
ECE 203 – Section 1
Introduction to Probability

Axioms

Sample spaces and events

Set operations

Sample spaces with equally likely outcomes.

The slides have been prepared based on the lecture notes of Prof. Patrick Mitran.
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Axioms (or Laws) of Probability

We start with the definition of a random experiment as follows.

Random experiments do not have predictable outcomes.

The set of all possible outcomes is called the sample space, and denoted
S.

Example 1: If we toss two 2 coins, then S = {(h, h), (h, t), (t, h), (t, t)}.

Example 2: If we toss two 6-sided dice, then

S = {(i, j) | i = 1, 2, . . . , 6, j = 1, 2, . . . , 6}

Example 3: In a race with 5 horses, the possible order of finishing are

S = {all 5! orders of (a, b, c, d, e)}
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Examples (cont.)

Example 4: In roulette, S = {00, 0, 1, . . . , 36}.

Example 5: In an experiment measuring the lifetime of a solid-state drive,

S = {x ∈ R | x ≥ 0}

Example 6: Romeo and Juliette have a date. Each will arrive with a delay
that is between 0 and 1 hour:

S = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

Example 7: A standard 52-card deck has 4 suits (Clubs [♣], Diamonds
[♦], Hearts [♥] and Spades [♠]).

Each suit has a cards numbered from 1 to 13, with 1 also called Ace, 11
also called Jack, 12 also called Queen, and 13 also called King.

Let S be all possible orderings of the deck. Then |S| = 52! ≈ 8× 1067.
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Random Events

Definition: A subset E ⊂ S is called an event.

Example 8: In the example with two coins,

E = {(h, h), (t, t)}

is the event that both coins come up identical.

Example 9: In the example with two dice,

E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

is the event that the dice add up to 7.
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Examples (cont.)

Example 10: In roulette, even = {2, 4, 6, . . . , 36} is called an even outcome
and odd = {1, 3, 5, . . . , 35} is called an odd outcome.

Example 11: The event that Romeo and Juliette arrive within 1/4 hour of
each other is:

E = {(x, y) ∈ S | |x− y| ≤ 1/4}
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Examples (cont.)

For 2 events E and F :

E ∪ F is the event that either E or F occurs

E ∪ F = {x ∈ S |x ∈ E or x ∈ F}

E ∩ F is the event that both E and F occur (we also write EF )

E ∩ F = {x ∈ S |x ∈ E and x ∈ F}

If EF = ∅, then E and F are said to be mutually exclusive or disjoint.

Ec is the event that E does not occur (we also write Ē)

Ec = {x ∈ S |x /∈ E}

Given F and E1, E2, . . . , En, if
1 EiEj = ∅ for i 6= j (i.e., E1, E2, . . . En are disjoint)
2 F = ∪ni=1Ei

then E1, E2, . . . , En are said to partition F .
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Laws and Properties of Sets

Commutative Laws

E ∪ F = F ∪ E & EF = FE

Associative Laws

(E ∪ F ) ∪G = E ∪ (F ∪G) & (EF )G = E(FG)

Distributive Laws

(E ∪ F )G = EG ∪ FG & EF ∪G = (E ∪G)(F ∪G)

ECE 203 - Section 1 Instructor: Dr. O. Michailovich, 2022 7/28



Venn Diagram

Venn diagram interpretation of EF ∪G = (E ∪G)(F ∪G).

ECE 203 - Section 1 Instructor: Dr. O. Michailovich, 2022 8/28



DeMorgan’s Laws

DeMorgan’s Laws have the following analytic form.(
n⋃

i=1

Ei

)c

=
n⋂

i=1

Ec
i (1st law)

(
n⋂

i=1

Ei

)c

=
n⋃

i=1

Ec
i (2nd law)

Proof of 1st law:

Step 1: We will show (∪iEi)
c ⊂ ∩iE

c
i

Let x ∈ (∪iEi)
c

Then x /∈ ∪iEi

Then, for each i, x /∈ Ei

Then, for each i, x ∈ Ec
i

Then, x ∈ ∩iE
c
i
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DeMorgan’s Laws (cont.)

Step 2: We will show ∩iE
c
i ⊂ (∪iEi)

c

Let x ∈ ∩iE
c
i

Then, for each i, x ∈ Ec
i

Then, for each i, x /∈ Ei

Then, x /∈ E1 ∪ E2 ∪ · · · ∪ En

Then, x ∈ (E1 ∪ E2 ∪ · · · ∪ En)c︸ ︷︷ ︸
(∪iEi)c
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Axioms (or Laws) of Probability (cont.)

