 

2–1 0.011011100001100000001101111000010000011010010011110000 

2–3 0.011111001000001011101110110001001110100000111000000000 

2–4 0.10000011011111110110111010001101110101110100101110000 

2–5 0.10000110111011011110010010001110111011111011010000000 

2–6 0.10001000101000001111110010011011101000110100001000000 

2–7 0.10001001011110010111100111101010111001011000110000000 

2–8 0.10001001111001010111010000100110110111000100000000000 

2–9 0.10001010000110110110000000010010010001101100000000000 

2–2 0.10001010001101100101000110111000011001000110000000000 

2–11 0.10001010010000111100100101110111001011110000000000000 

2–12 0.10001010010010101000010100010001011101111000000000000 

2–13 0.10001010010011011110001011001101010100110000000000000 

2–14 0.10001010010011111001000110100110111011100000000000000 

2–15 0.10001010010100000110100100010010101010000000000000000 

2–16 0.10001010010100001101010011001000010000000000000000000 

2–17 0.10001010010100010000101010100011000000000000000000000 

2–18 0.10001010010100010010010110010000011000000000000000000 

2–19 0.10001010010100010011001100000111000000000000000000000 

2–20 0.10001010010100010011100111000010100000000000000000000 

2–21 0.10001010010100010011110100100000000000000000000000000 

2–22 0.10001010010100010011111011001110000000000000000000000 

2–23 0.10001010010100010011111110101000000000000000000000000 

2–24 0.10001010010100010100000000010000000000000000000000000 

2–25 0.10001010010100010100000001010000000000000000000000000 

2–26 0.10001010010100010100000001100000000000000000000000000 

2–27 0.10001010010100010100000010000000000000000000000000000 

2–28 0.10001010010100010100000010000000000000000000000000000 

2–29 0.10001010010100010100000000000000000000000000000000000 

2–30 0.10001010010100010100000000000000000000000000000000000 

2–31 0.10001010010100010100000000000000000000000000000000000 

2–32 0.10001010010100010100000000000000000000000000000000000 

2–33 0.10001010010100010100000000000000000000000000000000000 

2–34 0.10001010010100010100000000000000000000000000000000000 

2–35 0.10001010010100010100000000000000000000000000000000000 

2–36 0.10001010010100011000000000000000000000000000000000000 

2–37 0.10001010010100010000000000000000000000000000000000000 

2–38 0.10001010010100100000000000000000000000000000000000000 

2–39 0.10001010010100000000000000000000000000000000000000000 

2–40 0.10001010010100000000000000000000000000000000000000000 

2–41 0.10001010010100000000000000000000000000000000000000000 

2–42 0.10001010011000000000000000000000000000000000000000000 

2–43 0.10001010010000000000000000000000000000000000000000000 

2–44 0.10001010100000000000000000000000000000000000000000000 

2–45 0.10001010000000000000000000000000000000000000000000000 

2–46 0.10001010000000000000000000000000000000000000000000000 

2–47 0.10001100000000000000000000000000000000000000000000000 

2–48 0.10001000000000000000000000000000000000000000000000000 

2–49 0.10010000000000000000000000000000000000000000000000000 

2–50 0.10000000000000000000000000000000000000000000000000000 

2–51 0.10000000000000000000000000000000000000000000000000000 

2–52 0.00000000000000000000000000000000000000000000000000000 
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To avoid such issues, there are six tools that we will use throughout this course to approximate solutions and run 

simulations: 

1. weighted averages, 

2. iteration, 

3. linear algebra, 

4. interpolation, 

5. Taylor series, and  

6. bracketing. 

We will quickly introduce each of these. 

1. Weighted averages 
Suppose you have n values all of which in some way approximate some value: 

x1, x2, …, xn. 

The average of these n values is defined as 1 2 3 nx x x x

n

   
. 

This is essentially the same as calculating 1 2 3

1 1 1 1
nx x x x

n n n n
    , so we have n coefficients, all of which are 

equal and 

 times

1 1 1 1
1

n

n n n n
     . 

If we have n coefficients 
1 2 3, , , , nc c c c  with the property 

1 2 3 1nc c c c     , then we say that 

1 1 2 2 3 3 n nc x c x c x c x     

is a weighted average of the values x1 through xn. 
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In some cases, a weighted average gives a better approximation of a value than a simple average. For example, 

consider calculating the integral  
3

2

sin dx x . One way is to calculate the area of the trapezoid shown in red: 

 

That area is 
   sin 2 sin 3

0.52521
2


 . This is the average of the two end-points. Could we not get a better 

approximating by taking the average of three points:  
     sin 2 sin 2.5 sin 3

0.54963
3

 
 . The correct answer, is 

of course    cos 2 cos 3 0.57385  , so it is slightly better; however, it happens that a weighted average is actually 

better in this case: 

     
1 1 1

sin 2 sin 2.5 sin 3 0.56184
4 2 4

   . 

Consider the relative error of each of these: 

 Approximation Percent relative error 

two-point average 
   sin 2 sin 3

2


 8.48 % 

three-point average 
     sin 2 sin 2.5 sin 3

3

 
 4.22 % 

three-point weighted average      
1 1 1

sin 2 sin 2.5 sin 3
4 2 4

   2.09 % 

 

Later in this course, we will understand why the three-point weighted average is so significantly better. 

Practice questions 
1. The weighted average described above for integration is referred to as the composite trapezoidal rule. We will 

revisit integration later; however, there is an even more suitable choice of weights: approximate the value of the 

function on the interval [2, 3] by using the function evaluated at the exact same points, but use the weights 1/6, 2/3 

and 1/6. Is this a valid weighted average? What is the percent relative error of this approximation of the integral? 

