
ECE 150 Characters and strings

Douglas Harder

December 2023

1 Characters

A character is one of four primitive data types in C++, including also integers,
floating-point numbers and Boolean values.
A character is represented in C++ by the type char. This occupies exactly one
byte, meaning that it can take on values from 0b00000000 to 0b11111111, 0x00
to 0xff, or 0 to 255. Consequently, each character can be represented by two
hexadecimal characters.
Each different alphabetic character, digit, or symbol on the keyboard is rep-
resented by a different binary value between 0x00 and ff. For example, the
character A is represented by 0x41, B by 0x42, etc. You can view all the char-
acters from 0x00 to 0x7f by looking up any ascii table.
To include a character explicitly in your source code, you must use the apostro-
phe; for example, ’a’ or ’3’ or ’%’.
A variable can store a character if it is declared to be of the type char:

char identifier{ ’a’ };

Because the C++ programming language uses the apostrophe ’ to delimit a
character, we need to somehow indicate that an actual apostrophe character is
not the C++ symbol used to delimit characters. We do this using the backslash:

char apostrophe{ ’\’’ };

The backslash is not the backslash character, but rather, it tells the compiler
that the next character must be interpreted differently. This is called an escape
sequence, so for example, we have the following common escape sequences:

char backslash{ ’\\’ };

char new_line{ ’\n’ };

char tab{ ’\t’ };

1

Not on the examination

Other programming languages have different escape sequences; for ex-
ample, in XML, the most significant characters are <, >, and &. The first
two are used to delimit tags; for example

<p>This is a paragraph with bold and

<i>italicized</i> text, together with a

hyperlink.

</p>

The character that starts an escape sequence is the & and ends in a semi-
colon, so if you want an explicit angled bracket or ampersand symbol,
you use <, > or &, respectively. You get Greek characters
with α. Alternatively, you can give a number, so to get a ℜ, you
use ℜ or you can use the corresponding number: ℜ or, using
hexadecimal digits, ℜ (as 12 + 16 + 162 + 2 · 163 = 8476.

Not on the examination

Given a character ch, then ch + 1 is the next ascii character. For
example, this runs through all printable ascii characters:

for (char ch{ 32 }; ch <= 126; ++ch) {

std::cout << ch;

// Go to the next line after each 19 characters

if (ch == (32 + 47)) {

std::cout << std::endl;

}

}

std::cout << std::endl;

when compiles prints out

!"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO

PQRSTUVWXYZ[\]^_‘abcdefghijklmnopqrstuvwxyz{|}~

Not on the examination

There are 126 − 32 = 94 printable characters not including the under-
score, so it is therefore possible to represent four bytes using five printable
characters, as 24·8 = 4294967296 < 855 = 4437053125.

2

Not on the examination

If a character is a lower-case letter, you can change it to an upper-case
letter by setting bit 6 to 1, and you can you therefore change an upper-
case letter to a lower case letter by setting bit 6 to 0:

char lower{ ’h’ };

char upper{ static_cast<char>(lower & 0b11011111) };

char lower2{ static_cast<char>(upper | 0b00100000) };

std::cout << lower << upper << lower2 << std::endl;

should print hHh.

2 The null character

One character of significance is the null character. This is not a space, but
rather the character equal to zero:

char null_character{ ’\0’ };

This is the character with all bits set to zero, so 0x00. This is a special un-
printable character and is not the space character, which has an ascii value of
0b00100000 or 0x20.

3 Strings

A “string” is a string of zero or more characters that represents a sequence of
characters that can be printed to, for example, the screen.
A literal string can be entered into your source code using double-quotes:

std::cout << "Hello world!" << std::endl;

A string with no characters in it is called the empty string. A literal empty string
can be written using two consecutive double-quotes: "". Like a character, if you
want to include a double-quote character in a literal string, it must be escaped,
but it is no longer necessary to escape the apostrophe; thus, both of these are
acceptable as characters: ’"’ and ’\"’, and both of these are acceptable as
strings: "’" and "\’", but to have a literal apostrophe character, it must be
escaped (’\’’) and to have a literal double-quote in a string, it too, must be
escaped ("The student said \"Hi\".").
A string can be stored in one of two ways:

1. A C-style string (a character array).

2. An instance of the std::string class.

We will describe both there.

