
ECE 203 – Section 5
Jointly distributed random variables

Joint cumulative distribution functions and joint probability densities

Marginalization of discrete and continuous distributions

Independence of continuous random variables

The slides have been prepared based on the lecture notes of Prof. Patrick Mitran.

ECE 203 - Section 5 Instructor: Dr. O. Michailovich, 2022 1/64



Two random variables

So far, we only considered the distribution of a single random variable.

Sometimes we want the probability of a statement involving two or
more random variables.

For example:

1 P [X < 3, Y > 7]

2 P [X < Y ]

3 P [X2 + Y 2 < 10]

4 P [XY = 3]

For this, we need the joint cumulative distribution function, or
joint CDF

FXY (a, b) = P [X ≤ a, Y ≤ b]

which allows finding all probability statements involving X and Y .
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Example

For a1 < a2 and b1 < b2,

P [a1 < X ≤ a2, b1 < Y ≤ b2] =

= FXY (a2, b2) + FXY (a1, b1)− FXY (a1, b2)− FXY (a2, b1)

To see that, we first note that

P [X ≤ a2, Y ≤ b]︸ ︷︷ ︸
FXY (a2,b)

= P [X ≤ a1, Y ≤ b]︸ ︷︷ ︸
FXY (a1,b)

+P [a1 < X ≤ a2, Y ≤ b]

and, therefore,

P [a1 < X ≤ a2, Y ≤ b] = FXY (a2, b)− FXY (a1, b)

ECE 203 - Section 5 Instructor: Dr. O. Michailovich, 2022 3/64



Examples (cont.)

Next, we notice that

P [a1 < X ≤ a2, Y ≤ b2] =

= P [a1 < X ≤ a2, Y ≤ b1] + P [a1 < X ≤ a2, b1 < Y ≤ b2]

and, hence,
P [a1 < X ≤ a2, b1 < Y ≤ b2] =

= P [a1 < X ≤ a2, Y ≤ b2]− P [a1 < X ≤ a2, Y ≤ b1]

Combining the above two results yields

P [a1 < X ≤ a2, b1 < Y ≤ b2] =

= FXY (a2, b2)− FXY (a1, b2)− ( FXY (a2, b1)− FXY (a1, b1) ) =

= FXY (a2, b2) + FXY (a1, b1)− FXY (a1, b2)− FXY (a2, b1)
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Discrete case

Say X and Y both be discrete, with

X takes values in X = {x1, x2, . . .},
Y takes values in Y = {y1, y2, . . .}.

We define the joint probability mass function, or joint pmf as

pXY (x, y) = P [X = x, Y = y]

Consequently,

pX(x) = P [X = x] = P [∪j{X = x, Y = yj}] =

=
∑
j

P [X = x, Y = yj ] =
∑
j

pXY (x, yj)

Likewise,

pY (y) =
∑
i

pXY (xi, y)

When computing pX(x) from pXY (x, y), we call this computing the
marginal pmf for X, and the process is called marginalization.
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Notes

f we list pXY (xi, yj) in a table on a piece of paper, then the sum over j
is summing each column of the table, and writing each sum at the
bottom of the column, in the margin of the page.

Also,
1 = P [X ∈ X , Y ∈ Y] = P [∪i,j{X = xi, Y = yj}] =

=
∑
i,j

P [X = xi, Y = yj ] =
∑
i,j

pXY (xi, yj)

So, joint pmf must sum to 1.
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Example

An urn contains 3 red, 4 white, and 5 blue balls. 3 balls are picked at
random.

Let X = # white balls, Y = # red balls.

To find pXY (i, j), we notice that there are
(
12
3

)
ways of picking 3 of 12

balls.

If X = i and Y = j, then # blue balls is 3− i− j. There are:(
3
i

)
ways of picking i red balls from 3 red balls,(

4
j

)
ways of picking j white balls from 4 white balls,(
5

3−i−j

)
ways of picking 3− i− j blue balls from 5 blue balls.