If your calculations are correct, you should get a percent relative error of approximately 0.0358 %. 

2. Choose a transcendental function for which you know the antiderivative and an interval of width one (1) and 

attempt to approximate the integral over this interval by taking the average of four equally spaced points. Next, 

instead, give the internal two points a weight of 3/8 while giving the two boundary points a weight of only 1/8. What 

is the relative error of each approximation? 

3. Advanced question: Find the integral of the quadratic polynomial  
5

2

4
3 d 56.5x x x  . Use the weighted 

averages in Question 1 to approximate this integral. What answer did you get? Assume that this formula is correct 

for all quadratic polynomials. Why does this suggest that the approximation of the integral of sin(x) is so accurate? 
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2. Iteration 
The process of iteration is where an operation repeated performed on an initial approximation to a solution. This 

means that we start with an initial approximation x0 and we apply a mathematical operation f to that value and we 

call that result x1, so x1 = f(x0). We then find x2 = f(x1), and then x3 = f(x2), and so on. There is no guarantee that this 

sequence will converge; for example, if f(x) = x
2
, then here are two sequences: 

1. 0.1, 0.01, 0.0001, 0.00000001, 0.0000000000000001, … 

2. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, … 

3. 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, … 

The first converges to (but never reaches) 0, the second remains at the point, and the third diverges to infinity. 

Here is an example of an operation that converges to 2 :  if 2x   then 
1 1

2x
  so 

2 2
2

2x
  . Thus, the 

average of these two values should be a better approximation of 2 : 
1 2 1

2 2

x
x

x x

 
   

 
. This formula was known 

to the ancient Babylonians, so let’s try it out, calculating with 50 digits of precision. 

Because 1.4
2
 = 1.96 and 1.5

2
 = 2.25, let’s start with 1.4: 

x0 = 1.4 

x1 = 1.4142857142857142857142857142857142857142857142857 

x2 = 1.4142135642135642135642135642135642135642135642136 

x3 = 1.4142135623730950499992895789028639393416700696942 

x4 = 1.4142135623730950488016887242096980790767550505500 

x5 = 1.4142135623730950488016887242096980785696718753770 

x6 = 1.4142135623730950488016887242096980785696718753770 

The answer doesn’t change after x6, so let’s see how good that approximation is: The correct answer to 52 digits is 

1.414213562373095048801688724209698078569671875376948, so we are ever so slightly off; ending in 69 would 

have been slightly more correct. 

2.1 Fixed-point theorem 
Given any function f, if we want to find a solution to the equation 

x = f(x), 

one technique that may find such a solution is to start with an initial point x0 and then to iteratively evaluate that 

value at that function. The fixed-point theorem says that if this iteration sequence converges, then it must converge 

to a solution of this equation. 

For example, if we want to find a solution to x = cos(x), we note that  
2

cos 1
2!

x
x   , so using algebra, a solution to 

 cos x x  is approximately 
2

1
2!

x
x   or a root of 

22 2 0x x   . From algebra, we know that the best solution 

is 3 1 0.7320508076  , so let’s start with x0 = 0.7320508076 and we will repeatedly find x1 = cos(x0), and so on: 

 x0 = 0.7320508076 

 x1 = 0.7438052150 
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 x2 = 0.7358974081 

 x3 = 0.7412286644 

 x4 = 0.7376395280 

 x5 = 0.7400581377 

 x6 = 0.7384293559 

 x7 = 0.7395267137 

 x8 = 0.7387876072 

 x9 = 0.7392855176 

x10 = 0.7389501371 

x11 = 0.7391760615 

x12 = 0.7390238798 

x13 = 0.7391263929 

x14 = 0.7390573396 

 

It seems to bounce above and below, but converge to a point. That point is approximately 0.7390851332 which is 

indeed the point where x = cos(x). 

If we try to find a solution to x = sin(x) and if we were to start with the same initial value, we find it converges, but 

much more slowly: 

 x0 = 0.7320508076 

 x1 = 0.6683964409 

 x2 = 0.6197282848 

 x3 = 0.5808139959 

 x4 = 0.5487046324 

 x5 = 0.5215824580 

 x6 = 0.4982528026 

 x7 = 0.4778914976 

 x8 = 0.4599079195 

 x9 = 0.4438655962 

x10 = 0.4294336785 

x11 = 0.4163559688 

x12 = 0.4044304285 

x13 = 0.3934952020 

x14 = 0.3834188302 

 

If you wait long enough (a few million iterations), you will see that this, however, does converge to the solution to 

x = sin(x), namely 0. 

On the other hand, the equation x = tan(x) also has a solution at x = 0; however, if we try iterating, we find that it 

never appears to converge. 

