
0. Getting started 
It is easier to learn vi by editing an already existing text file than it is to actually create a new one. 

Consequently, it may be best to either start editing an already existing C++ source file, or perhaps you may 

wish to download a text file at Project Gutenberg; for example, the plain-text version of Romeo and Juliet 

or A Tale of Two Cities. You could also download an HTML source file, as well. Suppose you have some 

C++ code that looks implements the binomial coefficients. Suppose that is stored in the file binomial.cpp and 

you type at the command line 

vi binomial.cpp 

or 

vim binomial.cpp 

you will see a screen similar to: 

#include <iostream> 
 
// Function delcarations 
int main(); 
long binomial( long n, long k ); 
 
// Function definitions 
long binomial( long n, long k ) { 
        if ( (k == 0) || (k == n) ) { 
                return 1; 
        } else { 
                return binomial( n - 1, k ) + binomial( n - 1, k - 1 ); 
        } 
} 
 
int main() { 
        int n{10}; 
 
        for ( int k{0}; k <= n; ++k ) { 
                std::cout << " " << binomial( n, k ); 
        } 
 
        return 0; 
} 
~ 
~ 
~ 
~ 
"binomial.cpp" 24 lines, 407 characters 

 

The source code is visible, and to mark all lines beyond the end of the file, you see a number of tildes (~). 

The last line of the screen is always for information or various modes. Now, you can see the name of the 

file, the number of lines and the total number of characters. The first character is highlighted, indicating the 

position of the cursor. 

 

https://www.gutenberg.org/
https://www.gutenberg.org/ebooks/1112
https://www.gutenberg.org/ebooks/98


1. Basic editing 
When you open a text file, you are immediately placed into command mode. When in command mode, the 

cursor is on one character in the text file. The current line will refer to the line on which the cursor is 

currently located. 

h j k l Movement the cursor left, down, up and right. 

x Delete the character on which the cursor is sitting (Delete). 

X Delete the character immediately before the cursor (Backspace). 

u Undo the last edit. 

Ctrl-r Redo the last edit that was undone. 

0 Move the cursor to the first character in a line. 

$ Move the cursor to the last character in a line. 

a Go into insert mode after the character on which the cursor is sitting. 

A Go into insert mode at the end of the current line. 

i Go into insert mode before the character on which the cursor is sitting. 

I Go into insert mode at the start of the current line. 

Ctrl-[ Return from insert mode to command mode. 

: Go to escape mode. 

:nEnter Go to line n where n is an integer (:0 is the same as :1) and return to command mode 

:wEnter Save (write) the file and return to command mode. 

:qEnter Quit. 

:wqEnter Save (write) and quit. 

:q!Enter Quit without saving. 

 

If you press : and enter escape mode but do not want to enter any commands, just press Ctrl-[ or Enter, 

either of which will return you to command mode. If you have partially entered a command in escape mode 

and do not want to execute that command, you can use Ctrl-[ to return to command mode. 

When you are in insert mode, you can only add new characters or delete the most recent character you 

added by pressing Backspace. If you want to make any more significant changes, you must return to 

command mode by pressing Ctrl-[. 

For h, j, k, l, x, X, u and Ctrl-r, typing a non-zero number n first and then pressing the key will repeat that 

operation n times. For example, 5j moves the cursor five lines down. 

For a and i, typing a non-zero number n first and then pressing the key will allow you to enter insert mode 

but when you return to command mode, that insertion will be repeated n times. 

  



2. Searching 
When in command mode, you can initiate a search by going into search mode which allows you to enter 

text you wish to search for. 

/textEnter 
Move the cursor forward to the next instance of the characters text. If the search reaches 

the end of the file, the search will continue at the beginning.  

If text is not found, vi will indicate Pattern not found: text 

?textEnter 
Move the cursor backward to the previous instance of the characters text. If the search 

reaches the beginning of the file, the search will continue at the end. 

If text is not found, vi will indicate Pattern not found: text 

/Enter Repeat the most recent search in the forward direction. 

?Enter Repeat the most recent search in the backward direction. 

n Repeat the most recent search in the same direction of the most recent search. 

N Repeat the most recent search in the opposite direction of the most recent search. 

If you press / or ? and enter search mode but do not want to search for something, just press Ctrl-[ which 

will return you to command mode. 