We wish to assign to each event E a probability, denoted P (E) (or
P [E]).

How do we determine it?

Frequent approach: Let n(E) be number of occurrences of E in n
repeated experiments. Then define

P [E] = lim
n→∞

n(E)

n

Does this limit exist? In what sense?
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Axioms (or Laws) of Probability (cont.)

Modern approach: Instead, assume that certain rules (axioms) must
hold. Specifically:

[A1] 0 ≤ P [E] ≤ 1

[A2] P [S] = 1

[A3] If E1, E2, . . . are disjoint (i.e., mutually exclusive), then

P [E1 ∪ E2 ∪ . . .] =
∑
i

P [Ei]
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Consequences of Axioms

Corollary: P [∅] = 0.

To see that, Let E1 = S,E2 = ∅, E3 = ∅, . . .. Then E1, E2, E3, . . . are
disjoint. Hence,

P [E1 ∪ E2 ∪ E3 ∪ · · · ] = P [E1] + P [E2] + P [E3] + · · ·
= P [S] + P [∅] + P [∅] + · · ·

= 1 + P [∅] + P [∅] + · · ·

But this sum must be ≤ 1, so P [∅] = 0.
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Consequences of Axioms (cont.)

Corollary: Say E1, E2, . . . , En are disjoint. Then

P [∪n
i=1Ei] =

n∑
i=1

P [Ei]

To see that, take ∅ = En+1 = En+2 = · · · . Then

P [∪n
i=1Ei] = P [∪∞i=1Ei] =

∞∑
i=1

P [Ei] =

=

n∑
i=1

P [Ei] +

∞∑
i=n+1

P [Ei] =

n∑
i=1

P [Ei]

ECE 203 - Section 1 Instructor: Dr. O. Michailovich, 2022 14/28



Consequences of Axioms (cont.)

Example: Roulette has 38 possible outcomes. If each is equally likely,
then

P [00] = P [0] = P [1] · · · = P [36]

But

1 = P [{00, 0, 1, · · · , 36}] = P [00] + P [0] + P [1] + · · ·+ P [36]

Hence,
P [00] = P [0] = P [1] · · · = P [36] = 1/38

So,

P [even] = P [{2, 4, . . . , 36}]
= P [2] + P [4] + · · ·+ P [36]

= 18/38 = 9/19
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Consequences of Axioms (cont.)

Corollary: P [Ec] = 1− P [E]

To see that we notice that E and Ec are disjoint, and E ∪ Ec = S.

Therefore,
1 = P [S] = P [E ∪ Ec] = P [E] + P [Ec]

So P [Ec] = 1− P [E]. �
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Consequences of Axioms (cont.)

Corollary: If E ⊂ F then P [E] ≤ P [F ].

Why? Since E ⊂ F , then F = E ∪ EcF , while E and EcF are disjoint.

Then
P [F ] = P [E] + P [EcF ]︸ ︷︷ ︸

≥0

Therefore P [F ] ≥ P [E]. �

Example: In roulette, odd ⊂ evenc, so

P [odd]︸ ︷︷ ︸
9/19

≤ P [evenc]︸ ︷︷ ︸
10/19

ECE 203 - Section 1 Instructor: Dr. O. Michailovich, 2022 17/28



Consequences of Axioms (cont.)

Corollary: P [E ∪ F ] = P [E] + P [F ]− P [E ∩ F ]

To see that, we notice the following.

Hence

P [E] + P [F ] = P [I ∪ II] + P [II ∪ III]

= P [I] + P [II] + P [II] + P [III]

= P [I] + P [II] + P [III] + P [II]

= P [E ∪ F ] + P [EF ]. �
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Example

After 5 years, a car may need

1 new brakes with probability 0.5

2 new tires with probability 0.4

3 both with probability 0.3

What is probability it needs neither?

To answer this question, let B = {needs brakes}, T = {needs tires}.

Then P [B] = 0.5, P [T ] = 0.4, and P [BT ] = 0.3.

Consequently,

P [needs neither] = P [BcT c] = P [(B ∪ T )c] =

= 1− P [B ∪ T ] = 1− (P [B] + P [T ]− P [BT ]) =

= 1− (0.5 + 0.4− 0.3) = 0.4
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Generalizations

Can we generalize the P [E ∪ F ] idea of the corollary? Yes!

