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1 Integers

An integer is one of four primitive data types in C++, including also characters,
floating-point numbers and Boolean values.
An integer represents what you would expect: the integers you have learned
about since elementary school, including negative integers, 0 and positive in-
tegers. However, integers can be arbitrarily large, but computer memory is
limited. Thus, there are a number of different types that store integers. Inte-
gers are stored in memory as binary numbers, so while an integer may appear
to be base 10 both as literals and as output, any literal integer is converted to a
binary representation before it is stored, and when an integer is printed to the
screen, the binary representation is reverted back to the decimal representation.
The three integer data types are short, int and long, the first and last being
abbreviations for short integers and long integers, respectively. The short type
occupies two (2) bytes, int occupies four (4) bytes, and long occupies eight (8)
bytes in memory.

Not on the examination

The Microsoft compiler only uses four (4) bytes for long. To get an
eight-byte integer, you must use long long; that is a long long integer.
To see how many bytes a type occupies, you can always execute this
statement:

std::cout << sizeof( short ) << std::endl;

std::cout << sizeof( int ) << std::endl;

std::cout << sizeof( long ) << std::endl;

In some cases, you need both positive and negative integers; for example, if
you are calculating differences between values. In other cases, you may only need
0 and positive integers; for example, if you are counting items. Consequently, C
and C++ allow for both signed and unsigned integer types. Signed integer types
are exactly those you see above short, int and long. Unsigned types are these
three prefixed by the keyword unsigned, so unsigned short, unsigned int

and unsigned long.
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2 Unsigned integers

We will first consider all possible integers that can be stored in unsigned integers.
When counting in decimal, we perform a carry whenever we add one to nine
(1 + 9 = 10), as there are ten digits being used. In binary, we have only
two digits: 0 and 1, so thus, we perform a carry whenever we add one to one
(1 + 1 = 10, and so also 1 + 1 + 1 = 11). Thus, when counting we have the
following equivalent representations:

0 0 8 1000 16 10000 24 11000 32 100000
1 1 9 1001 17 10001 25 11001 33 100001
2 10 10 1010 18 10010 26 11010 34 100010
3 11 11 1011 19 10011 27 11011 35 100011
4 100 12 1100 20 10100 28 11100 36 100100
5 101 13 1101 21 10101 29 11101 37 100101
6 110 14 1110 22 10110 30 11110 38 100110
7 111 15 1111 23 10111 31 11111 39 100111

Thus, if I had 42 items, I could also say I have 1010102. The subscript
“2′′ emphasizes that this is a binary number, and not one-hundred and one
thousand and ten. We often refer to decimal digits as simply digits, but binary
digits (there are only two) are referred to as bits (from binary digits).

Not on the examination

While it looks like binary numbers are much longer than decimal numbers
(1957 in binary is 111101001012), but in reality, it isn’t significantly
worse: if a number is written using n decimal digits, then in binary, it

will be approximately ln(10)
ln(2) n ≈ 3.3n binary digits.

First, looking at the above table, powers of two have a simple representation:
2n is 1 0 · · · 0︸ ︷︷ ︸

n zeros

. Also notice that 2n − 1 is therefore 1 · · · 1︸ ︷︷ ︸
n ones

.

Thus, we have the following:

Type Bits
Maximum
(binary)

Maximum
(decimal)

short 16 11 · · · 11︸ ︷︷ ︸
16 ones

216 − 1 = 65535
less than 1% more than 65500

int 32 11 · · · 11︸ ︷︷ ︸
32 ones

232 − 1 = 4294967295
less than 1% more than 4.29 billion

long 64 11 · · · 11︸ ︷︷ ︸
64 ones

264 − 1 = 18446744073709551615
less than 1% more than 1.84 quintillian
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Not on the examination

Do not memorize the decimal numbers: it is sufficient to remember
65500, just over 4 billion and just under 2 quintillion.