Consequently, the fixed-point theorem only gives us a possible means of finding a solution to x = f(x), but it doesn’t 

guarantee we will find such a solution. 
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2.2 Implementation of the fixed-point theorem and halting conditions 
Consider the following C++ function: 

double fixed_point( double f( double ), double x_current ); 
 
double fixed_point( double f( double ), double x_current ) { 
    double x_previous; // Uninitialized 
 
    do { 
        x_previous = x_current; 
 
        x_current = f( x_current ); 
    } while ( x_previous != x_current ); 
 
    return x_current; 
} 
 

Now, consider the following program: 

 
#include <iostream> 
#include <cmath> 
 
double fixed_point( double f( double ), double x_current ); 
int main(); 
 
// Definition of 'fixed_point(...)'... 
 
int main() { 
    std::cout.precision( 16 ); 
    std::cout << fixed_point( std::cos, 1.0 ) << std::endl; 
 
    return 0; 
} 
 

The output is 0.7390851332151607, which is correct to all but the last digit, as the correct answer to 18 decimal 

digits of precision is 0.739085133215160642. However, consider the following: 

double ulgy_function( double x ) { 
    return 1.01*cos(x); 
} 
 

If we execute this function, it appears to be caught in an infinite loop, which is peculiar, as the solution to  

 cosx x   

should be very close to a solution to the equation 

 1.01cosx x , 

and, of course, it is: to 18 decimal-digits of precision, the solution is 0.743479254976848120. 
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If you were to print x_current each time it is calculated, you would observe this phenomenon: 

0.5457053289268212 
0.8633090370555448 
0.6564254333312303 
0.8001005948933742 
0.7036008888973354 
0.7701426521339598 
...skip 80 iterations... 
0.7434792549768471 
0.7434792549768489 
0.7434792549768476 
0.7434792549768484 
0.743479254976848 
0.7434792549768482 
0.7434792549768481 
0.7434792549768482 
0.7434792549768481 
 

You will see that subsequent calculations of x_current alternate forever between two values. In general, if we are 

calculating a sequence of approximations x0, x1, x2, …, we will say that we are close enough if |xk+1 – xk| is less than 

some tolerance. We will use the symbol step to indicate this tolerance: 

double fixed_point( double f( double ), double x_current, double step_tolerance ); 
 
double fixed_point( double f( double ), double x_current, double step_tolerance ) { 
    double x_previous; // Uninitialized 
 
    do { 
        x_previous = x_current; 
 
        x_current = f( x_current ); 
    } while ( std::abs( x_previous - x_current ) >= step_tolerance ); 
  
    return x_current; 
} 
 

In general, if the distance between successive approximations |xk+1 – xk| < step, then |xk+1 – x| < cstep for some 

constant c, usually assumed to be small. As a general rule, if you want the absolute error to be less than some fixed 

value max, use step = 0.1max. For the previous example, if we use a tolerance of 10
–11

, we get the approximation 

0.7434792549801468 that, as an approximation to 0.743479254976848120, has an absolute error of 3.30 x 10
–12

. 

Note, however, that this is not always true: if we try to find the fixed point of x = sin(x), the approximation when 

using the same tolerance is 0.0003914867511324241, which has a significantly larger absolute error when 

compared to the correct solution x = 0. 

Now, in some cases, there may not be a solution, or this technique may not be able to find a solution. For example, 

fixed-point iteration will not find a solution to x = 2.0 + 3.0x. Indeed, if we execute this function, we get a peculiar 

return value: 

inf 
 

This is peculiar, because our test is if 

std::abs( x_previous - x_current ) >= step_tolerance 
 

which you may ask, how did this ever return false? 
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Suppose that for whatever reason, x_current == inf. With the next calculation, 2.0 + 3.0x will again evaluate to 

inf. Thus, the condition is 

std::abs( inf - inf ) >= step_tolerance 

 

However, inf - inf evaluates to nan, and any comparison with nan returns false. Thus, if any evaluation of 

x_current results in either inf or nan, we should stop iterating. The cmath macro std::isfinite(…) 

evaluates to true if the argument is  If this is the case, we will throw the exception std::range error: 

#include <cmath> 
#include <stdexcept> 
 
double fixed_point( double f( double ), double x_current, double step_tolerance ); 
 
double fixed_point( double f( double ), double x_current, double step_tolerance ) { 
    double x_previous; // Uninitialized 
 
    do { 
        x_previous = x_current; 
 
        x_current = f( x_current ); 
 
        if ( !std::isfinite( x_current ) ) { 
            throw std::range_error{ "fixed-point iteration produced 'inf' or 'nan'" }; 
        } 
    } while ( std::abs( x_previous - x_current ) >= step_tolerance ); 
  
    return x_current; 
} 
 

However, this is still not sufficient—it may simply happen that a solution exists, but either fixed-point iteration does 

not find it, or does not find it in a sufficiently reasonable amount of time. For example, there are countably many 

solutions to the equation x = tan(x), yet  

    std::cout << fixed_point( std::tan, 1.0, 1e-14 ) << std::endl; 
 

takes a total of 40.959 seconds to return the approximation 1.748172941959977e-05, which is not with the 

tolerance of the actual solution x = 0. On the other hand, there may be no solution, or if there is, the algorithm does 

not converge to it. This is demonstrated with the two functions 
2

x
, which has two solutions, and 

2

x
 . In both cases, 

fixed-point iteration never converges to either solution, for in both cases, given x0, we seen that x2 = x0. 
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Thus, we are required to add an additional requirement: a maximum number of iterations. 

#include <cmath> 
#include <stdexcept> 
 
double fixed_point( double f( double ), double x_current, 
                    double step_tolerance, unsigned int max_iterations ); 
 
double fixed_point( double f( double ), double x_current, 
                    double step_tolerance, unsigned int max_iterations ) { 
    double x_previous; // Uninitialized 
 
    for ( unsigned int iterations{0}; iterations < max_iterations; ++ iterations ) { 
        x_previous = x_current; 
 
        x_current = f( x_current ); 
 
        if ( !std::isfinite( x_current ) ) { 
            throw std::range_error{ "fixed-point iteration produced 'inf' or 'nan'" }; 
        } 
 
        if ( std::abs( x_previous - x_current ) < step_tolerance ) { 
            return x_current; 
        } 
    } 
 
    throw std::runtime_error{ "fixed-point iteration did not converge" }; 
} 
 

Now, a user would use this function as follows: 

 double result;  // Uninitialized 
 
       try { 
           result = fixed_point( f, 1.32, 1e-10, 100 ); 
 } catch ( std::range_error &e ) { 
     // fixed-point iteration halted as either 'inf' or 'nan' was generated 
       } catch ( std::runtime_error &e ) { 
     // fixed-point iteration did not converge 
 } 
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In our design above, we are throwing exceptions whenever the fixed-point iteration does not converge. An 

alternative strategy would be to return not-a-number. This would signal that a solution was not found (although 

providing less evidence why) but would require the user to check the return value. 

