Outline

• In this lesson, we will:
 – Review main memory
 – Consider what we can store with \(n \) decimal digits and \(n \) bits
 – Describe the storage of \texttt{int}
 – Determine the problems with storing negative values
 – Introduce unsigned types

 \begin{itemize}
 \item \texttt{unsigned char}
 \item \texttt{unsigned short}
 \item \texttt{unsigned int}
 \item \texttt{unsigned long}
 \end{itemize}
 – Do arithmetic with unsigned integers
 – Introduce 2s complement
 – Do arithmetic with signed integers

What is main memory?

• Main memory is generally volatile memory where any memory location can be accessed as quickly as any other
 – Such memory is called \textit{random} access

• Main memory consists of billions of bits
 – The smallest grouping of bits is a byte consisting of 8 bits
 • All of main memory is divided into bytes
 – A computer with 4 GiB of main memory actually has 4,294,967,296 bytes
 • This translates into 34,359,738,368 bits

What can be stored?

• Suppose I only allow you to store three decimal digits:
 – What is the maximum number of values you can store?
 • Of course, the answer is 000 through 999, or one thousand different numbers
 • This equals \(10^3\)

• Suppose I only allow you to store three bits:
 – What is the maximum number of values you can store?
 • We can store 000, 001, 010, 011, 100, 101, 110 and 111, or eight different values
 • This equals \(2^3\)
What can be stored?

- Thus, given \(n \) decimal digits, we can store \(10^n \) different values
 - These values range from 0 to \(10^n - 1 \)
 - For example, if \(n = 10 \), we can store values between 0 and 9999999999

- Thus, given \(n \) bits, we can store \(2^n \) different values
 - These values range from 0 to \(2^n - 1 \)
 - For example, if \(n = 10 \), we can store values between 0 and \(2^{10} - 1 = 1023 \)
 - These are \(0000000000 \) through \(1111111111 \)

What is int?

- Up to now, we have been using the integer date type int
 - Question: how is this stored on the computer?

- Answer:
 - Every local variable or parameter of type int occupies 32 bits
 - The compiler decides where the 32 bits will be in main memory

- Recall that when stored in binary, a number is represented by a sequence of 0s and 1s
 - Allocate four bytes for any local variable or parameter declared to be of type int, and then interpret those bits

How is an integer stored?

- With 32 bits, we could store 32 coefficients of a binary number:
 \[b_31b_30b_29b_28\cdots b_2b_1b_0 \]

- The bit labeled \(b_k \) is the coefficient of \(2^k \)
 - This is why we always start with the zeroeth bit on the right
 - If necessary, bits beyond the most significant 1 are zero

- For example, in this program, the local variable \(m \) is stored as
 \[00000000000000000000000000000101 \]
  ```c++
#include <iostream>

int main();

int main() {
  int m{5};
  std::cout << m << std::endl;

  return 0;
}
```

- When printed, the 32 bits are interpreted as an integer
How is an integer stored?

• Problem: how do we store negative numbers?
 – We need to store either a “+” or a “-”
 – To do this, we could allocate one bit to store the sign:
 \[\text{Proposed location of the sign bit} \]
 \[\text{0000000000000000000000000000101} \]

 – Our convention could be:
 • If the sign bit is 0, the number is positive
 • Otherwise, the sign bit is 1, indicating the number is negative

 • Recall, all these are stored in the computer as voltages in a circuit...
 – More in your course on digital circuits and digital computers

Wasted memory?

• Suppose you know you only need values no larger than 100 or 1000
 – This requires no more than 10 bits
 – Isn’t this potentially wasted memory?
 • In an embedded system, this can cause significant issues:
 – More memory requires more cost and power
 – More power requires larger batteries or reduced battery life
 – More memory also produces more heat, which requires more cooling

Other integer types

• Thus, C++ has other types:
 – unsigned short 2 bytes or 16 bits 0 and \(2^{16} - 1 = 65535 \)
 – unsigned long 8 bytes or 64 bits 0 and \(2^{64} - 1 = 18.5 \) quintillion

• Now, some compilers are...peculiar
 – The Microsoft Visual Studio compiler is one such compiler...\[unsigned \text{ long} \]
 4 bytes or 32 bits

 – This is the same as unsigned int!
 • To get 64 bits, you must use \[unsigned \text{ long long} \]
Other integer types

- There is one final integer datatype:
 unsigned char 1 byte or 8 bits 0 and $2^8 - 1 = 255$

 - If you ever try to print such an integer, it will still try to interpret it as a letter

```cpp
int main() {
  for (unsigned char k(32); k < 127; ++k) {
    std::cout << "I am a char: " << k << std::endl;
  }
  std::cout << "...and not a truck." << std::endl;
}
```

- We have now introduced five types that store positive integer values:
 unsigned char 0 to $2^8 - 1$ `\01111111`
 unsigned short 0 to $2^{16} - 1$ `\0111111111111111`
 unsigned int 0 to $2^{32} - 1$
 unsigned long 0 to $2^{64} - 1$
 unsigned long long 0 to $2^{64} - 1$

