
ECE 150 The call stack and the heap

Douglas Harder

December 2023

1 Introduction

Every item of information must be stored as an integer, a floating-point number,
a character or a Boolean value. Even if a piece of information is not actually an
integer, but rather, you are only using the ones and zeros of an unsigned int to
store other information, you must never-the-less use the types provided. These
types must exist somewhere in main memory.

Not on the examination

When a program is executing, the computer uses registers to store infor-
mation, and these registers are not in main memory, but rather are built
into the processor itself. The compiler decides which values in memory
are copied to registers, and when values in registers are copied back into
main memory. Sometimes, the compiler can arrange it so that some local
variables are unnecessary, and thus do not occupy main memory. Such
optimizations, however, are way beyond the scope of a first-year course
in programming. We will assume all local variables occupy memory.

We will use the following class throughout these notes:

class Some_class {
public:

Some_class(int new_value);
void zero();
// Public member functions

private:
int value_;
int square_;
double data_[2];

};

Some_class::Some_class(int new_value):
value_{ new_value },
square_{ value_*value_ },

1

data_{} {
// Empty constructor

}

2 Local variables in int main()

If a local variable is declared in a function, the memory for that local variable is
allocated on the stack. This begins with the function int main(). For example,

int main() {
int a{ 3 };
double x{ 4.7 };
// some code...
if (...) {

int tmp{ a };
}
// some more code...

}

0xfffff0 ? tmp
int main()0xfffff4 4.7 x

0xfffffc 3 a

Important

The order that the local variables appear on the stack is not relevant.
You can put them in any order you want, only later, when we introduce
parameters, parameters must come below local variables and local arrays.
We are including addresses, for your interest, but they would not be
required on any examination.

If int main() has a local array, then that, too, will be allocated on the stack;
for example,

int main() {
int a{ 3 };
double a_integers[4]{ 1.2, 3.4, 5.6, 7.8 };
// some code...
if (...) {

int tmp{ a };
}
// some more code...

}

2

0xffffd8 ? tmp

int main()

0xffffdc 1.2 a_integers
0xffffe4 3.4
0xffffec 5.6
0xfffff4 7.8
0xfffffc 3 a

If an object is declared as a local variable, sufficient memory on the stack would
be allocated for all the member variables.

int main() {
int a{ 3 };
Some_class obj{ 5 };
// some code...
return 0;

}

0xffffe4 5 value_ obj

int main()
0xffffe8 25 square_
0xffffec 0.0 data_
0xfffff4 0.0
0xfffffc 3 a

In this example, the address of the object is 0xffffe4, and the array obj.data_
would be assigned 0xffffec. Note that because data_ is private, you can only
access that array inside of a member function.

When a local variable that is an object (that is, declared to be an instance
of a class):

• The constructor is called when the local variable is declared and the next
statement does not execute until after the constructor returns. A call to
the constructor is a function call.

• The destructor is called whenever a local variable that is declared goes
out of scope.

If you declare an array of objects as a local variable, sufficient memory on
the stack would be allocated for that number of instances of that class. For
example,

int main() {
Some_class a_objs[3]{4, 5, 6};
// some code...
return 0;

}

3

The constructor would, in this, be called three times, and each time the next
entry in the array would be initialized:

0xffffb8 4 value_ a_objs

int main()

0xffffbc 16 square_
0xffffc0 0.0 data_
0xffffc8 0.0
0xffffd0 5 value_
0xffffd4 25 square_
0xffffd8 0.0 data_
0xffffe0 0.0
0xffffe8 6 value_
0xffffec 36 square_
0xfffff0 0.0 data_
0xfffff8 0.0

Now, for example, a_objs[2] would access the object that has value_ assigned
6.
When a local variable that is an array of objects:

• The constructor is called for each entry of the local array.

• The destructor is called on each entry of the array whenever a local array
goes out of scope.