#include <cmath> 
#include <stdexcept> 
 
double fixed_point( double f( double ), double x_current, 
                    double step_tolerance, unsigned int max_iterations ); 
 
double fixed_point( double f( double ), double x_current, 
                    double step_tolerance, unsigned int max_iterations ) { 
    double x_previous; // Uninitialized 
 
    for ( unsigned int iterations{0}; iterations < max_iterations; ++ iterations ) { 
        x_previous = x_current; 
 
        x_current = f( x_current ); 
 
        if ( !std::isfinite( x_current ) ) { 
            return NAN; 
        } 
 
        if ( std::abs( x_previous - x_current ) < step_tolerance ) { 
            return x_current; 
        } 
    } 
 
    return NAN; 
} 
 

Now, a user would use this function as follows: 

 double result{ fixed_point( f, 1.32, 1e-10, 100 ) }; 
 
       if ( std::isnan( result ) ) { 
      // The fixed-point iteration did not converge--take additional steps 
       }  
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Practice questions 

1. Consider the function defined by  
def

2 =f x x  . This has two solutions to the equation x
2
 = x, namely x = 0 and 

x = 1. Answer the following questions: Assuming that  is a small positive number: 

a. Will f(0 + ) be closer or further from 0 than was 0 + ? 

b. Will f(0 – ) be closer or further from 0 than was 0 – ? 

c. Will f(1 + ) be closer or further from 1 than was 1 + ? 

d. Will f(1 – ) be closer or further from 1 than was 1 – ? 

Consequently, which solution to f(x) = x will iteration allow us to find (assuming we have an appropriate initial 

value)? Why? 

2. Suppose we are trying to find the root of a polynomial 
3 22 1 0x x x    . This polynomial has one root close to 

x = 1.75. If we rewrite the equation, we get 
3 22 1x x x    . What happens if we start iterating the function 

defined as  
def

3 22 1f x x x    starting with x0 = 1.75? Does it converge to the root near 1.75? Alternatively, we 

can some more with the equation to get it in the form x = f(x) as follows: 

3 2

3 2

2

2

2 1 0

2 1

2 1

x x x

x x x

x x
x

x

   

   

 
 

 

What happens if you iterating the function defined as  
2def

2

2 1x x
g x

x

 
 starting with x0 = 1.75? 

3. Show that 
1

2

x
x

x
   has 2  as a fixed point. In general, pick a positive real number r, and show that r  is a 

fixed point of 
1

2

r
x x

x

 
  

 
. Use this to approximate a value of 7 . 

3. Linear algebra 
We will repeatedly find solutions to a system of linear equations. Now, in first year, if you had an n x n matrix A and 

a target n-dimensional vector b, you could find a solution to Ax = b by creating the augmented matrix (A|b) and 

applying the Gaussian elimination algorithm followed by backward substitution: 

1. Iterate through the columns starting at column j = 1 up to n – 1, 

a. for each row starting at i = j + 1 up to n, 

i. add 
,

,

i j

j j

a

a
  times Row j (the row containing the diagonal of Column j) onto Row i. 

This will create a matrix that is in row-echelon form, after which we can apply backward substitution. 

Now, if there was a zero on the diagonal in Row j, this algorithm does not work, as the denominator of the ratio 

would then be zero. Thus, in linear algebra, you saw that you could swap Row j with any Row k with k > j such that 

ak, j ≠ 0. If you could not find such a row, then the possibility for a unique solution no longer exists: either there are 

infinitely many solutions or no solutions. 
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Thus, our algorithm now looks like: 

1. Iterate through the columns starting at column j = 1 up to n – 1, 

a. if aj,j = 0, find a Row k with k > j such that ak,j ≠ 0 and swap Rows j and k, 

b. for each row starting at i = j + 1 up to n, 

i. add 
,

,

i j

j j

a

a
  times Row j (the row containing the diagonal of Column j) onto Row i. 

This process is called pivoting. This is guaranteed to find a unique solution if it exists; however, there are problems 

when we begin to use floating-point arithmetic. Let us consider the following problem: 

             x + y = 2 

0.00001x + y = 1 

Intuitively, you can guess that the solution is approximately x = y = 1, and indeed, the exact solution is 

10000

1.00019999

9998 0.9998

9999

 
   
    

     
 

x . 

Suppose, however, we are restricted at any step to storing only four significant digits. We will not formally use the 

representation EEMNNN, but we will simulate this by only ever storing four significant digits. 

1.000 1.000 2.000

0.00001 1.000 1.000

 
 
 

 

Adding –0.00001 times Row 1 onto Row 2, we get 1.000 – 0.00001 = 0.99999, but rounded to four decimal places 

gives the result 1.000, with a similar result for the third column: 

1 1 2 1 1 2
~

0.00001 1 1 0 1.000 1.000

   
   
   

. 

