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The slides have been prepared based on the lecture notes of Prof. Patrick Mitran.
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Random Variables

After an experiment is done, we are often interested in a function of
the outcome (e.g., sum of two dice rolls or #H after flipping 10 coins).

A function that maps each outcome s ∈ S to a real number is called a
random variable (often abbreviated as rv).

For example, let S = {(s1, s2) | 1 ≤ s1 ≤ 6, 1 ≤ s2 ≤ 6} be outcomes of
two dice rolls. For s = (a, b), if we define X(s) = a+ b, then X(s) is a
random variable.

We often write X instead of X(s), since s and S are either clear from
context or do not matter.
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Example

Suppose we toss 3 coins. Let X = #H. Then X is an rv that can only
take values 0, 1, 2 or 3.

{X = 0} = {TTT}

{X = 1} = {TTH, THT,HTT}

{X = 2} = {THH,HHT,HTH}

{X = 3} = {HHH}

In this case,
P [X = 0] = P [X = 3] = 1/8

P [X = 1] = P [X = 2] = 3/8

Note that since {X = 0}, {X = 1}, {X = 2}, {X = 3} are disjoint and
cover all possible outcomes for X, we have

P

[
3⋃
i=0

{X = i}

]
=

3∑
i=0

P [X = i] = 1
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Another example

Let E and F be independent events with

P [E] = 0.1 and P [F ] = 0.2

Let Y = # events that have occurred. Then

P [Y = 0] = P [EcF c] = P [Ec]P [F c] = 0.9 · 0.8

P [Y = 1] = P [EF c ∪ EcF ] = P [EF c] + P [EcF ] = 0.1 · 0.8 + 0.9 · 0.2

P [Y = 2] = P [EF ] = P [E]P [F ] = 0.1 · 0.2
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Yet another example

A flipped coin has probability p of being heads. We flip the coin until a
head occurs, up to a max of n flips. Let Z = # of flips. Then

P [Z = 1] = P [H] = p

P [Z = 2] = P [TH] = (1− p) · p

P [Z = 3] = P [TTH] = (1− p)2 · p

P [Z = n− 1] = P [n− 2 T s followed by Hs] = (1− p)n−2 · p

P [Z = n] = P [n− 1 T s followed by anything] = (1− p)n−1
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Cumulative Distribution Function

In each example above, we enumerated the probability of each possible
outcome of X (or Y or Z), i.e., P [X = 1], P [X = 2], . . .

Instead, we could have enumerated P [X ≤ x]. Particularly, let

FX(x) = P [X ≤ x]

FX(x) is called the Cumulative Distribution Function (CDF) of X.

Important: FX(x) is a continuously-defined function of x.

In fact, it will be a piecewise-constant function with discontinuities at
x = 0, 1, 2, · · · .
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Cumulative Distribution Function (cont.)

Thus, for the previous example, we have

FX(0) = P [X ≤ 0] =
1

8

FX(1) = P [X ≤ 1] =
1

8
+

3

8

FX(2) = P [X ≤ 2] =
1

8
+

3

8
+

3

8

FX(3) = P [X ≤ 3] = 1
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Discrete Random Variables

Definition: A random variable that can take at most a countable
number of possible outcomes is called a discrete random variable.

Definition: For a discrete random variable X, we define its Proba-
billity Mass Function (PMF) pX(a) as

pX(a) = P [X = a]

Let X = {x1, x2, ...} be all the possible outcomes that X takes. Then

pX(x) ≥ 0, if x ∈ X
pX(x) = 0, otherwise

and, since X must take one of its possible values, we also have∑
x∈X

pX(x) = 1
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Example

Suppose the PMF of the random variable X is defined as

pX(k) = C
λk

k!
, for k = 0, 1, 2, . . .

where λ > 0 is given.

Question A: Define C in terms of λ.