3 Function calls

In these examples, we will use the following three functions:

long abs(long const m) {
if (m >= 0) {

return m;
} else {

return -m;
}

}

long gcd(long m, long n) {
if (m == 0) {

return abs(n);
}

while (n != 0) {
long tmp{ n };
n = m%n;

4

m = tmp;
}

return abs(m);
}

void clear(
double array[],
std::size_t const capacity

) {
for (std::size_t k{0}; k < capacity; ++k) {

array[k] = 0.0;
}

}

When a function (that is, a function, constructor, member function or destruc-
tor) is called, memory for the parameters is allocated at the top of the stack,
and those parameters are initialized with the arguments:

int main() {
int var{ -25 };
var *= abs(var + 19);
std::cout << var << std::endl;
return 0;

}

0xfffff0 -6 m long abs(...)
0xfffff8 -25 var int main()

The parameter was initialized with the value of the argument, which is whatever
returns when we calculate var + 19, which in this case is -12. When the function
long abs(...) returns, the return value will be used to update the local variable
var:

0xfffff8 -150 var int main()

Next, if a function (that is, a function, constructor, member function, or
destructor) has a local variable or a local array that is of a primitive data type
or of a class, memory for those are allocated above the memory allocated for
the parameters.

int main() {
std::size_t const N{ 5 };
double a_integers[N]{ 3.2, 4.7, 8.1 };

5

clear(a_integers, N);

return 0;
}

0xffffb8 ? k
void clear(...)0xffffc0 0xffffd0 array

0xffffc8 5 capacity
0xffffd0 3.2 a_integers

int main()

0xffffd8 4.7
0xffffe0 8.1
0xffffe8 0.0
0xfffff0 0.0
0xfffff8 5 N

When the loop begins executing, the loop variable k will be initialized to 0.
When array[k] is assigned to, it will be updating the entries of the array
a_integers, so when the loop is about to exit, the call stack will look as follows,
with the loop variable itself no longer accessible:

0xffffb8 5 k
void clear(...)0xffffc0 0xffffd0 array

0xffffc8 5 capacity
0xffffd0 0.0 a_integers

int main()

0xffffd8 0.0
0xffffe0 0.0
0xffffe8 0.0
0xfffff0 0.0
0xfffff8 5 N

When void clear() returns, we are back in the function int main():

0xffffd0 0.0 a_integers

int main()

0xffffd8 0.0
0xffffe0 0.0
0xffffe8 0.0
0xfffff0 0.0
0xfffff8 5 N

Let’s look at a function calling another function, and where parameters have
their values updated:

6

int main() {
int first{ 204 };
int second{ -150 };

std::cout << gcd(first, second) << std::endl;
return 0;

}

0xffffd8 ? tmp
long gcd(...)0xffffe0 -150 n

0xffffe8 204 m
0xfffff0 -150 second

int main()
0xfffff8 204 first

At the end of the first iteration of the while loop, the parameters m and n have
changed, but this has no effect in int main():

0xffffd8 -150 tmp
long gcd(...)0xffffe0 54 n

0xffffe8 -150 m
0xfffff0 -150 second

int main()
0xfffff8 204 first

When the condition for the loop is false, the call stack now looks like the follow-
ing, although once the loop finishes, the local variable tmp is no longer accessible.

0xffffd8 -6 tmp
long gcd(...)0xffffe0 0 n

0xffffe8 -6 m
0xfffff0 -150 second

int main()
0xfffff8 204 first

The next statement is “return abs(m);”, so we call that function, and thus,
we now have another layer on the stack:

0xffffd0 -6 m long abs(...)
0xffffd8 -6 tmp

long gcd(...)0xffffe0 0 n
0xffffe8 -6 m
0xfffff0 -150 second

int main()
0xfffff8 204 first

7

The value 6 will be returned by long abs(...), and this value is immediately
returned by long gcd(...), so this is what will be passed to the printing state-
ment with std::cout inside of int main().