Thus, using backward substitution, we get that the solution is 
1

1

 
  
 

x , which is actually pretty close to our actual 

solution: the percent relative error is 0.01 %. 

If, on the other hand, we swapped the two rows and applied Gaussian elimination, we would get a very different 

result. From 

0.00001 1.000 1.000

1.000 1.000 2.000

 
 
 

, 

we would have to add –100000 times Row 1 onto Row 2, and –100000 + 1 = –99999 which equals –100000 if we 

round to four significant digits. Similarly, –100000 + 2 = –99998, so again, when reduced to four significant digits, 

results in –100000. Thus, we have 

0.00001 1.000 1.000 0.00001 1.000 1.000
~

1.000 1.000 2.000 0 100000 100000

   
   
   

. 
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Now, applying backward substitution, we get that the solution is exactly 
0

1

 
  
 

x . This approximation to the 

solution has a 100 % relative error! 

The phenomenon that is being observed here is that you must recall that each line of the system of linear equations 

represents different information, but when adding a very large multiple of one equation onto another, through the 

loss of precision, the information in the equation being added onto may be completely lost. 

Instead, we must modify our pivoting algorithm to be more general: 

1. Iterate through the columns starting at column j = 0 up to n – 2, 

a. find that Row k with k ≥ j such that |ak,j| is the largest of these entries and then swap Rows j and k, 

b. for each row starting at i = j + 1 up to n, 

i. add 
,

,

i j

j j

a

a
  times Row j (the row containing the diagonal of Column j) onto Row i. 

This process of finding the largest entry on or below the diagonal and moving that entry to the diagonal is called 

partial pivoting. 

The following is an example of the application of this algorithm: 

0.4 2.7 4.0 2.9 2.7

3.2 4.6 3.3 3.7 6.3

1.2 4.4 2.0 4.3 4.6

4.0 2.0 0.0 1.0 8.0

  
 

  
  
 
 

. 

Starting with Column 1, we find the largest entry in absolute value on or below the diagonal, so examining –0.4, 3.2, 

1.2 and 4.0, we observe that this is in Row 4, so we swap Rows 1 and 4: 

4.0 2.0 0.0 1.0 8.0

3.2 4.6 3.3 3.7 6.3

1.2 4.4 2.0 4.3 4.6

0.4 2.7 4.0 2.9 2.7

 
 

  
  
 
  

 

We now add –0.8 times Row 1 onto Row 2, –0.3 times Row 1 onto Row 3, and 0.1 times Row 1 onto Row 4: 

4.0 2.0 0.0 1.0 8.0

0 3.0 3.3 2.9 12.7

0 5.0 2.0 4.0 7.0

0 2.5 4.0 3.0 3.5

 
 

  
  
 

 

 

Continuing with Column 2, we find the largest entry in absolute value on or below the diagonal, so from 3.0, –5.0 

and –2.5, we note that Row 3 contains the largest, so we swap Rows 2 and 3: 
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4.0 2.0 0.0 1.0 8.0

0 5.0 2.0 4.0 7.0

0 3.0 3.3 2.9 12.7

0 2.5 4.0 3.0 3.5

 
 

  
  
 

 

 

 

Next, we add 0.6 times Row 2 onto Row 3 and x –0.5 time Row 2 onto Row 4: 

4.0 2.0 0.0 1.0 8.0

0 5.0 2.0 4.0 7.0

0 0 2.1 5.3 16.9

0 0 3.0 1.0 7.0

 
 

  
  
 
 

 

Continuing to Column 3, we observe that between –2.1 and 3.0, the largest in absolute value is the second, so we 

swap Rows 3 and 4: 

4.0 2.0 0.0 1.0 8.0

0 5.0 2.0 4.0 7.0

0 0 3.0 1.0 7.0

0 0 2.1 5.3 16.9

 
 

  
 
 

  

 

We now add 0.7 times Row 3 onto Row 4: 

4.0 2.0 0.0 1.0 8.0

0 5.0 2.0 4.0 7.0

0 0 3.0 1.0 7.0

0 0 0 6.0 12.0

 
 

  
 
 

 

 

Now the matrix is in row-echelon form. Incidentally, we can now find the determinant of the original matrix 

0.4 2.7 4.0 2.9

3.2 4.6 3.3 3.7

1.2 4.4 2.0 4.3

4.0 2.0 0.0 1.0

  
 

 
 
 
 

 

by multiplying the diagonals and multiplying this by –1 raised to the power of the number of row swaps we did (in 

this case 3), so the determinant is 360. 

However, applying backward substitution, we have that the solution to this system of linear equations is 

2.0

1.0

3.0

2.0

 
 
 
 
 
 

. 
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Practice questions 
1. Apply this algorithm to find a solution to the system of linear equations represented by the augmented matrix  

2.1 2.6 6.2

3.0 2.0 14.0

 
 
 

 

2.8 0.6 7.5 18.4

4.0 2.0 3.0 4.0

2.4 3.8 2.8 0.6

 
 

  
   

 

1.5 2.5 4.0 2.7 18.9

3.0 3.4 2.8 1.4 8.6

5.0 1.0 3.0 1.0 16.0

0.5 3.7 6.6 4.9 9.5

  
 
  
 
 

 

 

2. The absolute, relative and percent relative errors of a vector a that approximates a solution vector x are defined as 

2
x a , 2

2

x a

x
 and 2

2

100%



x a

x
, 

respectively. Using four digits of accuracy, find solutions to this system of two linear equations first not using partial 

pivoting, and then using partial pivoting. 

0.003572 52.35 23.91

9.273 0.05982 20.92

 
 
 

 

Remember, after any arithmetic operation, be it addition or multiplication, you must round the result to four decimal 

places before you proceed. 