Solution: 1 =
∑∞
k=0 pX(k) = C

∑∞
k=0 λ

k/k! = Ceλ, where we used the
fact that

∑∞
k=0 λ

k/k! = eλ. Therefore, C = e−λ.

Question B: Find P [X = 0].

Solution: P [X = 0] = pX(0) = Cλ0/0! = e−λ.

Question C: Find P [X > 2].

Solution:

P [X > 2] = 1− P [X = 0]− P [X = 1]− P [X = 2] =

= 1− e−λ − λe−λ − λ2

2
e−λ.
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Another example

Let X be such that

pX(1) = 1/4, pX(2) = 1/2, pX(3) = 1/8, pX(4) = 1/8

First, we want to plot the PMF and CDF of X.
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Another example (cont.)

Recall that
FX(x) = P [X ≤ x] =

∑
a:a≤x

P [X = a]

Note that the size of the “jump” at x = a is equal to P [X = a].

At x = a, the function is open on the left and closed on the right.
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Expected (Mean) Value

Definition: The expected (or mean) value of a random variable X is
defined as

E[X] =
∑
x∈X

x pX(x)

The expected (mean) value of X is an “average” where each outcome is
weighted by probability that X assumes that outcome.

For example, if pX(0) = 1/2 and pX(1) = 1/2, then

E[X] = 0 · 1/2 + 1 · 1/2 = 1/2

Similarly, if pX(0) = 1/3 and pX(1) = 2/3, then

E[X] = 0 · 1/3 + 1 · 2/3 = 2/3
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Example

Let A ⊂ S be an event. The indicator function of A is defined as

I =

{
1, if A occurs

0, if A does not occur

(We often write IA or 1A for this kind of random variable.)

In this case, the mean value of I can be computed as

E[I] = 0 · P [I = 0] + 1 · P [I = 1] = 0 · P [Ac] + 1 · P [A] = P [A]
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Another example

120 students are driven in 3 buses with 36, 40 and 44 students each to
an event. One of the 120 students is chosen randomly.

Let X = # students on the bus with the randomly chosen student.

What is E[X]?

To find the answer, let X = {36, 40, 44} and note that

P [X = 36] = 36/120

P [X = 40] = 40/120

P [X = 44] = 44/120

Consequently,

E[X] = 36 · 36

120
+ 40 · 40

120
+ 44 · 44

120
≈ 40.267

Note that E[X] is not an integer.

ECE 203 - Section 3 Instructor: Dr. O. Michailovich, 2022 14/50



Functions of a Random Variable

Suppose we know X and pX(x).

Now let Y = g(X) for some function g(·).

Since X is a function of the outcome s ∈ S and Y is a function of X, Y
is a function of the outcome s ∈ S. Therefore, Y is a random variable.

Y has a PMF pY (y), which can determined from pX(x).

ECE 203 - Section 3 Instructor: Dr. O. Michailovich, 2022 15/50



Example

Let X be a random variable such that

P [X = −1] = 0.1, P [X = 0] = 0.3, P [X = 1] = 0.6

and let Y = X2. What are E[X] and E[Y ]?

To solve the problem, we first compute

E[X] = −1 · 0.1 + 0 · 0.3 + 1 · 0.6 = 0.5

P [Y = 0] = P [X2 = 0] = P [X = 0] = 0.3

P [Y = 1] = P [X2 = 1] = P [{X = 1} ∪ {X = −1}] = 0.1 + 0.6 = 0.7

Consequently, we have

E[X2] = E[Y ] = 0 · 0.3 + 1 · 0.7 = 0.7

Note: (E[X])2 = (0.5)2 6= 0.7 = E[X2]. So, in general, we have

E[g(X)] 6= g(E[X])
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Functions of a Random Variable (cont.)

Proposition: If X is an rv with possible values X = {x1, x2, . . .}, then

E[g(X)] =
∑
i≥1

g(xi)pX(xi)

To see that, let Y = {y1, y2, . . .} be all possible values of Y .