3

3.1 C-style strings

A C-style string (also called a null-terminated character array) is actually an
array of characters. If a string is to have n characters, then the array capacity
must be at least n+1 where the character at index n is the null-character ’\0’.
In C, you could even initialize a character array with a string:

// ’str’ is a character array

char *str = "Hello world!";

printf("%d\n", str[11] == ’!’);

printf("%d\n", str[12] == ’\0’);

In C++, you could define a character array as follows:

char str[20]{

’H’, ’e’, ’l’, ’l’, ’o’, ’ ’,

’w’, ’o’, ’r’, ’l’, ’d’, ’!’

};

There are twelve printable characters occupying entries from index 0 to index
11. Because the array has a capacity of 20, all entries from index 12 to 19

are \0, or the null character. Thus, when interpreted as a C-style string, the
string ends at the exclamation point, and when you print a character array, it
continues to print characters until it comes across the first null character:

std::cout << ">>>" << str << "<<<" << std::endl;

prints >>>Hello world!<<<. You can set any character to the null character,
and so shorten the string:

str[6] = ’\0’;

std::cout << ">>>" << str << "<<<" << std::endl;

prints >>>Hello <<< (note the space at the end, as the character at index 6

was the ’w’).
To calculate the length of a string (that is, the number of printing charac-

ters), you’d have to walk through the array until you find a null character: if
the first null character is at index k, then the number of printable characters is
k.

// Function declaration

std::size_t length(char *str);

// Function definition

std::size_t length(char *str) {

// The argument should not be the null pointer

assert(str != nullptr);

std::size_t string_length{ 0 };

4

https://en.cppreference.com/w/cpp/string/byte

while (str[string_length] != ’\0’) {

++string_length;

}

return string_length;

}

To concatenate a second string onto the end of a first string, first, you’d have to
assume that the first array is large enough to hold all the characters (there is no
way of checking this), and then you copy over all the characters in the second
string.

// Function declaration

std::size_t concat(char *destination, char *source);

// Function definition

std::size_t concat(char *destination, char *source);

// The argument should not be the null pointer

assert(destination != nullptr);

assert(source != nullptr);

std::size_t id{ 0 };

std::size_t characters_copied{ 0 };

// Find the null character in the first string

while (destination[id] != ’\0’) {

++id;

}

std::size_t is{ 0 };

for (is = 0; source[is] != ’\0’; ++id, ++is) {

destination[id] = source[is];

}

destination[id] = ’\0’;

// Return the number of characters that were copied

return is;

}

4 The string class

The string class is defined in the string library, so you must include it to use
this class:

5

https://en.cppreference.com/w/cpp/string/basic_string

#include <string>

The default string is the empty string, but you can also pass the constructor a
string that is then stored internally in the object.

std::string empty_str{};

std::string str{ "Hello world!" };

The member function size() returns the number of characters in the string,
and you can access or assign to the characters in the string using the indexing
operator:

std::cout << "\"";

for (std::size_t k{ 0 }; k < str.size(); ++k) {

std::cout << str[k];

}

std::cout << "\"" << std::endl;

This would print "Hello world!". There are many more member functions
that allow you to access and manipulate the characters in a string.

6

Not on the examination

The binary operator + can be used to concatenate two strings: this
operator generates a new string that is the second operand concatenated
onto the end of the first.
The auto-assignment operator += concatenates the string on the right-
hand side of the operator to the end of the string on the left-hand side.
The comparison operators compare two strings based on a lexicographical
ordering (or dictionary ordering): the first two letters are compared, and
we only go to the next letter if the first two letters are equal. All six
operators <, <=, ==, !=, >= and > are overloaded. The following would
be a crude implementation of a comparison operator:

bool std::sting::operator<(

std::string const &lhs,

std::string const &rhs

) {

for (std::size_t k{ 0 };

k < std::min(lhs.size(), rhs.size());

++k

) {

if (lhs[k] < rhs[k]) {

return true;

} else if (lhs[k] > rhs[k]) {

return false;

}

assert(lhs[k] == rhs[k]);

}

// At this point, all the common letters are

// equal, so at this point, whichever string

// is shorter is first (as \verb|base| appears

// in the dictionary before \verb|baseball|).

return lhs.size() < rhs.size();

}

7

Not on the examination

You can use an iterator to walk through the entries of the string:

#include <iostream>

#include <string>

int main() {

std::string str{ "Hi there, how are you?" };

for (auto itr{ str.begin() }; itr != str.end(); ++itr) {

if (*itr == ’ ’) {

std::cout << std::endl;

} else {

std::cout << *itr;

}

}

std::cout << std::endl;

return 0;

}

The output of this is each word printed on a separate line:

Hi

there,

how

are

you?

8

	Characters
	The null character
	Strings
	C-style strings

	The string class