For all of these searches, typing a non-zero number n first and will search for the nth next or previous 

instance of what is being searched for. 

  



3. Search-and-replace 
When in command mode,  you can enter escape mode to perform a search and replace. The format is 

:s/search-text/replace-text 

This performs the search-and-replace at most once on the current line. When the search-and-replace is 

finished, details on how many changes were made are printed to the screen, and an error message is 

displayed if no matches were found. As you may suspect any / in the searched-for or replaced text must be 

escaped with a backslash \/. 

You can add additional options, including a range of lines on which to perform the search: 

:ranges/search-text/replace-text 

where range is one of many possible variations such as 

% The entire document. 

n Line n. 

. The current line. 

.-m The mth line previous to the current line. 

.+n The nth line after the current line. 

m,n Line m to line n. 

.-m,.+n The mth line previous to the current line to the nth line after the current line. 

0,. The start of the document to the current line. 

.,$ The current line to the end of the document. 

/match-text/ The next line that matches the text  match-text. 

?match-text? The previous line that matches the text  match-text. 

g/match-text/ Every line that matches the string text match-text. 

This is not exhaustive; for example, the range .-5,$ makes a substitution on all lines from five lines before 

the current line up to the end of the file. There are other means of specifying ranges beyond the scope of 

this introduction. 

There are also options for searches: 

:ranges/search-text/replace-text/opts 

where opts may be one or more of the following characters: 

g The replacement should occur with all matches in the line, not just the first. 

e If no matches are made, do no display the usual error message. 

i Ignore case when making matches. 

c 

Confirm each change with: 

  y yes, make the change 

  n no, don’t make the change 

  a yes, and do so for all subsequent matches 

  q quit the search and replace 

  Ctrl-e expose one more line at the bottom of the screen (scrolling down) 

  Ctrl-y  exposes one more line at the top of the screen (scrolling up) 

 



4. Advanced navigation and searches 
You should probably not memorize these advanced navigation and searches. Instead, review them, and later 

when you begin editing larger files, you will likely find yourself thinking that the basic navigation or 

searches are too tedious or coarse, and you will then rediscover many of the more efficient means of 

navigating or searching your file. Needing and then using a feature is a much better and memorable means 

of remembering that feature than just reading about them. 

For the purposes of vi, a word is any contiguous (touching or adjacent) sequence of either 

1. alphanumeric characters (letters or numbers) or the _ 

2. non-alphanumeric characters with the exception of the _. 

The different words are in this line (where Tab indicates a tab character) are highlighted in alternating 

colors: 

as_39 2 Tab(#+_32>hello   my_name3+is Bob! 

A Word is any contiguous sequence of non-whitespace characters. The different Words in this line are  

as_39 2 Tab(#+_32>hello   my_name3+is Bob! 

A delimeter is a pair of (, ), [, ], {, }, < or > used to block text. vi will make intelligent guesses as to when 

< or > is being used as a delimeter and when they are used as less- or greater-than signs. 

An empty line is any line containing no characters, not even whitespace. 

These navigation commands have different meanings if they are prefixed by an integer, and thus are listed 

separately: 

  Ctrl-u Jump backward (up) by half a screen but leaving the cursor on the same line on the screen. 

 nCtrl-u Jump backward (up) by n lines but leaving the cursor on the same line on the screen. 

  Ctrl-d Jump forward (down) by half a screen but leaving the cursor on the same line on the screen. 

 nCtrl-d Jump forward (down) by n lines but leaving the cursor on the same line on the screen. 

H M L Move the cursor to the first character of the first, middle, or last line of the screen. 

nH nL Move the cursor to the nth line down from the top or up from the bottom of the screen. 

gg Move the first line of the file. 

G Move the last line of the file. 

ngg or nG Move line n (similar to :nCtrl) 

 % 
Move to the matching delimiter of the current location of the cursor if the cursor is on a 

delimiter or the next delimiter found moving forward. 

n% This author has not been able to deduce exactly what this does… 

 

  



For all of these navigation commands or searches, entering a non-zero integer n before executing the 

navigation or search will repeat that navigation or search n times. 

Enter Move one line down. 

 Ctrl-b Jump backward (up) by a full screen, placing the cursor on the last line of the new screen.  