∑
i≥1

g(xi)pX(xi) =
∑
j≥1

∑
i:g(xi)=yj

g(xi)pX(xi)

=
∑
j≥1

∑
i:g(xi)=yj

yjpX(xi)

=
∑
j≥1

yj
∑

i:g(xi)=yj

pX(xi)

=
∑
j≥1

yjP [g(X) = yj ]

= E[g(X)]
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Functions of a Random Variable (cont.)

Corollary: If a and b are constants, then

E[aX + b] = aE[X] + b

This is because

E[aX + b] =
∑
x∈X

(ax+ b)pX(x)

= a
∑
x∈X

xpX(x) + b
∑
x∈X

pX(x)

= aE[X] + b

For example, say E[X] = 3. Then E[10 ·X + 4] = 10 · 3 + 4 = 34.

E[X] is called the mean of X and is often denoted as µX = E[X].
E[Xn] is called the n-th moment of X.

ECE 203 - Section 3 Instructor: Dr. O. Michailovich, 2022 18/50



Variance

Given X, it is useful to summarize some essential properties of X.

Thus, for instance, E[X] tells us about the “centre” of how X is
distributed.

For example, suppose we have

P [W = 0] = 1

P [Y = 1] = P [Y = −1] =
1

2

P [Z = 100] = P [Z = −100] =
1

2

In this case, E(W ) = E(Y ) = E(Z) = 0.

However, the values of the random variables are not equally spread.
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Variance (cont.)

Definition: The variance of X is defined as

V ar[X] = E
[
(X − E[X])2

]
= E

[
(X − µX)2

]

We often write σ2
X = V ar[X], where σX is called standard deviation.

Note: Since (X − µX)2 ≥ 0, then V ar[X] ≥ 0.
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Variance (cont.)

We also have

V ar[X] = E[ (X − µX)2 ]

=
∑
x∈X

(x− µX)2 pX(x)

=
∑
x∈X

(
x2 − 2µXx+ µ2

X

)
pX(x)

=
∑
x∈X

x2pX(x)− 2µX
∑
x∈X

xpX(x) + µ2
X

∑
x∈X

pX(x)

= E[X2]− 2µXE[X]︸ ︷︷ ︸
µ2
X

+µ2
X

= E[X2]− (E[X])2

Thus, we can conclude that

E[X2] ≥ (E[X])2 and
E[X2]

E[X]
≥ E[X]
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Example

Let X be the the outcome of a dice roll. What is V ar[X]?

E[X] = 1 · 1

6
+ 2 · 1

6
+ · · ·+ 6 · 1

6
=

7

2

E[X2] = 1 · 1

6
+ 22 · 1

6
+ · · ·+ 62 · 1

6
=

91

6

Therefore,

V ar[X] = E[X2]− (E[X])2 =
91

6
−
(

7

2

)2

=
35

12

Also,

E
[
(X − E[X])2

]
=

=

(
1− 7

2

)2

· 1

6
+

(
2− 7

2

)2

· 1

6
+ · · ·+

(
6− 7

2

)2

· 1

6
=

35

12
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Another example

The distance from Vancouver, BC to Boston, MA is 4200 km. If the
wind is good (this happens with probability 0.7), the speed of a plane
for the trip is V = 700 km/h. If the wind is not good (with probability
0.3), the speed of the plane is V = 600 km/h. What is the average
flight time?

Solution: If the wind is good, the flight time T is 4200/700 = 6 hours.
Alternatively, if the wind is not good, the flight time T is 4200/600 = 7
hours. Thus, with

P [T = 6] = 0.7 and P [T = 7] = 0.3

we have
E[T ] = 6 · 0.7 + 7 · 0.3 = 6.3

Note, that this is not the same as computing the average speed

E[V ] = 700 · 0.7 + 600 · 0.3 = 670 km/h

and then computing 4200/670 ≈ 6.27 hours.