4 Recursive function calls

Consider this recursive function:

int main();
int binomial(unsigned int n, unsigned int k);

int main() {
// If your child has five toys, but is
// only allowed to play with two of them
// at a time, how many different ways
// can you combine two toys from five?
unsigned int toys{ 5 };
unsigned int played_with{ 2 };

std::cout << binomial(toys, played_with) << std::endl;

return 0;
}

int binomial(unsigned int n, unsigned int k) {
if (k > n) {

return 0;
} else if ((k == n) || (k == 0)) {

return 1;
} else {

unsigned int first{ binomial(n - 1, k) }
unsigned int second{ binomial(n - 1, k - 1) };
return first + second;

}
}

With the first function call, the state of the stack is as follows:

0xffffe8 ? second

int binomial(5, 2)
0xffffec ? first
0xfffff0 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

8

The first two cascading conditions are false, so we are in the complementary
alternative block, so must first perform the calculation for initializing first,
and this has us call binomial(4, 2):

0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

Once again, we are in the complementary alternative block, so now we must
make another recursive function call to initialize the local variable first at
0xfffd8:

0xffffc4 ? second

int binomial(3, 2)
0xffffc8 ? first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

Again, we find ourselves in the complementary alternative block, so we must ini-
tialize the local variable first at 0xffffc8, and this has us call binomial(2, 2):

9

0xffffb4 ? second

int binomial(2, 2)
0xffffb8 ? first
0xffffbc 2 k
0xffffc0 2 n
0xffffc4 ? second

int binomial(3, 2)
0xffffc8 ? first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

At this point, the second condition is true, so we are in the second consequent
block, which returns 1. This value initializes first at address 0xffffc8:

0xffffc4 ? second

int binomial(3, 2)
0xffffc8 1 first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

The next statement in the current function call binomial(3, 2) is to initialize
the local variable second at address 0xffffc4, so this has us call binomial(2, 1):

10

0xffffb4 ? second

int binomial(2, 1)
0xffffb8 ? first
0xffffbc 1 k
0xffffc0 2 n
0xffffc4 ? second

int binomial(3, 2)
0xffffc8 1 first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

Once again, we find ourselves in the complementary alternative block, so we
must first initialize first at address 0xffffb8, and we do this by calling binomial(1, 1):

11

0xffffa4 ? second

int binomial(1, 1)
0xffffa8 ? first
0xffffac 1 k
0xffffb0 1 n
0xffffb4 ? second

int binomial(2, 1)
0xffffb8 ? first
0xffffbc 1 k
0xffffc0 2 n
0xffffc4 ? second

int binomial(3, 2)
0xffffc8 1 first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

Fortunately, we are in second consequent block, as the parameters are equal, so
the value 1 is returned, and that initializes the local variable first at 0xfffb8:

12

0xffffb4 ? second

int binomial(2, 1)
0xffffb8 1 first
0xffffbc 1 k
0xffffc0 2 n
0xffffc4 ? second

int binomial(3, 2)
0xffffc8 1 first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

We must now initialize second at 0xfffb4, so we call binomial(1, 0):

0xffffa4 ? second

int binomial(1, 0)
0xffffa8 ? first
0xffffac 0 k
0xffffb0 1 n
0xffffb4 ? second

int binomial(2, 1)
0xffffb8 1 first
0xffffbc 1 k
0xffffc0 2 n
0xffffc4 ? second

int binomial(3, 2)
0xffffc8 1 first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

13

Fortunately, we are in the second consequent block, and thus again we return
1, and this initializes second at 0xffffb4:

0xffffb4 1 second

int binomial(2, 1)
0xffffb8 1 first
0xffffbc 1 k
0xffffc0 2 n
0xffffc4 ? second

int binomial(3, 2)
0xffffc8 1 first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

Both local variables have been initialized, so now we can return their sum, and
that sum initializes the local variable second at 0xffffc4:

0xffffc4 2 second

int binomial(3, 2)
0xffffc8 1 first
0xffffcc 2 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 ? first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

For the function call binomial(3, 2), we also have now initialized both local
variables, so once again, we can return their sum (3), and this can now initialize
the local variable first at 0xffffd8:

14

0xffffd4 ? second

int binomial(4, 2)
0xffffd8 3 first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