2.1 Adding unsigned integers

If we are adding two signed integers of the same type, then we perform addition
in a similar manner as with decimal numbers, recalling that 1 + 1 = 10, which
results in a carry, and 1+1+1 = 11, which also results in a carry. For example,
here we see the addition 13077 + 12598 = 25675 performed in binary.

11 1 11 1

0011001100010101

+ 0011000100110110

0110010001001011

Note what happens if we add 1 to the largest unsigned integer:

1111111111111111

1111111111111111

+ 0000000000000001

0000000000000000

The result can only be stored to 16 digits, so we must ignore the last carry. If
there is an extra carry, the answer is wrong. You can try this out:

int main() {

unsigned short n{ 65535 };

std::cout << n << std::endl;

n += 1;

std::cout << n << std::endl;

return 0;

}

This prints the incorrect answer, because the answer is too large to be stored
as a unsigned short:

65535

0

2.2 Subtracting an unsigned integer from another

Suppose local variables m and n are unsigned integers of the same type. How do
we calculate m - n? There are two problems:
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1. If you subtract 1 from 1000000, you must perform many different borrows
before you get that the answer is 111111. Borrows are actually quite
difficult to perform in hardware.

2. If you subtract a larger number from a smaller number, the result will be
negative, but unsigned integers cannot store negative numbers. How do
we detect this?

To subtract one number from another, we will perform the following algo-
rithm: we will take what is called the two’s complement of the number being
subtracted, and then instead of adding, we will add the two’s complement of
the second number to the first.

To find the two’s complement of an unsigned integer, switch all the bits and
then add 1 to the result. For example, if we were subtracting unsigned short n{150},
then we would find the two’s complement as follows:

0000000010010110

1111111101101001

+ 1

1111111101101010

Observe what happens when we add the two’s complement of 15 to 57:

0000000010010110

1111111101101001

+ 1

1111111101101010

Observe what happens when we add the two’s complement of 150 to 616:

1111111 11 1

0000001001101000

+ 1111111101101010

0000000111010010

The result is the binary representation of 466 = 616− 150. Once again, the last
carry is ignored, but in this case, the carry indicates that the result is actually
valid. If we tried adding the two’s complement of 150 onto 42, we get a different
picture:

11 1 1

0000000000101010

+ 1111111101101010

1111111110010100

Now the result is a very large number: specifically, 65428. If you consider this
carefully, you will notice that this is 42− 150 + 216.

To understand what is happening, let subtract 1 from 0. The two’s comple-
ment of 1 is 1111111111111111, so 0 - 1 may be calculated as:
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0000000000000000

+ 1111111111111111

1111111111111111

You may recognize this as the largest integer that can be stored as a short. On
the other hand, if you add 1 to the largest integer, you get the following:

1111111111111111

1111111111111111

+ 0000000000000001

0000000000000000

Thus, adding 1 to the largest integer results in 0. What is happening is straight-
forward. If the result of a calculation is outside the range from 0 to 216 − 1, the
calculation is performed modulo 216. Thus, subtracting 2 from 0 results in the
second-largest 16-bit number, or 1111111111111110, and so on. We describe
this by saying that the calculation wraps around the given range. The same
happens for unsigned int and unsigned long, only that we are now using 32
bits and 64 bits, respectively.

In conclusion, with unsigned integers, you can store values from 0 to 216−1,
232−1 and 264−1 using unsigned short, unsigned int, and unsigned long,
respectively. Calculations will wrap, meaning if you add two numbers that have
a result equal to or greater than 216, 232 or 264, respectively, then the result
will wrap around to 0 and the answer will not be the mathematical answer you
would expect from integer arithmetic. The answer will, however, be correct
modulo 216, 232 or 264, respectively. Similarly, when you are subtracting one
unsigned integer from another, you add the two’s complement representation
of the number being subtracted onto the number being subtracted from. If,
however, you subtract a larger number from a smaller number, the calculation
will wrap around towards the largest possible integer that can be stored. For
example, if m < n and they are both unsigned int, then the unsigned int

that will be calculated when performing, for example, m -= n; will have the
numeric value of calculating m− n+ 232.