In other words, even though T = 4200/V , E[T ] 6= 4200/E[V ].
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“Friendship Paradox”

Suppose there are n people named 1, 2, . . . , n.

Person i has f(i) friends, and we let m =
∑n
i=1 f(i).

Now, let X be a random person, equally likely to be any of the n
people. Also, Let Z = f(X) (i.e. Z is # of friends of random person).

Then we have

E[Z] =

n∑
i=1

f(i)P [X = i]︸ ︷︷ ︸
1/n

=
m

n

E[Z2] =

n∑
i=1

(f(i))2 P [X = i] =
1

n

n∑
i=1

(f(i))2

Now, each person writes the names of their friends on a sheet of paper
(one sheet per friend).

There are m sheets, and one sheet is drawn at random, each sheet
being equally likely to be chosen.
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“Friendship Paradox” (cont.)

Let Y be the name of the friend on the drawn sheet and let W = f(Y ).

Note that, in this case,

P [Y = i] =
f(i)

m

as opposed to 1/n.

Thus, we have

E[W ] = E[f(Y )] =
∑
i

f(i)P [Y = i] =
∑
i

f(i) · f(i)

m
=

=
n

m
· 1

n

∑
i

(f(i))2 =
E[Z2]

E[Z]
≥ E[Z]

since E[Z2] ≥ (E[Z])2.

The inequality E[Z] ≤ E[W ] suggests that the expected number of
friends of a random person is smaller than the expected number of
friends of a random friend.
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Another example

There are n days in a year.

Persons 1, 2 and 3 are independently born on day r with probability
pr, for r = 1, 2, . . . , n.

Let Ai,j = {persons i and j born on same day}.

Question (a): What is P [A1,3]?

P [A1,3] = P [∪r{1 and 3 both born on day r}] =

=
∑
r

P [{1 and 3 both born on day r}] =

=
∑
r

P [{1 born on day r}]P [{3 born on day r}] =
∑
r

p2r
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Another example (cont.)

Question (b): What is P [A1,3 | A1,2]?

P [A1,3 | A1,2] =
P [A1,3A1,2]

P [A1,2]
=

=
P [{1, 2 and 3 born on same day}]
P [{1 and 2 born on same day}] =

∑
r p

3
r∑

r p
2
r

Question (c): Show that P [A1,3 | A1,2] ≥ P [A1,3].

We want to show that
∑
r p

3
r/
∑
r p

2
r ≥

∑
r p

2
r. Let X be a random

variable that is equal to pr with probability pr. In this case,

E[X] =
∑
r

prP [X = pr] =
∑
r

p2r

E[X2] =
∑
r

p2rP [X = pr] =
∑
r

p3r

and the result follows from E[X2]/E[X] ≥ E[X].
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Remarks

We had E[aX + b] = aE[X] + b. What about V ar[aX + b]?

V ar[aX + b] = E
[
(aX + b− E[aX + b])2

]
=

= E
[
(aX + b− aE[X]− b])2

]
= E

[
(aX − aE[X])2

]
=

= E
[
a2 (X − E[X])2︸ ︷︷ ︸

Y

]
= E

[
a2Y

]
= a2E [Y ] =

= a2E
[
(X − E[X])2

]
= a2V ar[X]

Therefore, we have

V ar[aX + b] = a2V ar[X]
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Remarks (cont.)

If X has units of, say, kg, then E[X] has units of kg, while V ar[X] has
units of kg2.

We also define SD[X] =
√
V ar[X], called standard deviation.

SD[X] has units of kg again.

If we write V ar[X] = σ2
X , then SD[X] = σX .
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Bernoulli Random Variable

Let

pX(k) =

{
1− p, if k = 0

p, if k = 1

with 0 ≤ p ≤ 1.

X is called Bernoulli with parameter p, denoted X ∼ Bernoulli(p).

This random variable models binary conditions (e.g., state of a
connection, preference of a person for/against politician, etc).
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Binomial random variable

Consider n independent trials of Bernoulli(p), and let X = # of ones in
the n trials.

