
2020-07-24

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL
hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Binary and
hexadecimal numbers

2
Binary and hexadecimal numbers

Outline

• In this lesson, we will:

– Review counting

– Consider what happens if we had only eight fingers

– Introduce binary numbers

– Look at addition of binary numbers

– Introduce hexadecimal numbers

– See how hexadecimal numbers an represent binary numbers

3
Binary and hexadecimal numbers

Counting

• In our counting system, we have ten different digits

• Our numbering system is positional

– The significance of a number depends on its position

1942

– The number 1942 represents the total of these numbers

• Note, if “9” represents XXXXXXXXX objects,

 then “10” represents XXXXXXXXXX objects

4 × 101 = 40

2 × 100 = 2

9 × 102 = 900

1 × 103 = 1000

 דוד

4
Binary and hexadecimal numbers

Base 8

• Base 10 is great for humans: we have a total of 10 fingers

• Suppose humans had eight fingers, so we only and eight digits:

0, 1, 2, 3, 4, 5, 6, 7

• Thus, the numbers would look like:

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, …

 43573532

+ 61546073

5 2

2 + 3 = 5

3 + 7 = 12

1

1 + 5 + 0 = 6

6

3 + 6 = 11

1

1

1 + 7 + 4 = 14

4

1

1 + 5 + 5 = 13

3

1

1 + 3 + 1 = 5

5 4 + 6 = 12 2

1

1 + 0 + 0 = 1

1

2020-07-24

2

5
Binary and hexadecimal numbers

Base 8

• Therefore, each of these base-8 numbers would represent a certain
number of “things”:

 0 zero

 1 one X

 2 two XX

 3 three XXX

 4 four XXXX

 5 five XXXXX

 6 six XXXXXX

 7 seven XXXXXXX

 10 eight XXXXXXXX

 11 nine XXXXXXXXX

 12 ten XXXXXXXXXX

 13 eleven XXXXXXXXXXX

 14 twelve XXXXXXXXXXXX

6
Binary and hexadecimal numbers

Base 8

• To convert a base-8 number to base 10, we calculate:

4173

7 × 81 = 56

3 × 80 = 3

1 × 82 = 64

4 × 83 = 2048

2048 + 64 + 56 + 3 = 2171

7
Binary and hexadecimal numbers

Base 2

• In a computer,

 a number must be stored as a voltage

• Having ten different voltages is difficult to design and maintain

– Some of the earliest computers did use base 10

• Back in the 1940s

• Instead, it is easiest to have only two voltages:

– 0 is represented by 0 V

– 1 is represented by 5 V

• That is, we only have two digits, 0 and 1

– We will call these bits from binary digits

8
Binary and hexadecimal numbers

Counting

• This means we have only two digits now:

0, 1

• Thus, the number after “1” is “10”,

 so 1 + 1 = 10

 also, 10 + 1 = 11

 thus, 11 + 1 = 100

2020-07-24

3

9
Binary and hexadecimal numbers

Counting

• Therefore, each of these base-2 numbers would represent a certain
number of “things”:

 0 zero

 1 one X

 10 two XX

 11 three XXX

 100 four XXXX

 101 five XXXXX

 110 six XXXXXX

 111 seven XXXXXXX

 1000 eight XXXXXXXX

 1001 nine XXXXXXXXX

 1010 ten XXXXXXXXXX

 1011 eleven XXXXXXXXXXX

 1100 twelve XXXXXXXXXXXX

10
Binary and hexadecimal numbers

Counting

• It is useful to recognize very specific values:

 1 one 20

 10 two 21

 100 four 22

 1000 eight 23

 10000 sixteen 24

 100000 thirty two 25

 1000000 sixty four 26

 10000000 128 27
 100000000 256 28

 1000000000 512 29

 10000000000 1024 210

11
Binary and hexadecimal numbers

Adding powers of two

• Adding numbers in base 10 is something you have learned

– In base 10, adding powers of 10 is easy: 10 + 100 + 10000 = 10110

• Adding powers of two (102) in base 2 is also quite easy:

1482

3

0

10

1000

1000000

10000000

100000000

+10000000000

2

8

64

128

256

+1024

1

1 0 1 0 0 1 1 1 0 1

12
Binary and hexadecimal numbers

Representation

• In base 10, every digit is associated with a power of 10:

 123456789

• We will say that:

– The “9” is 9 × 100, so we will say that nine is in the zeroeth position

– The “8” is 8 × 101, so we will say that eight is in the first position

– The “1” is 1 × 108, so we will say that one is in the eighth position

2020-07-24

4

13
Binary and hexadecimal numbers

Representation

• To figure out what a binary number represents in decimal, we have

 100010011101

– Thus 1 + 4 + 8 + 16 + 128 + 2048 = 2205

20 = 1

22 = 4

23 = 8

24 = 16

27 = 128

211 = 2048

14
Binary and hexadecimal numbers

1 1 1 1 1 1 1

• To add two binary numbers, the process is the same as adding two
decimal numbers

– However, you only need to remember that:

 1 + 1 = 10

1 + 1 + 1 = 11

• We can even check our answer:

 1 + 4 + 8 + 32 + 64 + 1024 + 2048 = 3181

 4 + 32 + 64 + 128 + 1024 = 1252

 1 + 16 + 64 + 256 + 4096 = 4433

110001101101

+ 10011100100

Adding two binary numbers

1 0 0 0 1 0 1 0 1 0 0 0 1

= 3181 + 1252

15
Binary and hexadecimal numbers

Counting in binary

• Question: Is 100 equal to 102 or 4?

– We will usually:

• Prefix binary numbers with "0b"

• Use the monospaced typeface Consolas

– Thus:

• 100011010 is a large decimal number

• 0b11110110010 is binary for 1970

– To start, we will gray-out the "0b"

16
Binary and hexadecimal numbers

Addition

• Just like addition with decimal numbers, you can do the same with
binary, you only have to remember:

 1 + 1 = 10 and 1 + 1 + 1 = 11

1 1 1

3725

+ 8982

12707

 1 1 1 1 1 1 1 1

9275948135782

+ 503292582385322553

503301858333458335

1 1 1 1

1010
+ 111
10001

1 1 1 1 1 1 1 1 1 1

1110010001100111
+ 110111011011000110
1000101101100101101

2020-07-24

5

17
Binary and hexadecimal numbers

Counting in binary

There are only 10 types

of people in the world.

Those who understand binary,

and those who do not.

18
Binary and hexadecimal numbers

Verbosity

• It seems it takes more bits to represent a number in binary than it
does in decimal

– It’s not that bad:

 it only takes approximately log2(10) ≈ 3.3 times as many bits

– For example, 8357 requires four decimal digits,

 it would require approximately 4 × 3.3 = 13.2

• In fact, it requires fourteen bits: 0b10000010100101

• The computer doesn’t care,

 but it’s more frustrating for a human to deal in binary

19
Binary and hexadecimal numbers

Base 16: hexadecimal

• Suppose instead, we had 16 digits, and not 10:

• In base 16,

 a ten

 b eleven

 c twelve

 d thirteen

 e fourteen

 f fifteen

 10 sixteen

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f

20
Binary and hexadecimal numbers

Counting in hexadecimal

• Question: Is 5923 equal to 5923 or something else in base 16?

– We will usually:

• Prefix hexadecimal numbers with "0x"

• Use the monospaced typeface Consolas

– Thus:

• 5923 is a decimal number

• 0x5923 is a hexadecimal number for 22819

– To start, we will gray-out the "0x"

2020-07-24

6

21
Binary and hexadecimal numbers

Verbosity

• It seems it takes more fewer hexadecimal digits to represent a
number in hexadecimal than it does in decimal

– It’s only slightly better:

 it takes approximately log16(10) ≈ 0.83 times

 as many hexadecimal digits

– For example, 8357 requires four decimal digits,

 it would require approximately 4 × 0.83 = 3.32 hexadecimal digits

• In fact, it still four: 0x20a5

22
Binary and hexadecimal numbers

Why hexadecimal?