In this section, we saw the following:

1. If we wanted to add two unsigned integers, we would simply add them, but
if a carry occurred when adding the most significant bits, the calculation
resulted a mathematically incorrect answer: the correct answer cannot be
stored in the given number of bits.

2. If we wanted to subtract one unsigned integer from another, we add the
two’s complement of the subtrahend (the unsigned integer being sub-
tracted), and if the resulting calculation does not result in a carry in
the most significant bit, the result is, again, invalid (the result should be
a negative number).

5



3 Signed integers

We have already discussed how to subtract one unsigned integer from another:
the subtrahend is converted to its two’s complement representation, and the two
are then added. This ability to use addition instead of subtraction is exception-
ally efficient, as addition can easily be performed in a computer. Subtraction is
more difficult, as you don’t know how many “borrows” you must make (subtract
1 from 10000000), while the addition, each carry will only affect the next sum
to the left.

If we want to store positive integers, we will proceed as follows:

1. If the leading bit is 0, the number is 0 or positive and the remaining bits (63
for long, 31 for int and 15 for short represents the binary representation
of the number. Thus, we can store number from 0 to 263 − 1 for long, 0
to 231 − 1 for int and 0 to 215 − 1 for ishort.

2. If the leading bit is 1, the number is negative, and the bits stored are the
two’s complement representation of the absolute value of that number.

Thus, if we see 1111111110110100, this is a negative short and taking the two’s
complement, we get 0000000001001100 (flip the bits and add 1). This is the
binary representation of 76, and thus the original number is our representation
of −76. If you wanted to store −150 as an int, you would take the two’s
complement of the representation and that is what you would store:

00000000000000000000000010010110

11111111111111111111111101101001

+ 1

11111111111111111111111101101010

This is the number that would be stored if we declared int crse{ -150 };.
Thus, we will look at some oddities. We will use short, but this also works

for int and long. Let us look at the two’s complement representation of −1,
−2 and then −3:

0000000000000001

1111111111111110

+ 1

1111111111111111

0000000000000010

1111111111111101

+ 1

1111111111111110

0000000000000011

1111111111111100

+ 1

1111111111111101
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On the other hand, the most negative short is

1000000000000000

0111111111111111

+ 1

1000000000000000

Thus, a 1 followed by fifteen zeros is the two’s complement representation of a 1

followed by fifteen zeros, so this is the two’s complement representation of −215.
This means that using this approach, we can represent integers from −215 up
to 215 − 1. This leads to at least one oddity: the largest negative number does
not have an absolute value in this representation. Similarly, int stores integers
from −231 up to 231 − 1, and long stores integers from −263 up to 263 − 1.

Type Bits
Minimum
(binary)

Maximum
(binary)

Range
(decimal)

short 16 1 00 · · · 00︸ ︷︷ ︸
15 zeros

0 11 · · · 11︸ ︷︷ ︸
15 ones

−215, . . . , 215 − 1
= −32768, . . . , 32767
approximately ±32700

int 32 1 00 · · · 00︸ ︷︷ ︸
31 zeros

0 11 · · · 11︸ ︷︷ ︸
31 ones

−231, . . . , 231 − 1
= −2147483648, . . . , 2147483647
approximately ±2.14 billion

long 64 1 00 · · · 00︸ ︷︷ ︸
63 zeros

0 11 · · · 11︸ ︷︷ ︸
63 ones

−263, . . . , 263 − 1
= −2147483648, . . . , 2147483647
approximately ±922 quadrillion

Not on the examination

Do not memorize the decimal numbers: it is sufficient to remember just
under ±33 thousand, just over ±2 billion and just under ±1 quintillion.