 Ctrl-f Jump forward (down) by a full screen, placing the cursor on the first line of the new screen.  

w Move the cursor to the start of the next word. 

W Move the cursor to the start of the next Word. 

b Move the cursor to the start of the previous word. 

B Move the cursor to the start of the previous Word. 

e Move the cursor to the end of the next word. 

E Move the cursor to the end of the next Word. 

fx Move the cursor to the next instance of the character x in the current line. 

Fx Move the cursor to the previous instance of the character x in the current line. 

tx 
Move the cursor forward to the character immediately before next instance of the character 

x in the current line. 

Tx 
Move the cursor backward to the character immediately after next instance of the character 

x in the current line. 

- Move the cursor backward to the first character of the previous line. 

+ Move the cursor forward to the first character of the next line. 

} 
Move forward to the next empty line following a non-empty line. 

This search stops at the end of the file. 

{ 
Move backward to the previous empty line preceding a non-empty line. 

This search stops at the beginning of the file and does not wrap. 

 Ctrl-e 
Add one more line at the bottom (end) of the screen (scroll down), but leaving the cursor 

on the same character. 

 Ctrl-y 
Add one more line at the top of the screen (scroll up), but leaving the cursor on the same 

character. 

 

Any sequence of keys that performs either a navigation or a search will now be identified as a navsearch. 

  



5. Advanced editing 
You should probably not memorize these. Instead, review them, and later when you begin editing larger 

files, you will likely find yourself thinking that the basic editing commands are too tedious or coarse, and 

you will then search for more efficient means of editing your file. Needing and then using a feature is a 

much better and memorable means of remembering that feature than just reading about them. 

o 
Open a new empty line after the line the cursor is currently on, move the cursor to that line 

and go into insert mode. (Same as AEnter) 

O 
Open a new empty line immediately before the line the cursor is currently on, move the 

cursor to that line and go into insert mode. (Same as IEnterki) 

  rx Replace the character on which the cursor is with the character x. 

 nrx Repeat the next n characters starting at the cursor with the character x. 

 R Go into insert mode but overwrite the text that is currently there. 

nR Repeat the inserted text n times. 

s or ns 
Delete the current character or n characters on the current line starting at the cursor and 

go into insert mode. 

 S Delete the entire line and go into insert mode. 

 ~ 
Switch the case of the letter on which the cursor is. Nothing happens to non-alphabetic 

characters. 

 n~ 
Switch the case of the next n letters starting at the cursor. Nothing happens to non-

alphabetic characters. 

 J Append (join) the next line onto the end of this line. 

nJ 
Join next n lines together into one line starting with the line the cursor is currently on; 

however, J, 1J, and 2J all do the same thing. 

. Repeat the previous edit. 

 

The default buffer 
All of the following edits include an interaction with a default buffer. For example, in a Microsoft Word 

document, if you highlight text and then press either Ctrl-c or Ctrl-x, the highlighted text is placed into a 

buffer and in the latter case that text is also deleted from the Microsoft Word document. The text in that 

buffer can then be pasted into the document at another location using Ctrl-v. 

There are two types of edits that have different interactions with how text is taken out of the buffer: 

character-to-character edits and line-to-line edits. 

There are three different styles of editing text that deal with the buffer: 

1. Deletions associated with the command d that delete the specified text and moves it to the buffer. 

2. Copies (or yanks) associated with the command y that copies the specified text to the buffer. 

3. Delete-and-insertions (or changes) associated with the command c that delete the specified text, 

moves it to the buffer, and then puts you into insert mode. 

  



Visual highlighting 
Another means of flagging text to be deleted, yanked or changed is to press v and then perform any sequence 

of navigation or searches. This continues to highlight text from the cursor to wherever the navigation or 

search would move the cursor. Similarly, if you press V and then perform any sequence of navigations or 

searches, it will highlight all lines from the current line to the line in which the cursor is moved as a result 

of the navigations or searches. We will indicate the pressing of v or V followed by an arbitrary number of 

navigations or searches by visual. 

Advanced editing with the buffer 
The following commands interact with the buffer as well as performing edits to the document: 

dd yy cc Delete, yank or change the entire current line. 

D C Delete or change the current line from the cursor to the end of the line. 