At this point, we must now initialize the second local variable second at 0xffffd4,
and to do this, we must call binomial(3, 1):

0xffffc4 ? second

int binomial(3, 1)
0xffffc8 ? first
0xffffcc 1 k
0xffffd0 3 n
0xffffd4 ? second

int binomial(4, 2)
0xffffd8 3 first
0xffffdc 2 k
0xffffe0 4 n
0xffffe4 ? second

int binomial(5, 2)
0xffffe8 ? first
0xffffec 2 k
0xfffff4 5 n
0xfffff8 2 played_with

int main()
0xfffffc 5 toys

And you can take it from here!

5 Memory allocated on the heap

Each time you call new typename{...} or new typename[N]{...}, this makes a
request to the operating system for sufficient memory for what was requested.
The location of this memory is chosen by the operating system, and it is that
address that is returned by the call to new.

This is important: both allocating a single instance of a type or allocating
an array of a type returns an address. To help you remember which, you should
prefix the pointer with a p_ and prefix the latter with a_. For example,

int main() {
int *p_integer{ new int{ 42 } };

15

int *a_integers{ new int[6]{ 3, 2, 1 } };
int *p_object{ new Some_class{ 150 } };
int *a_objects{ new Some_class[2]{ 8, 9 } };
// Some code...
delete p_integer;
p_integer = nullptr;
delete[] a_integers;
a_integers = nullptr;
delete p_object;
p_object = nullptr;
delete[] a_objects;
a_objects = nullptr;
return 0;

}

The four pointers are actually local variables occupying however much memory
is needed, and we will assume this is eight bytes (64 bits).

Not on the examination

On a 64-bit processor, both pointers and std::size_t occupy eight bytes
(64 bits). On a 32-bit processor, both pointers and std::size_t occupy
four bytes (32 bits). Many microcontrollers may have 32-bit addresses,
24-bit addresses or even 16-bit addresses, in which case, the memory
allocated for a pointer and std::size_t would match that value.

Thus, we have the following situation:

16

...
0x5190 8 value_
0x5194 64 square_
0x5198 0.0 data_
0x51a0 0.0
0x51a8 9 value_
0x51ac 81 square_
0x51b0 0.0 data_
0x51b8 0.0

...
0x8f50 3
0x8f54 2
0x8f58 1
0x8f5c 0
0x8f60 0
0x8f64 0

...
0xabc0 150 value_
0xabc4 22500 square_
0xabc8 0.0 data_
0xabd0 0.0

...
0xc3b0 5

...
0xfffff0 0x5190 a_objects

int main()
0xffffe8 0xabc0 p_object
0xffffe8 0x8f50 a_integers
0xfffff8 0xc3b0 p_integer

You don’t care what the addresses are. You only need the addresses so that you
can access what is at that location.
For the address of a single instance of a primitive data type, you proceed as
follows to access or assign to the instance at that address:

// Access or assign to an instance
// of a primitive data type
std::cout << *p_integer << std::endl;
*p_integer = 91;

The first will print what is at the address stored in the local variable p_integer,
while the second changes what is at that address.
For an array of a primitive data type, you access or manipulate the array entries
using array indexing:

17

// Access or assign to an entries
// of a dynamically allocated array
// of a primitive data type
std::cout << a_integers[0]
for (std::size_t k{ 1 }; k < 6; ++k) {

std::cout << ", " << a_integers[k];
}

for (std::size_t k{ 0 }; k < 6; ++k) {
a_integers[k] = 1000 + k;

}

The first loop prints 3, 2, 1, 0, 0, 0 while the second changes the values
stored at addresses 0x8f50 through 0x8f64 to the values 1000 through 1005,
respectively.
To call a member function on the object at the address of a single instance of
that class, you would proceed as follows:

(*p_object).member_function(...);

This is awkward, so an easier method is to use the arrow operator:

p_object->member_function(...);

To call member function on an array of dynamically allocated instances of a
class (that is, an array of objects), remember that a_objects[2] is the object
at the third entry. Thus, you must use the dot operator to call the member
function on that object:

for (std::size_t k{ 0 }; k < 2; ++k) {
a_objects[k].member_function(...);