Then X is called binomial with parameters n and p, denoted
X ∼ Binomial(n, p).

Note that Bernoulli(p) = Binomial(1, p).

For 0 ≤ k ≤ n, there are
(
n
k

)
ways to get k ones from n Bernoulli trials,

where each has probability pk(1− p)n−k. Thus,

pX(k) =

{(
n
k

)
pk(1− p)n−k, 0 ≤ k ≤ n

0, else

Note that, since X must be between 0 and n, we have

1 =

n∑
k=0

pX(k) =

n∑
k=0

(
n

k

)
pk(1− p)n−k
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Example

A company sells screw in packs of 10. If each screw has a probability of
0.01 of being defective, and there is a money-back guarantee if more
than 1 screw is defective, what is the proportion of packs that will be
replaced?

In this case, X ∼ Binomial(10, 0.01). So, we have

P [not replacing a pack] = P [X = 0] + P [X = 1] =

=

(
10

0

)
(0.01)0(0.99)10 +

(
10

1

)
(0.01)1(0.99)9 ≈ 0.996

Therefore,

P [replace a pack] = 1− P [not replacing a pack] ≈ 0.004
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Another example

A system consists of n components, each of which independently func-
tions with probability p. The system functions if at least half of its
components function.

For what value of p is a 5-component system more likely to function
than a 3-component system?

a = P [5 component system functions]

=

(
5

3

)
p3(1− p)2 +

(
5

4

)
p4(1− p)1 +

(
5

5

)
p5

= 10p3(1− p)2 + 5p4(1− p)1 + p5

b = P [3 component system functions]

=

(
3

2

)
p2(1− p)1 +

(
3

3

)
p3 = 3p2(1− p)1 + p3

Now, if we set a > b and substitute the above expressions, then after
some algebra, we get p > 1/2.
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Poisson random variable

We say X is Poisson with parameter λ > 0, denoted X ∼ Poisson(λ),
if

pX(k) =

{
λk

k!
e−λ, for k = 0, 1, 2, . . .

0, else

We note that∑
k≥0

pX(k) =
∑
k≥0

λk

k!
e−λ = e−λ

∑
k≥0

λk

k!
= e−λeλ = 1

The Poisson random variable is an approximation of the binomial
random variable when

1 n is large,
2 p is small, and
3 λ = n p is moderate.
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Example

Say n = 100, p = 0.01, resulting in λ = 1. Then

pX(5) =
100!

95! 5!
(0.01)5(0.99)95 ≈ 0.00290

and
15

5!
e−1 ≈ 0.00306

However, if we repeat with n = 1000, p = 0.001, then λ = 1 again. In
this case,

pX(5) =
1000!

995! 5!
(0.001)5(0.999)995 ≈ 0.00305

ECE 203 - Section 3 Instructor: Dr. O. Michailovich, 2022 35/50



Poisson Random Variable (cont.)

It can be shown that, if X ∼ Binomial(n, p) and Y ∼ Poisson(np), then

∞∑
k=0

|P [X = k]− P [Y = k]| ≤ 4p

The examples of where Poisson distribution should be a good approxi-
mation include

1 # of wrong numbers dialled in a day
2 # of oranges sold in a day at a store
3 # number of alpha particles emitted by a radioactive substance in

1 second
4 # of dead pixels in an LCD display
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Mean and Variance of Poisson RV

Intuitively, suppose X ∼ Binomial(n, p) with large n, small p and
λ = np.

In this case, we have:
E[X] = np = λ

V ar[X] = np(1− p) = λ(1− p) ≈ λ

More precisely, let X ∼ Poisson(λ). Then

E[X] =

∞∑
k=0

k
λk

k!
e−λ =

∞∑
k=1

k
λk

k!
e−λ =

∞∑
k=1

λk

(k − 1)!
e−λ =

= λ

∞∑
k=1

λk−1

(k − 1)!
e−λ = λ

∞∑
`=0

λ`

`!
e−λ = λ
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Mean and Variance of Poisson RV (cont.)