Y Yank the entire current line (thus, behaving more like S and not the previous two). 

dnavsearch 
ynavsearch 
cnavsearch 

Delete, yank or change from the cursor to wherever the cursor would end up as a result 

of the search that is subsequently entered. d} would delete up to the end of the 

paragraph, y/hi would yank from the current cursor up to the start of the next instance 

of hi, and cw would delete up to the end of the current word and go into insert mode. 

visuald 
visualy 

visualc 
Delete, yank or change the text that are visually highlighted. 

diw yiw 
ciw 

diW yiW ciW 

Delete, yank or change the entire word or Word upon which the cursor is currently 

sitting. 

 

Note that s and S put the characters or lines deleted, respectively, into the default buffer. 

If the default buffer has been filled with the content of one of the above edits, the contents can be pasted 

(or put) using p or P: 

1. If the buffer was filled from character-to-character, p will insert the content of the default buffer 

after the cursor, while P will insert the content of the default buffer before the cursor. 

2. If the buffer was filled from line-to-line, p will insert the content of the default buffer after the 

current line containing the cursor, while P will insert the content of the default buffer before the 

current line. 

  



Another edit is indenting (adding a tab at the start of the line) or unindenting (removing a tab from the start 

of the line) through > and <, respectively.  

>> << Indent or unindent the current line. 

>navsearch 
<navsearch 

Indent or unindent all lines including the current line up to and including any line upon 

which the cursor falls as a result of the navigation or search. 

visual> 
visual<  

Indent or unindent all lines that have at least one character visually highlighted. 

  

In C++ and similar languages, a common indentation is >%, which indents the current block. 

Other commands that work with visual highlighting include: 

visual~ Change the case of all letters that have been visually highlighted. 

visualJ Join all lines that have at least one character highlighted. 

  

There are many more such commands, but these are some of the most common this author uses. 

  



6. Advanced search and search-and-replace 
We will now describe more complex searching patterns, and other features we can  

Regular expressions 
Rather than just searching for explicit text, you can also search for patterns. For example, you may wish to 

find all instances of the word Rational or rational. One could search for Rational first, and then 

search for rational; however, that would be inefficient. A regular expression for both of these is  

[Rr]ational 

where the square brackets indicates that any letter within the brackets can be matched. This leads us to our 

next problem: how do we search for a bracket? To search for the bracket characters, these must be escaped 

(similar to how various characters must be escaped in C-style strings). The escape character is the same: 

the backslash, so to search for an explicit opening or closing square bracket, you must use \[ and \], and 

to search for a backslash, you must use \\. 

The content of square brackets can be any set of characters you want; for example, if you wanted to match 

any vowel, you could use [aeiouy]. There are, however, short cuts by using a range of letters or numbers. 

For example, [0-9a-fA-F] matches a hexadecimal digit. Of course, this means that inside of bracketed 

characters, the dash must be escaped. Similarly, you can indicate that you want a pattern to not match any 

of the letters found by prefixing the sequence with a carat; for example, [^aeiouy] will match any 

character (including non-alphanumeric characters) that is not in the list. Consequently, again, inside the 

brackets, if you want to match a carat, you must escape it, and it might be a good idea to simply escape it 

regardless as to where it appears in the list. 

There are some combinations of letters that are so frequently used that they have an escaped letter to 

represent them. First, the period . matches any character including whitespace, . 

Digits 

A decimal digit \d [0-9] \D [^0-9] 
A hexadecimal digit \x [0-9a-fA-F] \X [^0-9a-fA-F] 
An octal digit \o [0-7] \O [^0-7] 

Letters of the alphabet 

Letters \a [a-zA-Z] \A [^a-zA-Z] 
Lower-case letters \l [a-z] \L [^a-z] 
Upper-case letters \u [A-Z] \U [^A-Z] 
Whitespace \s [ \t] \S [^ \t] 

Variable names 
You will recall that a variable name in C++ must start with a either a letter or an underscore, and all 

subsequent characters must be letters, the underscore or digits. 

