In a nutshell: The Hooke-Jeeves method

Given a continuous real-valued function f of a vector variable with one initial approximation of a minimum u_0, the Hooke-Jeeves method steps towards a minimum by using the canonical unit vectors without relying on the ability to differentiate the function.

We will assume the dimension of the vector variable is n and the canonical vectors are e_1, \ldots, e_n.

Parameters:

- $\varepsilon_{\text{step}}$ The maximum error in the value of the minimum cannot exceed this value.
- ε_{abs} The difference in the value of the function after successive steps cannot exceed this value.
- h An initial step size.
- N The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. If $k > N$, we have iterated N times, so stop and return signalling a failure to converge.
3. Let $\Delta u_k \leftarrow 0$ and letting j take the values from 1 to n do the following:
 a. If $f(u_k + \Delta u_k + he_j) < f(u_k + \Delta u_k)$, $f(u_k + \Delta u_k - he_j)$, set $\Delta u_k \leftarrow \Delta u_k + he_j$.
 b. otherwise, if $f(u_k + \Delta u_k - he_j) < f(u_k + \Delta u_k)$, set $\Delta u_k \leftarrow \Delta u_k - he_j$.
4. If $\Delta u_k = 0$, we are done for this step, increment k and divide h by 2: $h \leftarrow h/2$, and return to Step 2.
5. Let $u_{k+1} \leftarrow u_k + \Delta u_k$.
 a. If $f(u_{k+1} + \Delta u_k) < f(u_{k+1})$, set $u_{k+1} \leftarrow u_{k+1} + \Delta u_k$ and return to this Step 5a.
6. If $||u_{k+1} - u_k||^2 < \varepsilon_{\text{step}}$ and $|f(u_{k+1}) - f(u_k)| < \varepsilon_{\text{abs}}$, return u_{k+1}.
7. Return to Step 2.

Acknowledgement: Jakob Koblinsky noted I was referring to Δx_k and not Δu_k in Step 5. This has been corrected.