
ECE 150 Floating-point numbers

Douglas Harder

December 2023

1 Floating-point numbers

A floating-point number is one of four primitive data types in C++, including
also integers, characters and Boolean values.
A floating-point number is represented in C++ by the types float and double.
The latter occupies eight bytes (64 bits) and has twice the precision of the
former, which only uses four bytes (32 bits), and thus double should always be
used in engineering applications.
A literal floating-point number can be written into your source code by having
one or more decimal digits with one decimal point in any location (so .325,
5.42 and 9432.), but it is preferable to always prefix or suffix a leading or
trailing decimal point with a zero for clarity, (so 0.325 and 9432.0). Another
alternative is to append an e followed by an integer n to a literal float or an
integer, and this represents the first number multiplied by 10.0n, but in general,
it is best to use scientific notation, so one leading digit, a mantissa, and then
the exponent, so 3.25e5, 2e3 or 5.43e-12. Any floating-point number can be
prefixed by a minus sign to represent a negative floating-point number.
While an integer can be exactly represented using integer data types, real num-
bers can have a non-terminating mantissa, and therefore we cannot represent
real numbers on a computer. Floating-point numbers approximate real numbers,
and thus, to differentiate the actual real numbers that have infinite precision and
the finite floating-point approximations, always refer to floating-point numbers
as such, and do not call a double a “real” number.

Not on the examination

For integers, 0 equals -0 (and the latter is simply saved as 0), but for
floating point numbers, 0.0 represents either zero or a very small positive
number, and -0.0 represents either zero or a very small negative number.

2 Arithmetic operations

The arithmetic operations that can be performed on floating-point numbers are
+, -, * and /. If one operand of any of these binary operators is a floating-point

1



number and the other is an integer, then the integer will be implicitly converted
to a floating-point number before the operation is performed.

Not on the examination

Floating-point arithmetic does not obey the rules of arithmetic for real
numbers: it may not be true that x + (y + z) equals (x + y) + z, and
if x + y = x, this does not mean that y = 0, it only means that y is
significantly smaller than x in absolute value.

There is no modulus operation (%) for floating-point numbers, and bit-wise and
bit- shifting operations, too, are not defined for floating- point numbers.

3 Comparison operations

The comparison operators are defined for floating-point numbers, and it is al-
ways true that x == y if and only if (x - y) == 0.0.

2


	Floating-point numbers
	Arithmetic operations
	Comparison operations