Therefore,

pXY (i, j) =

(
3
i

)(
4
j

)(
5

3−i−j

)(
12
3

)
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Continuous case

We say that X and Y are continuous random variables if there exists a
non-negative fXY (x, y) such that for every event C ⊂ R2

P [(X,Y ) ∈ C] =

∫∫
C

fXY (x, y)dxdy

fXY (x, y) is called the joint probability density function, or
joint pdf.

Since P [X ∈ A, Y ∈ B] = P [(X,Y ) ∈ A×B︸ ︷︷ ︸
C

], then

P [X ∈ A, Y ∈ B] =

∫∫
A×B

fXY (x, y)dxdy =

∫
B

∫
A

fXY (x, y)dxdy

Also,

FXY (a, b) = P [X ≤ a, Y ≤ b] = P [X ∈ (−∞, a], Y ∈ (−∞, b]] =

=

∫ b

−∞

∫ a

−∞
fXY (x, y) dxdy
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Continuous case (cont.)

If we take partial derivatives with respect to a and b, we obtain

fXY (a, b) =
∂2

∂a∂b
FXY (a, b)

Also, ∫
A

fX(x)dx = P [X ∈ A] = P [X ∈ A, Y ∈ (−∞,∞)] =

=

∫
A

∫ ∞
−∞

fXY (x, y) dydx

and so we can marginalize to obtain

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

Similarly,

fY (y) =

∫ ∞
−∞

fXY (x, y)dx
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Continuous case (cont.)

We also have

1 = P [X ∈ (−∞,∞), Y ∈ (−∞,∞)] =

=

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y)dxdy

Thus, for a joint pdf, volume under the surface is equal to 1.

ECE 203 - Section 5 Instructor: Dr. O. Michailovich, 2022 10/64



Example

The joint pdf of X and Y is given by

fXY (x, y) =

{
2e−xe−2y, x > 0 and y > 0

0, otherwise

Compute

1 P [X > 1, Y < 1]

2 P [X < Y ]

3 P [X < a]

Solution (1):

P [X > 1, Y < 1] = P [X ∈ (1,∞), Y ∈ (−∞, 1)] =

=

∫ 1

−∞

∫ ∞
1

fXY (x, y)dxdy =

∫ 1

0

∫ ∞
1

2e−xe−2ydxdy =

=

∫ 1

0

[
−2e−xe−2y]x=∞

x=1
dy =

∫ 1

0

2e−1e−2ydy =

=
[
−e−1e−2y]y=1

y=0
= e−1 − e−3
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Example (cont.)

Solution (2):

P [X < Y ] =

∫∫
(x,y):x<y

fXY (x, y)dxdy =

∫∫
(x,y):x<y
x>0
y>0

2e−xe−2ydxdy

and, hence,

P [X < Y ] =

∫ ∞
0

∫ y

0

2e−xe−2ydxdy =

∫ ∞
0

[
−2e−xe−2y]x=y

x=0
dy =

=

∫ ∞
0

2e−2y − 2e−3ydy =

[
−e−2y +

2

3
e−3y

]∞
0

= 1− 2

3
=

1

3
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Example (cont.)

Solution (3):

P [X < a] = P [X ∈ (−∞, a), Y ∈ (−∞,∞)] =

=

∫ ∞
−∞

∫ a

−∞
fXY (x, y)dxdy =

∫ ∞
0

∫ a

0

2e−xe−2ydxdy =

=

∫ ∞
0

[
−2e−xe−2y]x=a

x=0
dy =

∫ ∞
0

2(1− e−a)e−2ydy =

= −(1− e−a)e−2y
∣∣y=∞
y=0

= (1− e−a)
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Another example

Given R > 0, consider the joint pdf

fXY (x, y) =

{
c, if x2 + y2 ≤ R2

0, otherwise

for some c > 0.

1 Find c.

2 Find the marginal pdfs of X and Y .

3 Let D =
√
X2 + Y 2 be the distance of the pair (X,Y ) from the

origin. Find P [D ≤ a].