In the first case, you should find that the solution vectors are 
2.800

0.4566

 
 
 

 and 
2.253

0.4565

 
 
 

. The correct answer to ten 

decimal places is 
2.2530667379

0.4565720438

 
 
 

. What is the relative error of each of the approximations to the solution above? 

3.1 Iteration and linear algebra 

In a previous question, we saw that if we manipulated the equation 
3 22 1 0x x x     into the equation 

2

2

2 1x x
x

x

 
 , then we could define a function  

2def

2

2 1x x
g x

x

 
  such that if we iterated this function starting 

with x0 = 1.75, then it would converge to a solution of the equation 
2

2

2 1x x
x

x

 
 , which in turn is a solution to the 

original equation 
3 22 1 0x x x    . 

When you are solving a system of linear equations Ax = b with a given matrix A and a given target vector b, this is 

not in the form x = f(x); however, let us proceed as follows: 
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Every matrix A can be written as a matrix consisting of its diagonal entries plus a matrix consisting of its off-

diagonal entries; for example, if 

4 1 0 1

1 5 2 0

0 2 20 3

1 0 3 10

A

 
 
 
 
 
  

, 

then we can write  

4 1 0 1

5 1 2 0

20 0 2 3

10 1 0 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

A

   
   
    
   
   

    

. 

Let us call these two matrices Adiag and Aoff.  Thus, we may now write our system of linear equations as 

(Adiag + Aoff)x = b 

and using the properties of matrix-vector arithmetic, this equals 

Adiag x + Aoff x = b. 

Now, this isn’t in the form  x = f(x), but let us take the one term to the right-hand side:   

Adiag x = b – Aoff x. 

One fact you likely remember is that it’s easy to invert a diagonal matrix: 

If diag

0 0 0

0 0 0

0 0 0

4

5

20

100 0 0

A

 
 
 
 
 

 

, then 
1

diag

0.25

0.2

0

0 0 0

0 0 0

0 0 0

0 0 0

.05

0.1

A

 
 
 
 
 

 

. 

Multiplying both sides of the equation by the inverse of Adiag, we get 

 

 

1

diag

1 1

di

off

oag dia fg f

–

–

A

A

A

A A



 

x b x

b x
. 

Suddenly, we have an equation of the form x = f(x) where 

   1 1

dia

def

ofg i fd ag–f A A A x b x . 

In our example, if we were trying to solve Ax = b where 

0.5

0.7

7.6

7.7

 
 
 
 
 
 

b , then 
1

diag

0.25

0.2

0

0 0 0

0 0 0

0 0 0

0 0 0

.05

0.1

A

 
 
 
 
 

 

 and 

consequently, 
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1

diag

0.125

0.140

0.380

0.770

A

 
 
 
 
 
 

b  and odiag f

1

f

0 0.25 0 0.25

0.2 0 0.4 0

0 0.1 0 0.15

0.1 0 0.3 0

AA

 
 
 
 
 

 

. 
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Consequently, we can apply the fixed-point theorem by starting with the initial vector 

1

0 diag

0.125

0.140

0.380

0.770

A

 
 
  
 
 
 

x b , 

as this is, after all, the solution to Adiag x = b so this may be a reasonable approximation to a solution to Ax = b. 

We now iterate: 

1

0.2825

0.267

0.5095

0.6435

 
 
 
 
 
 

x , 2

0.219125

0.2873

0.503225

0.5889

 
 
 
 
 
 

x , 3

0.2004

0.297465

0.497065

0.59712

 
 
 
 
 
 

x , 4

0.19991375

0.298746

0.4993145

0.6008405

 
 
 
 
 
 

x , 5

0.200523625

0.29974305

0.500000675

0.600214275

 
 
 
 
 
 

x , … 

and it appears that this sequence of vectors is getting closer and closer to the vector 

soln

0.2

0.3

0.5

0.6

 
 
 
 
 
 

x , 

which is indeed the exact solution to the system of linear equations given by 

0.5

0.7

7.6

7.

4 1 0 1

1 5 2 0

0 2 20 3

1 0 3 710

 
 
 

 
 
 

 
 
  

 
 
 

x . 

The percent relative error of x4 as an approximation to the solution vector is already small: 

soln 4 2

soln 2

100% 0.0722%


 
x x

x
; 

that is, less than one part in one thousand. 

A question of run time 
How slow are matrix operations? Given an n × n matrix A and an n-dimensional vector v, calculating Av requires 

one to multiply each entry of the matrix by one of the entries in the vector. Consequently, there are n
2
 

multiplications required, and each of these must be added to an initial value. Thus, the run time is O(n
2
). 

If you are multiplying a diagonal n × n matrix and an n-dimensional vector, the run-time drops to O(n). Why? 

Multiplying two n × n matrices requires each row of the first matrix to be element-wise multiplied and added by 

each column of the second matrix. This element-wise multiplication requires O(n) multiplications and additions, and 

as this must be done for each row in the first and each column in the second, this requires an overall time of O(n
3
). 
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If you are multiplying a diagonal matrix by a full matrix, the run time drops to O(n
2
) and multiplying two diagonal 

matrices requires on O(n) time. 

Gaussian elimination requires you to create a zero at each entry of a matrix below the diagonal. Assuming we do not 

have to perform any partial pivoting, there are 
 1

2

n n 
 such entries that must be zeroed out. As a rough estimate, 

you may believe therefore that each of these zeroings requires you to add one multiple of a row onto another, and 

therefore each of these requires n multiplications and additions, resulting in O(n
3
). You could be a little more precise 

and calculate 

 
   31

1 1

2 1 1

6 3

n n

j i j

n n n n
n j



  

 
    

only to realize that it is still O(n
3
) operations. 