Observe what happens if we add one to the largest representable integer:

111111111111111

0111111111111111

+ 0000000000000001

1000000000000000

We get the largest negative integer. Adding 1 to this value does, of course,
produce the second-largest negative integer, because 1000000000000001 is neg-
ative, and the two’s complement is 0111111111111111, which is one less than
231.
On the other hand, subtracting 1 from the largest negative integer results in
the following: the two’s complement of 1 is

1

1000000000000000

+ 1111111111111111

0111111111111111

7



Thus, subtracting 1 from the largest negative number results in the largest
positive number. These two issues with fixed-width integers are described as
overflow and underflow, respectively.

To add two signed integers, just add them. To subtract a signed integer
from another signed integer, take the two’s complement of the subtrahend (the
integer being subtracted) and add the two.

4 Bit-wise operations

Any integer can be thought of as a sequence of 16, 32 or 64 zeros or ones, and a
zero can be interpreted as false and a one as true. Given two integers of the
same size (the same number of bytes), we can perform the logical operations of
and and or on each pair of corresponding bits. This is performed with the bit-
wise logical operators & and | for a bit-wise and and bit-wise or, respectively.
Here we can see the result of the and operation on two 32-bit integers:

11110111000111100100000101000010

& 10111110111011001100000111110011

10110110000011000100000101000010

The only time that the result of the calculation results in a bit equalling 1 is
when the corresponding bits in the two operands are also 1. Here we can see
the result of the or operation on the same two 32-bit integers:

11110111000111100100000101000010

| 10111110111011001100000111110011

11111111111111101100000111110011

The only time that the result of the calculation results in a bit equalling 0 is
when the corresponding bits in the two operands are also 0.

There is one another bit-wise binary operation that has no parallel with
the logical operators: that of the exclusive or, or xor: the exclusive or of two
operands is true if and only if exactly one of the two operands is true, and
thus, for the bit-wise xor, the exclusive or of two bits is 1 if and only if exactly
one of the two corresponding bits of the operands is 1. Here we can see the
result of the xor operation on the same two 32-bit integers:

11110111000111100100000101000010

^ 10111110111011001100000111110011

01001001111100101000000010110001

The only time that the result of the calculation results in a bit equalling 1 is
when the one of the corresponding bits in the two operands is 0 and the other
corresponding bit is 1.
For each of these binary bit-wise operators, there is a corresponding auto-
assignment operator:
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m |= n; // m = m|n;

m &= n; // m = m&n;

m ^= n; // m = m^n;

Remember that there is no auto-assignment operator for the two binary logical
operators: you cannot perform m &&= n; or m —= n;—.

Not on the examination

Note that the bit-wise exclusive or operator is the caret symbol
^. Many programming languages use that character for exponen-
tiation, so x^5 represents x*x*x*x*x. Because exponentiation can-
not be performed as a single machine instruction, C and C++
does not support such an operation, and leaves that for a function
unsigned int pow( unsigned int base, unsigned int exp );

The final operation is the bit-wise equivalent of the unary ! operator: the
unary complement operator ~. This flips all the bits of the operand. Thus,

~ 10111110111011001100000111110011

01000001000100110011111000001100

Note that if the unsigned int has exactly one 1, then performing bit-wise
operations may be summarized as follows, where we will assume that mask has
been defined as follows:

// 11

// This is equal to 2 = 2048

// - If the least significant bit is ’bit 0’,

// then this number has ’bit 11’ set to ’1’

unsigned int mask{ 0b00000000000000000000100000000000 };

1. If (n & mask) == 0, then bit 11 of n is zero (0).

2. If (n & mask) == mask or (n & mask) != 0, then bit 11 of n is one (1).

3. The operation n |= mask sets bit 11 of n to 1.

4. The operation n &= ~mask sets bit 11 of n to 0.

5. The operation n ^= mask flips the value of bit 11, so if it was 0 it is now
1, and if it was 1 it is now 0.

5 Bit-shifting operations

Given an unsigned integer n, the operation n << k moves the bits to the left by
k places, and the left-most k bits are lost. The integer k must be non-negative
(so 0 or greater). Note that if you left-shift a number greater than or equal to
the number of bits of that data type, the result is 0.
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10111110111011001100000111110011 << 3

11110111011001100000111110011000

10111110111011001100000111110011 << 7

01110110011000001111100110000000

10111110111011001100000111110011 << 29

01100000000000000000000000000000

Similarly, for an unsigned integer n, n >> k moves the bits to the right by
k places, and the right-most k bits are lost.