4 Find E[D].

Note: The pdf is the constant c on a disk of radius R, and 0 otherwise.
This is called a uniform distribution on the disk of radius R.
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Another example (cont.)

Solution (1):

1 =

∫∫
R2

fXY (x, y)dxdy =

∫∫
x2+y2≤R2

c dxdy = c

∫∫
x2+y2≤R2

1 dxdy = c · πR2

So, c = 1/πR2.

Solution (2):

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫
y:x2+y2≤R2

c dy =

∫
y:y2≤R2−x2

c dy =

=

∫ b

−b
c dy = 2bc =

2

πR2

√
R2 − x2

with b =
√
R2 − x2 and assuming x2 ≤ R2.
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Another example (cont.)

If x2 > R2, then the set {y : y2 ≤ R2 − x2} is empty and the above
integral is 0. Thus,

fX(x) =

{
2

πR2

√
R2 − x2, x2 ≤ R2

0, otherwise

Similarly,

fY (y) =

{
2

πR2

√
R2 − y2, y2 ≤ R2

0, otherwise
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Another example (cont.)

Solution (3): Assuming 0 ≤ a ≤ R,

P [D ≤ a] = P [X2 + Y 2 ≤ a2] =

∫∫
x2+y2≤a2

fXY (x, y) dxdy =

=

∫∫
x2+y2≤a2

c dxdy = c · πa2 =
a2

R2

If a > R, then since X2 + Y 2 cannot be larger than R2, we have
P [D ≤ a] = 1. Formally,

P [D ≤ a] = P [X2 + Y 2 ≤ a2] =

∫∫
x2+y2≤a2

fXY (x, y) dxdy =

=

∫∫
x2+y2≤R2

c dxdy = c · πR2 = 1

If a < 0, then since a distance cannot be negative, P [D ≤ a] = 0.
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Another example (cont.)

Solution (4): The pdf of D for 0 ≤ a ≤ R is

fD(a) =
d

da

a2

R2
=

2a

R2

and 0 otherwise. Therefore

E[D] =

∫ ∞
−∞

afD(a)da =

∫ R

0

2a2

R2
da =

2R

3
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Final example

The joint pdf of X and Y is

fXY (x, y) =

{
e−(x+y), x > 0 and y > 0

0, else

Find the pdf of Z = X/Y .

Solution: X and Y only take positive values. So the ratio X/Y only
takes positive values. Assuming a > 0, we have

FZ(a) = P [X/Y ≤ a] = P [X ≤ aY ] =

∫∫
(x,y):x≤ay

fXY (x, y)dxdy =

=

∫ ∞
0

∫ ay

0

e−xe−y dxdy =

∫ ∞
0

(1− e−ay)e−y dy =

=

∫ ∞
0

e−y − e−(1+a)y dy = 1− 1

1 + a

and FZ(a) = 0 for a ≤ 0.

Therefore, fZ(a) = dFZ(a)/da = (1 + a)−2 for a > 0, and 0 otherwise.
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Jointly distributed RVs

We can define joint distributions for n random variables as

FX1,X2,...,Xn(a1, a2, ..., an) = P [X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an]

If X1, X2, . . . , Xn are discrete, then we have a joint probability mass
function

pX1,X2,...,Xn(a1, a2, ..., an) = P [X1 = a1, X2 = a2, . . . , Xn = an]

We also have

P [X2 = a2, X3 = a3, . . . , Xn = an] =

=
∑
a1

P [X1 = a1, X2 = a2, X3 = a3, . . . , Xn = an]

and thus one can marginalize according to

pX2,X3,...,Xn(a2, a3, ..., an) =
∑
a1

pX1,X2,X3,...,Xn(a1, a2, a3, ..., an)

with ∑
a1,a2,...,an

pX1,X2,...,Xn(a1, a2, . . . , an) = 1
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Jointly distributed RVs (cont.)