• Hexadecimal is an easy way to represent a binary number:
 0 0b0 0x0

 1 0b1 0x1

 2 0b10 0x2

 3 0b11 0x3

 4 0b100 0x4

 5 0b101 0x5

 6 0b110 0x6

 7 0b111 0x7

 8 0b1000 0x8

 9 0b1001 0x9

 10 0b1010 0xa

 11 0b1011 0xb

 12 0b1100 0xc

 13 0b1101 0xd

 14 0b1110 0xe

 15 0b1111 0xf

0b0000

0b0001

0b0010

0b0011

0b0100

0b0101

0b0110

0b0111

0b1000

0b1001

0b1010

0b1011

0b1100

0b1101

0b1110

0b1111

23
Binary and hexadecimal numbers

Converting binary to hexadecimal

• We will only use hexadecimal to easily represent a binary number:

– To convert a binary number to hexadecimal:

• Split the binary number into groups of four

 starting at the least-significant bit

– Pad with zeros to the left if necessary

• Replace each group of four bits with the

 corresponding hexadecimal digit

• Thus, in hexadecimal, this binary number is

 0x15c68d2ea

0x0 0b0000

0x1 0b0001

0x2 0b0010

0x3 0b0011

0x4 0b0100

0x5 0b0101

0x6 0b0110

0x7 0b0111

0x8 0b1000

0x9 0b1001

0xa 0b1010

0xb 0b1011

0xc 0b1100

0xd 0b1101

0xe 0b1110

0xf 0b1111

101011100011010001101001011101010 000

a e 2 d 8 6 c 5 1

24
Binary and hexadecimal numbers

Converting hexadecimal to binary

• We can easily convert a hexadecimal number back to binary:

– To convert a hexadecimal number to binary:

• Replace each hexadecimal digit with its

 corresponding four bits

• Thus, in binary, this hexadecimal number is

 0b11111111101000110000011110111000

0x0 0b0000

0x1 0b0001

0x2 0b0010

0x3 0b0011

0x4 0b0100

0x5 0b0101

0x6 0b0110

0x7 0b0111

0x8 0b1000

0x9 0b1001

0xa 0b1010

0xb 0b1011

0xc 0b1100

0xd 0b1101

0xe 0b1110

0xf 0b1111

0xffa307b8

1000 1011 0111 0000 0011 1010 1111 1111

2020-07-24

7

25
Binary and hexadecimal numbers

Counting in hexadecimal

• In this course,

 you will not be required to add two hexadecimal numbers

• You must, however, understand that if you have the hexadecimal
number

0xff3a05

0x5aff

0xa5210

0xff3a04 0xff3a06

0x5afe 0x5b00

0xa520f 0xa5211

26
Binary and hexadecimal numbers

Beyond the scope of this course

• Now, you could create addition and multiplication tables for both
binary and hexadecimal numbers

– You could define binary and hexadecimal multiplication and
division

– You could do everything you do with decimal numbers in binary or
in hexadecimal

• However, you don’t care for this course

– What is covered here is all you will really need:

• Converting between binary and decimal

• Adding two binary numbers

• Converting between binary and hexadecimal

• Understanding the relative order of both binary and hexadecimal
numbers

27
Binary and hexadecimal numbers

Summary

• Following this lesson, you now

– Understand that computer use binary numbers

– Know that the digits 0 and 1 are called bits

• Binary numbers are prefixed by "0b"

– See that binary addition mirrors decimal addition

– You know that the hexadecimal digits are 0 through 9 and a b c d e f

– Understand that binary numbers are verbose

 and hexadecimal representations are more compact

• Hexadecimal numbers are prefixed by "0x"

– Know how to translate between binary and hexadecimal and back

• You don’t care what decimal value a hexadecimal number is…

28
Binary and hexadecimal numbers

References

[1] Wikipedia:

 https://en.wikipedia.org/wiki/Binary_number

 https://en.wikipedia.org/wiki/Hexadecimal

 https://simple.wikipedia.org/wiki/Hexadecimal_numeral_system

2020-07-24

8

29
Binary and hexadecimal numbers

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

30
Binary and hexadecimal numbers

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