10111110111011001100000111110011 >> 3

00010111110111011001100000111110

10111110111011001100000111110011 >> 12

00000000000010111110111011001100

10111110111011001100000111110011 >> 30

00000000000000000000000000000010

For each of these binary bit-shifting operators, there is a corresponding auto-
assignment operator:

m <<= n; // m = m << n;

m >>= n; // m = m >> n;

Not on the examination

For bit-shifting, we have always emphasized that we are using unsigned
integers. This is because there is a slight variation for signed integers: for
the right shift of a signed integer, the sign bit is repeated. For example,
−150 is stored as the two’s complement of 0x10010110. Assuming it is
stored in a signed int, we have:

11111111111111111111111101101010 >> 3

11111111111111111111111111101101

11111111111111111111111101101010 << 24

01101010000000000000000000000000

Note that right-shifted three times leaves the number negative, however,
left-shifting may result in a positive number.
There are a few common uses for using bit shifting: given an unsigned integer
that contains just a single bit set to 1, bit shifting can move that 1 around
within that integer:
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00000000000000000001000000000000 >> 3

00000000000000000000001000000000

00000000000000000001000000000000 << 7

00000000000010000000000000000000

Specifically, 1 << k sets bit k to 1, and this happens to be the integer 2k:

00000000000000000000000000000001 << 4

00000000000000000000000000010000

00000000000000000000000000000001 << 10

00000000000000000000010000000000

The first number is the binary representation of 24 = 16 and the second that
of 210 = 1024. Note also that (1 << 4) - 1 and (1 << 10) - 1 result in the
calculations:

11111111111111111111111111111

00000000000000000000000000010000

+ 11111111111111111111111111111111

00000000000000000000000000001111

1111111111111111111111

00000000000000000000010000000000

+ 11111111111111111111111111111111

00000000000000000000001111111111

Thus, (1 << k) - 1 is a convenient way of creating a block of k bits set to 1.

Not on the examination

A common interview question is “How do you know if an
unsigned integer has exactly one 1?” the quick answer is
(n != 0) && ((n & (n - 1)) == 0). If n has only one 1, then n - 1

will have a 0 in that location and because all other bits of n are already
zero, n & (n - 1) must be zero. If n has at least two ones, then sub-
tracting 1 will not affect the most significant bit, so n & (n - 1) will
not be zero.

You can use bit-shifting operations to walk through an integer data type.
Remember that an array is indexed form 0 to capacity - 1. You can think
of an unsigned int as being an array of 32 bits, only the index goes from
the right-most bit (the least-significant bit) being 0 to the left-most bit (the
most-significant bit).

For example, a for loop that goes through an array of capacity 32 looks like
the following:

for ( std::size_t k{ 0 }; k < 32; ++k ) {
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// Do something with array[k]...

}

You can go through all the bits in an unsigned int n{...}; as follows

for ( unsigned int mask{ 1 }; mask != 0; mask <<= 1 ) {

// Do something with n&mask

}

This will go through all the bits of n one by one and you can determine if the
corresponding bit of n is 1 if (n&mask) != 0. If you want to know what the
actual bit number is, you can also use:

for ( unsigned int mask{ 1 }, bit{ 0 }; mask != 0; mask <<= 1, ++bit ) {

// Do something with n&mask which is

// accessing bit ’bit’ (where ’bit’ goes from ’0’ to ’31’

}
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