Random variables X1, X2, . . . , Xn are continuous if there is a non-
negative fX1,X2,...,Xn(x1, . . . , xn) such that for all events C ⊂ Rn

P [(X1, X2, . . . , Xn) ∈ C] =

∫
· · ·
∫

C

fX1,...,Xn(x1, . . . , xn)dx1 · · · dxn

so that

P [X1 ∈ A1, . . . , Xn ∈ An] =

∫
An

· · ·
∫
A1

fX1,...,Xn(x1, . . . , xn)dx1 · · · dxn

fX1,X2,...,Xn(x1, . . . , xn) is referred to as an n-dimensional joint pdf.
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Jointly distributed RVs (cont.)

We also have

P [X2 ∈ A2, . . . , Xn ∈ An] = P [X1 ∈ (−∞,∞), X2 ∈ A2, . . . , Xn ∈ An] =

=

∫
An

· · ·
∫
A2

∫ ∞
−∞

fX1,X2,...,Xn(x1, x2, . . . , xn)dx1dx2 · · · dxn

and thus one can marginalize according to

fX2,...,Xn(x2, . . . , xn) =

∫ ∞
−∞

fX1,X2,...,Xn(x1, x2, . . . , xn)dx1

Finally,
1 = P [X1 ∈ (−∞,∞), . . . , Xn ∈ (−∞,∞)] =

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX1,...,Xn(x1, . . . , xn)dx1 · · · dxn
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Example

Let X, Y , and Z have the joint pdf given by

fXY Z(x, y, z) =

{
c, x2 + y2 + z2 < R2

0, else

where c > 0 is some constant.

1 Find c.

2 What is the marginal distribution fXY (x, y)?

Note: This pdf is a uniform distribution on a sphere of radius R.
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Example (cont.)

Solution (1): We can find c from

1 =

∫∫∫
R3

fXY Z(x, y, z)dxdydz =

∫∫∫
(x,y,z):x2+y2+z2<R2

c dxdydz = c
4

3
πR3

Consequently, c = 3/(4πR3).

Solution (2): We marginalize out the random variable Z as

fXY (x, y) =

∫ ∞
−∞

fXY Z(x, y, z) dz =

∫ a

−a
c dz︸ ︷︷ ︸

with a=
√
R2−x2−y2

= 2ac =

=
3

2πR3

√
R2 − x2 − y2

when x2 + y2 ≤ R2, while fXY (x, y) = 0 otherwise.
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Independent random variables

Recall that two events E and F are independent when

P [EF ] = P [E]P [F ]

Definition: We say that the random variables X and Y are
independent if, for any two sets A and B, we have

P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B]

If A = (−∞, a] and B = (−∞, b], then this implies

FXY (a, b) = P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B] = FX(a)FY (b)

In fact, the above two definitions can be shown to be equivalent.
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Discrete case

If X and Y are discrete, then X and Y are independent is equiv-
alent to

pXY (x, y) = pX(x)pY (y), ∀x, y

To see that, let A = {x} and B = {y}. Then the independence of X
and Y suggests

pXY (x, y) = P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B] = pX(x)pY (y)

Accordingly, we have

P [X ∈ A, Y ∈ B] =
∑

x∈A,y∈B

pXY (x, y) =
∑

x∈A,y∈B

pX(x)pY (y) =

=
∑
x∈A

pX(x)
∑
y∈B

pY (y) = P [X ∈ A]P [Y ∈ B]

ECE 203 - Section 5 Instructor: Dr. O. Michailovich, 2022 26/64



Continuous case

If X and Y are continuous, then X and Y independent is equivalent to

fXY (x, y) = fX(x)fY (y)

To see that, we note that the independence of X and Y implies

fXY (x, y) =
∂2

∂x∂y
FXY (x, y) =

∂2

∂x∂y
FX(x)FY (y) = fX(x)fY (y)

Accordingly, we have

FXY (x, y) =

∫ y

−∞

∫ x

−∞
fXY (u, v) dudv =

∫ y

−∞

∫ x

−∞
fX(u)fY (v) dudv =

=

∫ x

−∞
fX(u) du

∫ y

−∞
fY (v) dv = FX(x)FY (y)

In words: If X and Y are independent, then knowing the outcome of
one does not change the probability of the outcomes of the other.
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Example

Say n+m independent Binomial(p) trials are performed.