First character \h [_a-zA-Z] \H [^_a-zA-Z] 
Subsequent characters \w [_a-zA-Z0-9] \W [^_a-zA-Z0-9] 

 

  



Suppose you want to search for one of multiple options matching texts. Recall that in C++, || is a logical OR 

in  C++. Similarly, you can match one of many regular expressions us an escaped pipe; for example, the 

following matches one of flow control keywords in C++: 

for\|if\|do\|while 

One issue with these matches is that it will match text like fortunate, Tiffany and avacado. You can 

specify that a regular expression must come at the start of a name1 consisting of a contiguous sequence of 

letters, numbers or the underscore by prefixing the regular expression with \< and you can specify that the 

regular expression must end with a name by appending a \>. 

\<for\>\|\<if\>\|\<do\>\|\<while\> 

Alternatively, you can group regular expressions by wrapping them in escaped parentheses: 

\<\(for\|if\|do\|while\)\> 

You can use the escaped parentheses in a manner similar to parentheses in C++. 

Suppose you want the regular expression to start at the beginning of a line or to appear at the end of a line. 

This can be specified by using ^ and $; for example, ^\s matches a whitespace character at the start of a 

line, while ;$ matches a semicolon at the very end of a line. Consequently, you must also escape the dollar 

sign and the carat in usual regular expressions. 

  

                                                     
1 Previously, word and Word were used for other combinations of characters, so here I use name as it describes a 

variable name but also allowing for that variable name to be prefixed by digits. 



Finally, suppose you want to specify repetition. Suppose you want to match an if statement followed by 

zero or more whitespace characters followed by an opening parentheses. For this, we can use  

\<if\s*( 

to match the string if at the start of a name followed by zero or more whitespace characters followed by 

(. Because the star immediately follows the regular expression matching a single character, that single 

character will be matched zero or more times. You could also give a regular expression for describing a 

variable name in C++: 

\<\h\w*\>  or  \<[_A-Za-z][_A-Za-z0-9]*\> 

If you wanted to match zero or more repetitions of a more complex regular expression, simply wrap that 

expression in escaped parentheses; for example, you could match Eduard Khil’s song as 

\<[Tt]ro\(lo\)*\> 

which will match the words Tro, tro, Trolo, trolololo, etc. If you wanted to ensure at least one “lo” 

at the end, you could explicitly add it it: 

\<[Tt]rolo\(lo\)*\> 

However, instead of matching zero or more of a given regular expression, there are six other means of 

matching various numbers of matches of a given regular expression, including: 

regex* Match zero or more instances 

regex\+ Match one or more instances 

regex\= Match zero or one instances 

regex\{m} Match exactly m instances 

regex\{m,n} Match between m and n instances 

regex\{m,} Match m or more instances  

regex\{,n} Match zero to n instances 

 

 

  



For example, a regular expression that identifies a declaration of an int on a line by itself is: 

^\s*int \h\w*\({[+-]\=\(\d\+\|0x\x\)}\)\=;$ 

which describes: 

1. the start of a line ^, 

2. followed by zero or more whitespace characters (spaces or tabs) \s*, 

3. followed by int and a space, 

4. followed by a variable name \h\w*, 

5. optionally followed by either zero or one of \({\s*[+-

]\=\s*\(\d\+\|0x\x\+\)\s*}\s*\)\= which consists of 

a. an opening brace {, 

b. followed by zero or more whitespace characters \s\*, 

c. followed by either of \(\d\+\|0x\x\+\) which are 

i. a sequence of decimal digits 

d. an opening brace {, 

e. an opening brace {, 

f. an opening brace {, 

g.  

6. followed by a semicolon ;, 

7. followed by zero or more whitespace characters \s\*, 

8. followed by the end of the line $. 

This would match any of the following declarations: 

 int s{32}; 
   int my_var2{-234}; 
              int an_odd_variable_name_70{+616}; 
 

It would not, however, match any of the following: 

 int s{32}, t{17}, u{19}; 
   int my_var2{ -234 }; 
              int   an_odd_variable_name_70 { +616  }   ;     
 
all of which are valid declarations. How would you modify the above regular expression to match these, as 

well? 

  



Back-references 
When doing a substitution, it may be useful to refer back to the text that originally matched expression. For 

example, suppose you have read the scientific literature and understand that CamelCase for variable names 

is less effective than Snake_case, so you would like to do a global substitution of all Java-naming-

conventions to C-style naming convetions. After some thought, you realize all you need to do is replace all 

instances of a lower-case letter followed by an upper-case letter with the lower-case letter, an underscore 

and the upper-case letter switched to lower case. The pattern you are looking for is \l\u, but what now? 