At the same time, we have

E[X2] =

∞∑
k=0

k2
λk

k!
e−λ =

∞∑
k=1

k2
λk

k!
e−λ =

∞∑
k=1

kλk

(k − 1)!
e−λ =

=

∞∑
`=0

(`+ 1)λ`+1

`!
e−λ = λ

( ∞∑
`=0

` λ`

`!
e−λ︸ ︷︷ ︸

λ

+
∞∑
`=0

λ`

`!
e−λ︸ ︷︷ ︸

1

)
= λ(1 + λ)

Consequently, the variance of X can then be computed as

V ar[X] = E[X2]− (E[X])2 = λ(1 + λ)− (λ)2 = λ

Thus, in the case of Poisson r.v. we have

E[X] = V ar[X] = λ
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Example

A radioactive substance with a large number of atoms emits 3.2 alpha
particles per second on average. What is the probability that no more
than 2 alpha particles are emitted in a 1 second interval?

Solution: If X denotes the number of emitted particles in one second,
then X is Poisson with E[X] = 3.2 = λ. In this case,

P [X ≤ 2] = P [X = 0] + P [X = 1] + P [X = 2] =

= e−3.2 + 3.2 e−3.2 +
(3.2)2

2!
e−3.2 ≈ 0.3799
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Geometric RV

Consider an infinite sequence of independent Bernoulli(p) trials.

Let X be the trial number of the first outcome that is a one. X is
called geometric with parameter p, denoted X ∼ Geometric(p). Its
PMF is given by

pX(k) = P [(k − 1) zeros followed by a one] =

=

{
(1− p)k−1p k ≥ 1

0 else

with k = 1, 2, . . .
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Example

A bag contains 2 white balls and 3 black balls. Balls are drawn ran-
domly from the bag until a black ball is drawn. If each selected ball is
replaced before the next is drawn,

1 What is the probability that exactly n draws are needed?
2 What is the probability that at least k draws are needed?

Solution: In each draw, the probability of getting a black ball is equal
to 3/5 = 0.6. If X denotes the number of draws until a black ball, then
X ∼ Geometric(p) with p = 0.6.

Consequently,

P [X = n] =

(
1− 3

5

)n−1

· 3

5
=

3

5

(
2

5

)n−1

while

P [X ≥ k] =
∞∑
n=k

P [X = n] =
3

5
·
∞∑
n=k

(
2

5

)n−1

=

=
3

5
·
(

2

5

)k−1 ∞∑
n=0

(
2

5

)n
=

3

5
·
(

2

5

)k−1
1

1− 2/5
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Mean and Variance of Geometric RV

If X ∼ Geometric(p), then

E[X] =
∞∑
k=1

k(1− p)k−1p =

∞∑
k=1

(k − 1)(1− p)k−1p+

∞∑
k=1

(1− p)k−1p︸ ︷︷ ︸
1

=

=
∞∑
`=0

`(1− p)`p+ 1 =

∞∑
`=1

`(1− p)`p+ 1 = (1− p)
∞∑
`=1

`(1− p)`−1p︸ ︷︷ ︸
E[X]

+1

= (1− p)E[X] + 1

Therefore, E[X] = 1/p.

One can also show that

E[X2] =

∞∑
k=1

k2(1− p)k−1p = . . . =
2− p
p2

Finally,

V ar[X] = E[X2]− (E[X])2 =
2− p
p2
−
(

1

p

)2

=
1− p
p2
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Expected Values of Sums of RVs

Recall, a random variable X is really X(s) – a function of the outcome
s of a random experiment.

We can have two functions of the same outcome s, say X(s) and Y (s).

For example, let X = # heads in first 3 flips and Y = # heads in last 2
flips.

Since X and Y are numbers, we can add them: Z(s) = X(s) + Y (s).
In other words, Z is also a random variable.

