

- In our counting system, we have ten different digits
- Our numbering system is positional
- The significance of a number depends on its position

$$
\begin{aligned}
1 \times 10^{3}= & 1000 \quad 1942 \\
& 9 \times 10^{2}=900 \quad 4 \times 10^{0}=2 \\
& 4 \times 10^{1}=40
\end{aligned}
$$

- The number 1942 represents the total of these numbers
- Note, if " 9 " represents XXXXXXXXX objects, then " 10 " represents XXXXXXXXXX objects

דוד

$1 \times 10^{3}=1000 \quad 1942 \quad 2 \times 10^{0}=2$
$9 \times 10^{2}=900 \quad 4 \times 10^{1}=40$

-

- Therefore, each of these base-8 numbers would represent a certain number of "things":

0	zero	
1	one	X
2	two	XX
3	three	XXX
4	four	XXXX
5	five	XXXXX
6	six	XXXXXX
7	seven	XXXXXXX
10	eight	XXXXXXXX
11	nine	XXXXXXXXX
12	ten	XXXXXXXXXX
13	eleven	XXXXXXXXXXX
14	twelve	XXXXXXXXXXXX

Wixh $2 \rightarrow$ Binary and iexadecimal nunbers ${ }_{6}$ I
 Base 8

- To convert a base- 8 number to base 10 , we calculate:

4173

$$
3 \times 8^{0}=3
$$

$$
4 \times 8^{3}=2048 \quad 7 \times 8^{1}=56
$$

$2048+64+56+3=2171$

 Base 2

- In a computer,
a number must be stored as a voltage
- Having ten different voltages is difficult to design and maintain
- Some of the earliest computers did use base 10
- Back in the 1940 s
- Instead, it is easiest to have only two voltages:
- 0 is represented by 0 V
- 1 is represented by 5 V
- That is, we only have two digits, 0 and 1
- We will call these bits from binary digits

- This means we have only two digits now:

0,1

- Thus, the number after " 1 " is " 10 ",

$$
\begin{aligned}
& \text { SO } 1+1=10 \\
& \text { also, } 10+1=11 \\
& \text { thus, } 11+1=100
\end{aligned}
$$

- Therefore, each of these base-2 numbers would represent a certain number of "things":

0	zero	
1	one	X
10	two	XX
11	three	XXX
100	four	XXXX
101	five	XXXXX
110	six	XXXXXX
111	seven	XXXXXXX
1000	eight	XXXXXXXX
1001	nine	XXXXXXXXX
1010	ten	XXXXXXXXXX
1011	eleven	XXXXXXXXXXX
1100	twelve	XXXXXXXXXXX

- Adding numbers in base 10 is something you have learned
- In base 10 , adding powers of 10 is easy: $10+100+10000=10110$
- Adding powers of two $\left(10_{2}\right)$ in base 2 is also quite easy:

 Counting

- It is useful to recognize very specific values:

1	one
10	two
100	four
1000	eight
10000	sixteen
100000	thirty two
1000000	sixty four
10000000	128
100000000	256
1000000000	512
10000000000	1024

Representation

- In base 10 , every digit is associated with a power of 10 :

123456789

- We will say that:
- The " " " is 9×10^{0}, so we will say that nine is in the zeroeth position
- The " 8 " is 8×10^{1}, so we will say that eight is in the first position
- The " 1 " is 1×10^{8}, so we will say that one is in the eighth position
- To figure out what a binary number represents in decimal, we have

- Thus $1+4+8+16+128+2048=2205$

Counting in binary

- Question: Is 100 equal to 10^{2} or 4?
- We will usually:
- Prefix binary numbers with "0b"
- Use the monospaced typeface Consolas
- Thus:
- 100011010 is a large decimal number
- $0 b 11110110010$ is binary for 1970
- To start, we will gray-out the " 0 b"

 Adding two binary numbers

- To add two binary numbers, the process is the same as adding two decimal numbers
- However, you only need to remember that:
$1+1=10$
$1+1+1=11$

$+11001100100$

- We can even check our answer:

$$
\begin{aligned}
& 1+4+8+32+64+1024+2048=3181 \\
& 4+32+64+128+1024=1252 \\
& 1+16+64+256+4096=4433=3181+1252
\end{aligned}
$$

 Addition

- Just like addition with decimal numbers, you can do the same with binary, you only have to remember:

$$
1+1=10 \text { and } 1+1+1=11
$$

$3725 \quad 1010$
$+\underline{8982}$
12707
$+\quad 111$
$1 \begin{array}{lll}111 & 11\end{array}$
9275948135782
$11111 \quad 1111$
1110010001100111
$+\frac{503292582385322553}{503301858333458335}+\frac{110111011011000110}{1000101101100101101}$

Mand Binary iexadecimal numbers in
 Counting in binary

There are only 10 types of people in the world.

Those who understand binary, and those who do not.