Any matched text inside escaped parentheses can be referred to in the replacement text; specifically, all text 

that matches the first opening \( can be referred to by \1, all text that matches the second opening \( can 

be referred to by \2, and so on, up to \9. We must refer to the lower-case and upper-case letters separately, 

so we could start with 

:%s/\(\l\)\(\u\)/\1_\2/g 

This would change CamelCase to Camel_Case. Now we would also modify the second match: the 

following commands make changes to the substituted text: 

\r Introduce a new line (carriage return). 

\l Make the next character matched lower case if it is a letter. 

\u Make the next character matched upper case if it is a letter. 

\L…\E Make all letters up to \E lower case. 

\U…\E Make all letters up to \E upper case. 

 Match m or more instances  

 Match zero to n instances 

 

Thus, we could use the expression 

:%s/\(\l\)\(\u\)/\1_\l\2/g 

And the \l will change the first character of \2 (which happens to be only one character long) to lower 

case.  



7. Named buffers 
To this point, there is only the default buffer, and any yank, delete or change copies information to that 

buffer, and any put operation copies that buffer back into the file. There are, however, an addition 52 named 

buffers, each one identified by either a lower case or upper case letter. Any time you are about to perform 

either a yank, delete, change or put, if you want to instead copy to or paste from a named buffer, you prefix 

the y, Y, d, D, c, C, p or P with "a where a is any letter from a to z or from A to Z. 

8. Bookmarks (markers) 
It is also possible to insert bookmarks (or markers) throughout your file. Each lower and upper case letter 

may be used to represent a different bookmark and you can use these bookmarks as follows: 

ma Add (or mark) a bookmark a to the line the cursor is current on where a is any letter of the 

alphabet, either upper case or lower case. 

'a Jump to the first non-white-space character of the line marked by a. 

 

If a line with a bookmark is deleted, the bookmark is removed. If a line with a bookmark is joined with 

another line, the bookmark becomes associated with the joined line. Bookmarks cannot be cut and pasted 

elsewhere in the document. If a line with a bookmark is cut and pasted elsewhere, the bookmark must be 

set again. 

9. Editing multiple files 
Suppose you need to edit multiple files. At the command line, you may issue a command like 

 vi *.cpp 

if you were attempting to edit multiple source files simultaneously, or perhaps you are editing a number of 

web pages. vi allows you to edit one document at a time, but you can go between the documents by using 

the following escape commands: 

:n :N Go to the next or previous file to be edited. 

:n! :N! Go to the next or previous file without saving the current one (if it is not saved). 

:wn :wN Save (write) the current file and go to the next or previous file to be edited. 

 

Each of these can be modified by prefixing an integer indicating the number of files to go either forwards 

or backwards; for example, :2wn writes the current file and then goes forward two documents. 

  



Additional comments by the author 
Most students who have been previously exposed to vi may wonder why I use Ctrl-[ and not Esc. The 

answer is simple: if you can touch type and you use Esc, then Esc is the only key that forces your hand to 

leave the home row. 

Some other readers may say that there are different techniques of doing similar navigations or edits that 

have not been described here. The answer here is that rather than overloading the reader with two or three 

ways of doing the same operation, generally one technique is provided, and that technique generally follows 

the same pattern of other commands, so that the reader may be able to intuitively understand the various 

commands. The one command this author does not understand is why D and C perform their operation from 

the cursor to the end of the line, while Y yanks the entire line in a manner closer to S. 

My favorite escape command is :set ts=3Enter, which has each Tab character (a tab stop) displayed as 

three spaces and not the default eight spaces. 

Here is a state diagram of how vi works: 

 


	0. Getting started
	1. Basic editing
	2. Searching
	3. Search-and-replace
	4. Advanced navigation and searches
	5. Advanced editing
	The default buffer
	Visual highlighting
	Advanced editing with the buffer

	6. Advanced search and search-and-replace
	Regular expressions
	Digits
	Letters of the alphabet
	Variable names

	Back-references

	7. Named buffers
	8. Bookmarks (markers)
	9. Editing multiple files
	Additional comments by the author