4 Interpolation 
Question: Given n points (x1, y1), …, (xn, yn), is there a polynomial of degree n – 1 of the form 

y(x) = an – 1x
n – 1

 + … + a2x
2
 + a1x + a0 

that passes through all n pointers? From a constraints point-of-view, the answer should be yes, for there are n 

different constraints, and there are n coefficients that can be manipulated to go through the points. 

The answer is “yes”, so long as all the x-values are unique. To see this, let find these interpolating polynomials: 

Given a single point (x1, y1), the constant polynomial (i.e., a polynomial of degree 0) y(x) = y1 passes through the 

point. 

Given two points, (x1, y1) and (x2, y2), a constant polynomial will only pass through both points if y1 = y2; however, 

this is usually not the case. Instead, we know from secondary school that you can find a straight line passing through 

these two points; that is, there is a line y(x) = a1x + a0 that passes through both points. You would have found such a 

function by finding values of both a1 and a0 algebraically through fist finding the slope and then finding the y-

intercept. We will use a different approach. 

First, if we the polynomial to pass through both points, then both of these equations must hold: 

1 1 1 0

2 1 2 0

y a x a

y a x a

 

 
  

This is a system of two equations and two unknowns (the unknowns being a0 and a1). Note that this can be written 

as 

11 1

02 2

1

1

ax y

ax y

    
    

    
. 

If you don’t see this, please review your first-year linear algebra notes on matrix-vector multiplication. Note that we 

see that the determinant x1 – x2, which is non-zero so long as x1 differs from x2. 

Thus, if we wanted to find a line that passes through the points (2, 5) and (10, 4), we would create the system of 

equations 
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1

0

2 1 5

10 1 4

a

a

    
    

    
, 

and solving this, using Gaussian elimination with partial pivoting, we have 

2 1 5 10 1 4 10 1 4
~ ~

10 1 4 2 1 5 0 0.8 4.2

     
     
     

 

and using backward substitution, we have 
1

0

0.125

5.25

a

a

   
   
  

. Thus, the interpolating straight line must be 

–0.125x + 5.25, and if we substitute in the values of x1 and x2, we get the values 5 and 4, respectively. 

This is an excellent point to show you where numerical error can result in a poor approximation: let us go back to 

using exactly 4 decimal digits of precision. Now, let us find the interpolating polynomial that passes through the 

points (0.001, 11) and (2, 7).  The correct answer should be a polynomial very similar to y(x) = 11 – 2x. If we did not 

use partial pivoting, however, our result would be very different: 

0.001 1 11 0.001 1 11
~

2 1 7 0 1999.0 21990.

   
   

    
 

and using backward substitution, we get that the solution is 
1

0

0.

11.00

a

a

   
   
  

, which suggest the interpolating 

polynomial is the polynomial y(x) = 11.00. This is likely not a good approximation to the best answer to four 

significant digits, which is 

y(x) = –2.001x + 11.00. 

If partial pivoting was employed, the solution we get is 
1

0

2.000

11.00

a

a

   
   
  

, which suggests the interpolating 

polynomial is the more reasonable y(x) = –2.000x + 11.00. Thus, it is essential to mitigate the effects of numerical 

error even for a problem as simple as finding an interpolating straight line! 

The slope is off by approximately a factor of two. 

Moving onto three points: (x1, y1), (x2, y2), and (x3, y3). Again, in general, a straight line will not pass through three 

points unless they are collinear, a rare event indeed. A quadratic polynomial, however, has three coefficients, and 

thus it seems reasonable that three constraints should allow us to prescribe the values of those three coefficients: 

2

1 2 1 1 1 0

2

2 2 2 1 2 0

2

3 2 3 1 3 0

y a x a x a

y a x a x a

y a x a x a

  

  

  

  

which again defines the system of linear equations  

2

1 1 2 1

2

2 2 1 2

2

3 3 0 3

1

1

1

x x a y

x x a y

x x a y

    
    

    
    
    

. 
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The determinant is (x1 – x2) (x1 – x3) (x2 – x3), so again, in general, the determinant is non-zero so long as the three 

x-values are different. 

As an example, we can find an interpolating polynomial through the three points (–3, 6), (5, 12) and (–2.5, 4.5). We 

note the points need not be ordered with respect to x. This gives us the system  

2

1

0

9 3 1 6

25 5 1 12

6.25 2.5 1 4.5

a

a

a

    
    

    
        

 

Solving this, using partial pivoting, we have 

9 3 1 6 25 5 1 12

25 5 1 12 ~ 9 3 1 6

6.25 2.5 1 4.5 6.25 2.5 1 4.5

25 5 1 12 25 5 1 12

~ 0 4.8 0.64 1.68 ~ 0 4.8 0.64 1.68

0 3.75 0.75 1.5 0 0 0.25 0.1875

   
   

   
       

   
   

    
      

 

Using backward substitution, we have the solution is the vector 

2

1

0

0.5

0.25

0.75

a

a

a

   
   

    
   
   

. Thus, the interpolating polynomial 

is y(x) = 0.5x
2
 – 0.25x + 0.75. 

In general, to find the interpolating polynomial of degree n – 1 passing through n points results in a system of n 

linear equations in n unknowns. Unfortunately, the resulting polynomials are highly sensitive to noise in both the x- 

and the y-values. Consequently, small changes can result in large changes to the interpolating polynomial; especially 

if the x-values are not equally, or at least approximately equally spaced. Consequently, we will in general only be 

finding the interpolating polynomials of a reasonably small number of points. 