Other integer types

- Please check your compiler’s specifications, or run this code:

```cpp
#include <iostream>

int main() {
  std::cout << "char: " << sizeof( char ) << std::endl;
  std::cout << "short: " << sizeof( short ) << std::endl;
  std::cout << "int: " << sizeof( int ) << std::endl;
  std::cout << "long: " << sizeof( long ) << std::endl;
  std::cout << "long long: " << sizeof( long long ) << std::endl;

  return 0;
}
```

Output on my compiler:
```
char: 1
short: 2
int: 4
long: 8
long long: 8
```

Unsigned arithmetic

- All arithmetic is performed modulo 2^n where n is the number of bits
 - The processor just ignores any additional carries:

```cpp
int main() {
  unsigned short m(\01000001010001101); // 395
  unsigned short n(\00111111000111111); // 32318

  std::cout << "m = " << m << std::endl;
  std::cout << "n = " << n << std::endl;
  m += n;
  std::cout << "m + n = " << m << std::endl;

  return 0;
}
```

Output:
```
m = 33613
n = 32318
m + n = 395
```
Binary and hexadecimal numbers

Arithmetic

• Why did that happen?

\[
\begin{align*}
&1000001101001101 \\
+ &0111111001111110 \\
&\underline{000000110001011}
\end{align*}
\]

– Thus, we see that \(33613 + 32318 = 83339\)
 but we have \(1 + 2 + 8 + 128 + 256 = 395\)
– Note that \(395 + 2^{16} = 83339\)

• The same happens with multiplication:

```cpp
int main() {
    unsigned short m(0b1000001101001101);
    unsigned short n(0b0111111001111110);
    
    std::cout << "m = " << m << std::endl;
    std::cout << "n = " << n << std::endl;
    m *= n;
    std::cout << "m * n = " << m << std::endl;
    
    return 0;
}
```

Output:

\[
\begin{align*}
m &= 33613 \\
n &= 32318 \\
m * n &= 45734
\end{align*}
\]

• If adding, subtracting or multiplying two unsigned integer types and
 the result is no longer valid,
 we will say that a carry has occurred

• For example,
 – Adding two unsigned short and the sum is greater than \(2^{16} - 1\)
 – Subtracting a larger unsigned short from a smaller one
 – Multiplying two unsigned short
 and the product is greater than \(2^{16} - 1\)
Back to negative values

- If these are all unsigned types, then signed char, short, int, long, long long must be signed types

- How do we deal with negative numbers?
 - If the first bit is 1, the number is negative

Largest positive value

- If the first bit is zero, it is a positive value:
 - Thus, the largest positive value for each of these types are:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>signed char</td>
<td>0111111111111111</td>
</tr>
<tr>
<td>short</td>
<td>0111111111111111</td>
</tr>
<tr>
<td>int</td>
<td>0111111111111111</td>
</tr>
<tr>
<td>long</td>
<td>0111111111111111</td>
</tr>
</tbody>
</table>

Representing negative numbers

- Why not just using a "1" to indicate a negative number:
 - For example, if 5 is assigned to a variable of type short, we have 1000000000000001
 - A short -5 would be stored as 1000000000000001

- First problem:
 - There is now both 0 and -0:
 - 0000000000000000
 - 1000000000000000

- Second problem:
 - It's actually hard to do arithmetic...

2s complement

- The 2s complement notation is actually significantly better:
 - To store a negative number, take the positive value and
 - Flip all the bits
 - Add one
2s complement

• Calculating 2s complement:
 – Switch all the bits and add 1:

```
  0000000000000101       ↓
   1111111111111010
+  1111111111111011
  0000000101100000
  ↓
  1111111010011110
+  1111111010100000
  1000000000000000
```

• A quick and easy way to do this:
 – Switch all bits up to, but not including the right-most “1”

```
  0000000000000101 10000
  ↓
  11111111101010000

  00110101 10000000
  ↓
  11001010 10000000

  0000000010110000
  ↓
  1111111010100000
```

• The same is true for int:
 – Flip all bits up to, but not including the right-most “1”

```
  000000000000000000000000101 10000
  ↓
  11111111111111111111111010 10000

  00100000000000000000000010101 10000000
  ↓
  11011111111111111111111010100000
```

2s complement

• Calculating 2s complement:
 – Switch all the bits and add 1:

```
  0000000000000101       ↓
   1111111111111010
+  1111111111111011
  0000000101100000
  ↓
  1111111010011110
+  1111111010100000
  1000000000000000
```

• A quick and easy way to do this:
 – Switch all bits up to, but not including the right-most “1”

```
  0000000000000101 10000
  ↓
  11111111101010000

  00110101 10000000
  ↓
  11001010 10000000

  0000000010110000
  ↓
  1111111010100000
```