Here, Z = # of heads in all 5 flips.
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Expected Values of Sums of RVs (cont.)

Now, for each s ∈ S, let p(s) = P [{s}]. Then P [A] =
∑
s∈A p(s).

Let X ∈ X = {x1, . . . , xn} and Ak = {s ∈ S | X(s) = xk}. Then,

E[X] =

n∑
k=1

xkP [X = xk] =

n∑
k=1

xkP [Ak] =

n∑
k=1

xk
∑
s∈Ak

p(s) =

=
n∑
k=1

∑
s∈Ak

xkp(s) =
n∑
k=1

∑
s∈Ak

X(s)p(s) =
∑
s∈S

X(s)p(s)
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Example

Two independent flips of a fair coin are made. Let X = # heads. Then,

P [X = 0] = 1/4, P [X = 1] = 1/2, P [X = 2] = 1/4

and thus
E[X] = 0 · 1/4 + 1 · 1/2 + 2 · 1/4 = 1

Also, S = {tt, th, ht, hh}, and each outcome has probability of 1/4. So,

E[X] = X(tt)× 1/4 +X(th)× 1/4 +X(ht)× 1/4 +X(hh)× 1/4 =

= 0 · 1/4 + 1 · 1/4 + 1 · 1/4 + 2 · 1/4 = 1
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Sum of Random Variables

Proposition: For random variables X1, X2, . . . , Xn, one has

E[X1 + . . .+Xn] = E[X1] + . . .+ E[Xn]

To see this, let Z = X1 + . . .+Xn. Then

E[Z] =
∑
s∈S

Z(s)p(s) =
∑
s∈S

( X1(s) + . . .+Xn(s))p(s) =

=
∑
s∈S

X1(s)p(s) + . . .+
∑
s∈S

Xn(s)p(s) = E[X1] + . . .+ E[Xn]
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Example

Let X ∼ Binomial(n, p). Then

X = X1 + . . .+Xn

where each Xk ∼ Bernoulli(p) is the outcome of an independent trial.

In this case,

E[X] = E[X1 + . . .+Xn] = E[X1] + . . .+ E[Xn] = p+ . . .+ p = np

while

E[X2] = E

[(
n∑
k=1

Xk

)(
n∑
`=1

X`

)]
= E

[
n∑
k=1

(
n∑
`=1

XkX`

)]
=

= E

 n∑
k=1

XkXk +

n∑
`=1
6̀=k

XkX`


 = E

 n∑
k=1

X2
k +

n∑
k=1

n∑
`=1
` 6=k

XkX`

 =

=
n∑
k=1

E
[
X2
k

]
+

n∑
k=1

n∑
`=1
6̀=k

E [XkX`]
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Example (cont.)

Now,
P [X2

k = 1] = P [Xk = 1] = p

and

P [XkX` = 1] = P [Xk = 1, X` = 1] = P [Xk = 1]P [X` = 1] = p2

So, we finally obtain

E[X2] = np+ n(n− 1)p2
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Properties of CDFs

Recall that FX(x) = P [X ≤ x]. Therefore, 0 ≤ FX(x) ≤ 1.

If a < b then {X ≤ a} ⊂ {X ≤ b}. This suggests that

P [X ≤ a] ≤ P [X ≤ b] =⇒ FX(a) ≤ FX(b)

This shows that FX(x) is non-decreasing in x.

It can also be shown that

1

lim
b→∞

FX(b) = 1, lim
b→−∞

FX(b) = 0

2 FX(x) is continuous from the right (i.e., if bn ↓ b then
lim
n→∞

FX(bn) = FX(b))

3 FX(x) has left limits (i.e., if bn ↑ b then lim
n→∞

FX(bn) exists)

A function with these two limit properties is called càdlàg.
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Example

Here:
lim
b↓a

FX(b) = FX(a)

lim
b↑a

FX(b) = c 6= FX(a)
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