}

18

Not on the examination

You may note that arrays and pointers are the same: they
are addresses. Thus, you may ask, why not treat a sin-
gle instance as an array of capacity 1, and then access it us-
ing the indexing operator: for example, p_integer[0] instead
of *p_integer, and p_object[0].member_function(...) instead of
p_object->member_function(...)?
Similarly, you may ask, can you not access the first entry in an array
using the notation for pointers? For example, using *a_integers in-
stead of a_integers[0], and a_objects->member_function(...) instead
of a_objects[0].member_function(...)?
The answer is, you can, but you will annoy everyone around you. If
a pointer is being de-referenced using an index, the assumption is that
that address is that of an array. The reader will then search in vain for
the capacity of that array. Similarly, if you just want to access the first
entry of an array by using *a_integers, then the reader will be even
more confused if you are accessing other entries using array indices.

6 Calling delete or delete[]

When you call delete on a single instance of a class that was dynamically
allocated, then that will call the destructor on that one instance. If you call
delete[] on an array that was dynamically allocated, then that will call the
destructor on each instance in the array. If you accidentally call, for example,
delete a_objects;, this will only call the destructor on the first entry of the
array, possibly leading to memory leaks.

Not on the examination

You may have noticed that the purpose of calling delete[] a_objects;
is to call the destructor on all the entries of the array. Because there is
no destructor for primitive data types, can you not just delete a simple
array with delete? For example, delete a_integers;? Similarly, if the
class has no destructor, could you not call delete a_objects;? The
answer is, “yes”, but then you run the risk of confusing the reader and
possibly forgetting whether or not this is an array of objects or an array
of primitive data types, and similarly, suppose later you add a destructor
to a class: do you now have to go back and update all calls to delete?
It is always best practice to call delete on single instances and delete[]
on arrays. In this class, we will generally not mark code wrong if it
actually does compile and is valid; however, in the case of calling either
delete or delete[], we will be making sure that the expected call is
made (the first on instances, the second on arrays).

19

7 When to call delete?

Suppose you have two pointers that are storing the addresses of two dynamically
allocated objects and you want to swap them.

int main() {
int *p_one_int{ new int{ 91 } };
int *p_another_int{ new int{ 42 } };

if (*p_one_int >= *p_another_int) {
int *p_tmp{ p_one_int };
p_one_int = p_another_int;
p_another_int = p_tmp;
// Do you call delete p_tmp; ?

}

delete p_one_int;
p_one_int = nullptr;
delete p_another_int;
p_another_int = nullptr;

return 0;
}

Consider what is happening in main memory:

...
0xabc0 42

...
0xdef0 91

...
0xfffff0 0xdef0 p_one_int

int main()
0xfffff8 0xabc0 p_another_int

With the conditional statement being executed, a local variable tmp is created
and assigned, and at the end of the conditional statement, the stack looks like
the following:

20

...
0xabc0 42

...
0xdef0 91

...
0xffffe8 0xdef0 p_tmp

int main()0xfffff0 0xabc0 p_one_int
0xfffff8 0xdef0 p_another_int

You will see that both local variables p_tmp and p_another_int now store the
same address. If you now call delete p_tmp;, this will deallocate the mem-
ory that is also stored in the local variable p_another_int, in other words,
p_another_int unexpectedly became a dangling pointer. Finding such a bug
could actually be a serious problem, because later, when the source actually
calls delete p_another_int;, this will cause the operating system to end your
program, throwing an error.

Note that the above code does not swap the values stored, it swaps the two
addresses. If you wanted to swap the values stored at those addresses, you would
use:

if (*p_one_int >= *p_another_int) {
int tmp{ *p_one_int };
*p_one_int = *p_another_int;
*p_another_int = tmp;

}

21

	Introduction
	Local variables in int main()
	Function calls
	Recursive function calls
	Memory allocated on the heap
	Calling delete or delete[]
	When to call delete?