• The same is true for int:
 – Flip all bits up to, but not including the right-most “1”

```
  000000000000000000000000101 10000
  ↓
  11111111111111111111111010 10000

  00100000000000000000000010101 10000000
  ↓
  11011111111111111111111010100000
```
2s complement

- Given a negative number, what is its absolute value?
 - Just take the 2s complement, again
- For example,
 - What is the value of this int?
 \[\text{11111111111111111111111111010110} \]
 - It is negative, so its positive value is:
 \[\text{00000000000000000000000000101010} \]
 - This number is \(2 + 8 + 32 = 42\)
 - Thus, the original number stored \(-42\)

Arithmetic

- How do you add two signed numbers that are in 2s complement?
 - Add them as if they were positive integers

Unsigned arithmetic

- Perform addition as if the stored representations were unsigned
 - The processor just ignores any additional carries:
    ```cpp
    int main() {
        short m(0b0111110010110011); // 1000001101001101
        short n(0b0111110010110011);
        std::cout << "m = " << m << std::endl;
        std::cout << "n = " << n << std::endl;
        m += n;
        std::cout << "m + n = " << m << std::endl;
        Output:
        m = -31923
        n = 32318
        m + n = 395
    }
    ```
Arithmetic

- Why did that happen?

\[
\begin{array}{c}
\begin{array}{c}
\text{100001101001101} \\
+ 011111001111110 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{000000110001011} \\
\end{array}
\end{array}
\]

- Thus, we see that \(-31923 + 32318 = 395\)

Unsigned arithmetic

- Perform addition as if the stored representations were unsigned

\[
\begin{array}{c}
\begin{array}{c}
\text{int main() \{} \\
\text{short m\{ 0b0111110010110011\};} \\
\text{short n\{ 0b0111110010110011\}; // 1000001101001101\}} \\
\text{std::cout << " m = " << m << std::endl;} \\
\text{std::cout << " n = " << n << std::endl;} \\
\text{m += n; std::cout << "m + n = " << m << std::endl;} \\
\text{Output:\}} \\
\text{m = 31923} \\
\text{n = -32318} \\
\text{m + n = -395} \\
\text{return 0;}} \\
\end{array}
\end{array}
\]

Arithmetic

- Why did that happen?

\[
\begin{array}{c}
\begin{array}{c}
\text{1111100111010111} \\
+ 1000001101001101 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{111111011101011} \\
\end{array}
\end{array}
\]

- The result is negative, and the absolute value of the result is \(110001011\)

- This equals \(1 + 2 + 8 + 128 + 256 = 395\)

- Thus, we see that \(31923 + -32318 = -395\)

Unsigned arithmetic

- Perform addition as if the stored representations were unsigned

\[
\begin{array}{c}
\begin{array}{c}
\text{int main() \{} \\
\text{short m\{ -0b0111110010110011\}; // 1000001101001101\}} \\
\text{short n\{ 0b0111110010110011\};} \\
\text{std::cout << " m = " << m << std::endl;} \\
\text{std::cout << " n = " << n << std::endl;} \\
\text{m += n; std::cout << "m + n = " << m << std::endl;} \\
\text{Output:\}} \\
\text{m = -31923} \\
\text{n = 32193} \\
\text{m + n = 0} \\
\text{return 0;}} \\
\end{array}
\end{array}
\]
Arithmetic

- Why did that happen?

\[
\begin{align*}
100001101011101 \\
+ 01111010110011 \\
\hline
00000000000000
\end{align*}
\]

- Thus, we see that \(31923 + (-31923) = 0\)

Arithmetic

- If adding or multiplying two signed integer types and the result is no longer valid, we will say that an *overflow* has occurred

- For example,
 - Adding two positive short and the sum is greater than \(2^{15} - 1\)
 - Adding two negative short and the sum is less than \(-2^{15}\)
 - Adding a positive short to a negative short can never result in an overflow
 - Multiplying two short and the product is greater than \(2^{15} - 1\) or less than \(-2^{15}\)

Summary

- Following this lesson, you now
 - You understand
 - *signed char* short int long are stored with 1, 2, 4 and 8 bytes
 - Know that each stores a different range of values
 - Each has its unsigned equivalents
 - Know negative numbers are stored using 2s complement
 - Understand that all operations occur as if we ignore any carries beyond the most significant bit

- You are welcome to examine how fascinating 2s complement is
 - For example, try multiplying two integers with opposite signs
 - Try multiplying two negative integers

- To perform subtraction, e.g., \(a - b\), just take the 2s complement of \(b\) and add the result to \(a\)
References

[1] Wikipedia:
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Hexadecimal
https://simple.wikipedia.org/wiki/Hexadecimal_numeral_system

Colophon

These slides were prepared using the Georgia typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas.

The photographs of lilacs in bloom appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see https://www.rbg.ca/ for more information.

Disclaimer

These slides are provided for the ECE 150 Fundamentals of Programming course taught at the University of Waterloo. The material in it reflects the authors’ best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.