Let X = # of 1s in first n trials and Y = # of 1s in last m trials.

Since knowing the outcomes of the first n trials does not affect the
distribution of outcomes of the last m trials, we have

P [X = k, Y = l] =

(
n

k

)
pk(1− p)n−k ·

(
m

l

)
pl(1− p)m−l
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Another example

Let X and Y have joint density

fXY (x, y) =

{
6e−2xe−3y, x > 0, y > 0

0, otherwise

Are X and Y independent?

Solution: We compute the marginals fX(x) and fY (y), and then verify
that fXY (x, y) = fX(x)fY (y).

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

{∫∞
0

6e−2xe−3y dy, x > 0

0, x ≤ 0
=

=

{
2e−2x, x > 0

0, x ≤ 0

Similarly,

fY (y) =

∫ ∞
−∞

fXY (x, y)dx =

{
3e−3y, y > 0

0, y ≤ 0

So, the variables are independent, since fXY (x, y) = fX(x)fY (y).
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Another example (cont.)

Alternatively, we could have noticed that fXY (x, y) = h(x)g(y) with

h(x) =

{
e−2x, x > 0

0, otherwise
and g(y) =

{
6e−3y, y > 0

0, otherwise

Hence ,

1 =

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

h(x)g(y)dxdy =

=

∫ ∞
−∞

h(x)dx︸ ︷︷ ︸
C1

∫ ∞
−∞

g(y)dy︸ ︷︷ ︸
C2

= C1C2

Now,

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
−∞

h(x)g(y)dy = C2h(x)

fY (y) =

∫ ∞
−∞

fXY (x, y)dx =

∫ ∞
−∞

h(x)g(y)dx = C1g(y)

and, consequently,

fX(x)fY (y) = C1C2h(x)g(y) = h(x)g(y) = fXY (x, y)
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Important conclusion

The second method shows is that if you can factor a given pdf as
fXY (x, y) = h(x)g(y), then X and Y are independent.

Of course, if X and Y are independent, then fXY (x, y) can be always
be factored with the choice h(x) = fX(x) and g(y) = fY (y).

Proposition: X and Y are independent if and only if fXY (x, y) =
h(x)g(y) for some h(x) and g(y).
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Example

Let X and Y have joint density

fXY (x, y) =

{
24xy, x > 0, y > 0, 0 < x+ y < 1

0, otherise

Are X and Y independent?

Solution: No. Below is the region where fXY (x, y) > 0.

This region cannot be the result of h(x)g(y) for any choice of h(x) and
g(y).
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Another example

Two people decide to meet. Each of them arrives independently and
uniformly between noon and 1pm. What is the probability that the
first to arrive has to wait longer than 10 min for the second the arrive?

Solution: Let X and Y be the times at which both arrive in minutes
past noon. The time of arrival of the first to arrive is min(X,Y ). The
time of arrival of the last to arrive is max(X,Y ). We want to compute
P [E ], where

E = {max(X,Y ) > min(X,Y ) + 10} =

= {Y > X + 10} ∪ {X > Y + 10}
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Another example (cont.)

P [E] = 2P [Y > X+10] = 2

∫∫
{y>x+10}

fXY (x, y)dxdy = 2

∫∫
{y>x+10}

fX(x)fY (y)dxdy

= 2

∫∫
{y>x+10,
0<x<60,
0<y<60}

(
1

60

)2

dxdy =
1

1800

∫ 60

10

∫ y−10

0

dxdy =

=
1

1800

∫ 60

10

(y − 10)dy =
25

36
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Independence of multiple RVs

The concept of independence can be extended to more than we
variables as follows.