5. Na Verbosity

- It seems it takes more bits to represent a number in binary than it does in decimal
- It's not that bad:
it only takes approximately $\log _{2}(10) \approx 3.3$ times as many bits
- For example, 8357 requires four decimal digits,
it would require approximately $4 \times 3.3=13.2$
- In fact, it requires fourteen bits: $0 b 10000010100101$
- The computer doesn't care,
but it's more frustrating for a human to deal in binary
- Suppose instead, we had 16 digits, and not 10 :

$$
0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f
$$

- In base 16 ,

a	ten
b	eleven
c	twelve
d	thirteen
e	fourteen
f	fifteen
10	sixteen

- It seems it takes more fewer hexadecimal digits to represent a number in hexadecimal than it does in decimal
- It's only slightly better:
it takes approximately $\log _{16}(10) \approx 0.83$ times
as many hexadecimal digits
- For example, 8357 requires four decimal digits,
it would require approximately $4 \times 0.83=3.32$ hexadecimal digits
- In fact, it still four: $0 \times 20 a 5$

 Converting binary to hexadecimal

- We will only use hexadecimal to easily represent a binary number:
- To convert a binary number to hexadecimal:
- Split the binary number into groups of four starting at the least-significant bit - Pad with zeros to the left if necessary
000101011100011010001101001011101010
- Replace each group of four bits with the corresponding hexadecimal digit
- Thus, in hexadecimal, this binary number is

$$
0 \times 15 c 68 \mathrm{~d} 2 \mathrm{ea}
$$

 Why hexadecimal?

- Hexadecimal is an easy way to represent a binary number

$0 b 0$	0×0	$0 b 0000$
$0 b 1$	0×1	$0 b 0001$
$0 b 10$	0×2	$0 b 0010$
$0 b 11$	0×3	$0 b 0011$
$0 b 100$	0×4	$0 b 0100$
$0 b 101$	0×5	$0 b 0101$
$0 b 110$	0×6	$0 b 0110$
$0 b 111$	0×7	$0 b 0111$
$0 b 1000$	0×8	$0 b 1000$
$0 b 1001$	0×9	$0 b 1001$
$0 b 1010$	$0 x a$	$0 b 1010$
$0 b 1011$	$0 \times b$	$0 b 1011$
$0 b 1100$	$0 x c$	$0 b 1100$
$0 b 1101$	$0 x d$	$0 b 1101$
$0 b 1110$	$0 x e$	$0 b 1110$
$0 b 1111$	$0 x f$	$0 b 1111$

2man Binary and foradecimal numbers 24
 Converting hexadecimal to binary

- We can easily convert a hexadecimal number back to binary:
- To convert a hexadecimal number to binary:
- Replace each hexadecimal digit with its corresponding four bits

- Thus, in binary, this hexadecimal number is $0 b 11111111101000110000011110111000$

0x0	0b0000
0x1	0b0001
0x2	0 b 0010
0×3	0 b 0011
0x4	0b0100
0x5	0b0101
0x6	0 b 0110
0x7	0 b 0111
0x8	0b1000
0x9	$0 \mathrm{b1001}$
0xa	0 b 1010
0xb	$0 \mathrm{b1011}$
0xc	0b1100
0xd	0 b 1101
0xe	0 b 1110
0xf	0 b 1111

- In this course,
you will not be required to add two hexadecimal numbers
- You must, however, understand that if you have the hexadecimal number

0xff3a04	0xff3a05	0xff3a06
0x5afe	$0 \times 5 a f f$	$0 \times 5 b 00$
0xa520f	$0 \times a 5210$	$0 \times a 5211$

Summary
 Summary

- Following this lesson, you now
- Understand that computer use binary numbers
- Know that the digits θ and 1 are called bits
- Binary numbers are prefixed by " 0 b "
- See that binary addition mirrors decimal addition
- You know that the hexadecimal digits are 0 through 9 and abcdef
- Understand that binary numbers are verbose
and hexadecimal representations are more compact
- Hexadecimal numbers are prefixed by " $0 x$ "
- Know how to translate between binary and hexadecimal and back
- You don't care what decimal value a hexadecimal number is...

N2, $2 \rightarrow 14$
 Beyond the scope of this course

- Now, you could create addition and multiplication tables for both binary and hexadecimal numbers
- You could define binary and hexadecimal multiplication and division
- You could do everything you do with decimal numbers in binary or in hexadecimal
- However, you don't care for this course
- What is covered here is all you will really need:
- Converting between binary and decimal

Adding two binary numbers

- Converting between binary and hexadecimal
- Understanding the relative order of both binary and hexadecima numbers

[1] Wikipedia:
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Hexadecimal
https://simple.wikipedia.org/wiki/Hexadecimal_numeral_system

These slides were prepared using the Georgia typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas.

The photographs of lilacs in bloom appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/

These slides are provided for the ECE 150 Fundamentals of Programming course taught at the University of Waterloo. The material in it reflects the authors' best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