Practice questions 
1. Find the polynomial interpolating the points (3, 4), (7, 2). You can check your answer by evaluating the 

polynomial at x = 3 and x = 7. 

2. Find the polynomial interpolating the points (–2, –15), (–1, –7), (2, –7). You can check your answer by evaluating 

the polynomial at x = –2, x = –1 and x = 2. 

3. Without solving the system of linear equations, what is the augmented matrix that would have to be solved in 

order to find the polynomial interpolating through the points (–4, 7), (–1, 2), (3, 3) and (4, 5). 

5 Taylor series 
Given a function f, you have seen the Taylor series approximation of an infinitely differentiable function is 

                  
2 31 2 3

0 0 0 0 0 0 0

1 1

2 6
f x f x f x x x f x x x f x x x          

Recall that the denominators of the fractions are actually factorials, so more correctly 
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                  
2 31 2 3

0 0 0 0 0 0 0

1 1 1 1

0! 1! 2! 3!
f x f x f x x x f x x x f x x x        . 

Written using a sum, we have 

      0 0

0

1

!

kk

k

f x f x x x
k





  . 

Now, as engineers, we are interested in approximating the function in close proximity to a known point, so rather 

than having two points x and x0, we will have a point x, and consider another point close to x, namely x + h. In this 

case, the formula can be written as: 

     
0

1

!

k k

k

f x h f x h
k





  . 

If you truncate this approximation, it will only be approximately correct: 

     
0

1

!

n
k k

k

f x h f x h
k

  . 

For example, using n = 0, we have  

   f x h f x  , 

which is true for very small values of h, as sin(3.295929385) is very close in value to sin(3.295929386). 

Unfortunately, sin(2.1) is not very similar to sin(2), so it isn’t a good approximation when h is large: 

 

Figure 1. Approximating sin(2.1) by using a value near it: sin(2.0). 

Using n = 1, we have 

       1
f x h f x f x h   , 

which is a slightly better approximation, for this says to follow the slope of f in the direction of x + h. This is shown 

in the following image: 
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Figure 2. Approximating sin(2.1) by using a 1st-order Taylor series approximation around the point x = 2. 

Again, the approximation is significantly closer. 

We can also add in the concavity: 

           1 2 21

2
f x h f x f x h f x h    , 

so now we are following a parabola that hugs the curve at x. Now we get an even better approximation of x + h, as is 

shown in this image: 

 

Figure 3. Figure 2. Approximating sin(2.1) by using a 2nd-order Taylor series approximation around the point x = 2. 

For your interest, the following are approximations of sin(2.1) using Taylor series approximations. The exact answer 

is 0.8632093666488738 

Order Approximation Percent relative error 

  0 0.9092974268256817 5.34 % 

  1 0.8676827431709675 0.518 % 

  2 0.8631362560368391 0.00847 % 

  3 0.8632056138429302 0.000435 % 

  4 0.8632094025822090 0.00000416 % 

  5 0.8632093679033059 0.000000145 % 

  6 0.8632093666403927 0.000000000983 % 

 

Now, there is a problem: while calculating higher derivatives of the sine function is easy, in other cases, this can be 

much more problematic, especially if the actual function is not known. Never-the-less, we will attempt to use this 

tool where possible, as it consistently gives the best approximation. 



2019-01-23 

26 

 

The important question is, can we in some way determine what the magnitude of the error is? From first year, you 

learned that the error is 

     
 

   1 1

0

1 1

! 1 !

n
k nk n

k

f x h f x h f h
k n


 



 
   

 
 . 

where x x h    assuming h is positive. What this says is that the error is bounded by the magnitude of the 

(n + 1)
st
 derivative in the neighbourhood of x. 

Practice questions 

1. Argue that the maximum possible error of an n
th

-order Taylor series for the sine function is 
 

1

1 !

nh

n




, regardless as 

to the values of x and h. 

6 Bracketing 
In some cases, when analytical techniques are unavailable, the only other possible is to attempt to bracket the 

solution, and to then attempt to reduce that bracket as much as possible. For example, consider the children’s game 

of hi-lo, where one individual attempts to guess a number from 1 to 100. The person who knows the number 

responds with either “high” if the number guess is larger than the target number, or “low” if it is lower than the 

target number. 

In this case, the ideal solution is to always guess half-way between the best solutions: first, start with 50, and if that 

is too low, guess 75, otherwise guess 25, and so on. 

In your course in algorithms and data structures, you will find that this is actually a very fast algorithm for finding 

an entry in an array, being able to do so in O(log2(n)) operations for an array of capacity n. The issue with numerical 

analysis is, however, that it is excruciatingly slow as compared to analytical algorithms, and thus is often only the 

option of last resort. 

One example of a bracketing algorithm is finding the root of a function f. Suppose we know that f is continuous and 

that f(a) < 0 and f(b) > 0. In that case, there must be a root on the interval (a, b). Guess the midpoint mid
2

a b
x


 . If 

 mid 0f x  , then a root must still be on the interval  mid ,x b , while if  mid 0f x  , then the root must be on 

 mid,a x . We repeat this algorithm on this new smaller interval. 

Each time this algorithm is run, the width of the interval is dropped by half. 

Practice questions 
1. Using Matlab, approximate a root of cos(e

x
) using the bracketing method starting with the interval (0, 1). In 

Matlab, you would evaluate this function using cos(exp(x)). 
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