P [E∪F ∪G] =

= P [(E ∪ F ) ∪G] =

= P [(E ∪ F )] + P [G]− P [(E ∪ F )G] =

= P [E] + P [F ]− P [EF ] + P [G]− P [EG ∪ FG] =

= P [E] + P [F ] + P [G]− P [EF ]− (P [EG] + P [FG]− P [EGFG])

= P [E] + P [F ] + P [G]− P [EF ]− P [EG]− P [FG] + P [EFG]
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Inclusion/Exclusion Principle

P [E1 ∪ E2 ∪ . . . ∪ En]

= P [E1] + P [E2] + · · ·P [En] include all events

−
∑
i1<i2

P [Ei1Ei2 ] exclude intersections of pairs

+
∑

i1<i2<i3

P [Ei1Ei2Ei3 ] include triple intersections

...
...

+ (−1)r+1
∑

i1<···<ir

P [Ei1Ei2 · · ·Eir ] (in/ex)clude r-way intersections

...
...

+ (−1)n+1P [E1E2 · · ·En] (in/ex)clude n-way intersection
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Sample Spaces with Equally Likely Outcomes

Say S = {1, 2, . . . N}. Then

1 = P [S] = P [1] + P [2] + · · ·+ P [N ]

Now suppose in addition that each individual outcome is equally likely:

P [1] = P [2] = · · · = P [N ]

Combining the above equations, we obtain

P [1] = P [2] = · · · = P [N ] = 1/N

Now, for any subset E ⊂ S, we have E =
⋃

i∈E{i} and so

P [E] =
∑
i∈E

P [i] =
∑
i∈E

1/N = |E|/N = |E|/|S|

ECE 203 - Section 1 Instructor: Dr. O. Michailovich, 2022 22/28



Examples

There are
(
52
5

)
= 52!

(52−5)!5!
= 259860 ways to pick 5 cards out of 52.

If we shuffle the deck well, these are all equally likely.

The probability that 4 of the 5 cards have the same # is:

# of ways to get 4 cards with same #

# of ways to get 5 cards
=

13× (52− 4)(
52
5

)
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Examples (cont.)

If two dice are rolled, what is the probability that the sum is 7?

Assume that there are 36 equally likely outcomes, in which case

{sum = 7} = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

Therefore, P = 6/36.
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Examples (cont.)

An urn has 7 white balls and 5 black balls.

If we draw 3 balls at random, what is the probability that 1 is white
and 2 are black?

If we put a unique mark on each ball, there are 12× 11× 10 = 1320
possible outcomes.

Consider the following three cases:

Case 1: 1st ball is white; there are 7× 5× (5− 1) = 140 ways.
Case 2: 2nd ball is white; there are 5× 7× (5− 1) = 140 ways.
Case 3: 3rd ball is white; there are 5× (5− 1)× 7 = 140 ways.

Therefore P = 3×140
1320

= 7/22.
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Example: Matching Problem

Each of n persons at a party throws their hat into the centre of a room
and picks a hat at random.

What is the probability that no person selects their own hat?

There are n× (n− 1)× · · · × 1 = n! possible hat assignments.

Let Ei = {person i selects hat # i}. Recall that

P [E1 ∪ E2 ∪ · · · ∪ En] = P [E1] + P [E2] + · · ·P [En]

−
∑
i1<i2

P [Ei1Ei2 ]

...

+ (−1)m+1
∑

i1<···<im

P [Ei1Ei2 · · ·Eim ]

...

+ (−1)n+1P [E1E2 · · ·En]
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Example: Matching Problem (cont.)

Now, Ei1Ei2 · · ·Eim means persons i1, i2, . . . , im have their own hat.

This leaves (n−m) people with an unknown hat arrangement. There
are (n−m)! ways to arrange these. Thus

P [Ei1Ei2 · · ·Eim ] =
(n−m)!

n!

Also,
∑

i1<···<im

P [Ei1Ei2 · · ·Eim ] has
(
n
m

)
terms in the sum. So,

∑
i1<···<im

P [Ei1Ei2 · · ·Eim ] =

(
n

m

)
(n−m)!

n!
=

=
n!

(n−m)!m!

(n−m)!

n!
=

1

m!
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Example: Matching Problem (cont.)

Consequently,

P [E1 ∪ E2 ∪ · · · ∪ En] =
1

1!
− 1

2!
+

1

3!
+ · · ·+ (−1)n+1

n!

Finally,
P [Ec

1E
c
2 · · ·Ec

n] = 1− P [E1 ∪ E2 ∪ · · · ∪ En] =

= 1− 1 +
1

2!
− 1

3!
+ · · ·+ (−1)n

n!

This is a truncation of the Taylor series for e−1. When n is large, this
is ≈ 0.369.
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