Definition: We say that n random variables X1, X2, . . . , Xn are
independent, if for any sets A1, A2, ..., An, we have

P [X1 ∈ A1, . . . , Xn ∈ An] =

n∏
i=1

P [Xi ∈ Ai]

or, equivalently,

FX1,...,Xn(a1, . . . , an) =

n∏
i=1

FXi(ai)

for all a1, . . . , an.

An infinite collection of random variables is independent if every finite
subset are independent.
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Independence of multiple RVs (cont.)

Verifying that X1, . . . , Xn are independent amounts to analyzing

P [X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an]

= P [X1 ≤ a1]×
× P [X2 ≤ a2 | X1 ≤ a1]

× P [X3 ≤ a3 | X2 ≤ a2, X1 ≤ a1]

...

× P [Xn ≤ an | Xn−1 ≤ an−1, . . . , X1 ≤ a1]

So, we need to show that

P [X2 ≤ a2] = P [X2 ≤ a2 | X1 ≤ a1]

P [X3 ≤ a3] = P [X3 ≤ a3 | X2 ≤ a2, X1 ≤ a1]

...

P [Xn ≤ an] = P [Xn ≤ an | Xn−1 ≤ an−1, . . . , X1 ≤ a1]

This is equivalent to showing X2 is independent of X1, X3 is indepen-
dent of X1, X2, X4 is independent of X1, X2, X3, etc.
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Sums of independent RVs

Say X and Y are independent continuous random variables. What is
the pdf of Z = X + Y ?

FZ(z) = P [X + Y ≤ z] =

∫∫
x+y≤z

fXY (x, y)dxdy =

=

∫∫
x+y≤z

fX(x)fY (y)dxdy =

∫ ∞
−∞

∫ z−y

−∞
fX(x)fY (y)dxdy =

=

∫ ∞
−∞

fY (y)

∫ z−y

−∞
fX(x)dx dy =

∫ ∞
−∞

fY (y)FX(z − y)dy

Differentiating with respect to z yields

fZ(z) =
d

dz

∫ ∞
−∞

fY (y)FX(z − y)dy =

∫ ∞
−∞

fY (y)
d

dz
FX(z − y)dy =

=

∫ ∞
−∞

fY (y)fX(z − y)dy

Hence, the pdf of Z = X + Y is obtained as the convolution of the pdfs
fX(x) and fY (y)!
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Example

Suppose X and Y are independent random variables, both uniform on
(0, 1). What is the pdf of Z = X + Y ?

Solution: Here, Z can only take values between 0 and 2, and

fX(a) = fY (a) =

{
1, 0 < a < 1

0, otherwise

resulting in

fZ(z) =

∫ ∞
−∞

fY (y)fX(z − y)dy =

∫ 1

0

fX(z − y)dy
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Example (cont.)

Thus, for 0 ≤ z ≤ 1: ∫ 1

0

fX(z − y)dy =

∫ z

0

1 dy = z

For 1 ≤ z ≤ 2: ∫ 1

0

fX(z − y)dy =

∫ 1

z−1

1 dy = 2− z

Thus, we finally have

fZ(z) =


z, 0 ≤ z ≤ 1

2− z, 1 ≤ z ≤ 2

0, otherwise
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Normal (Gaussian) random variables

Proposition: Let X1, X2, . . . , Xn be independent random vari-
ables. Let Xi ∼ N (µi, σ

2
i ) and let Z = X1 + X2 + · · · + Xn.

Then Z ∼ N (µZ , σ
2
Z), where

µZ = µ1 + µ2 + · · ·+ µN

σ2
Z = σ2

1 + σ2
2 + · · ·+ σ2

N

Proof: We prove the result for the case of 2 random variables X and
Y 1. Particularly, let X ∼ N (0, σ2) and Y ∼ N (0, 1). Let’s determine
the density of U = X + Y

fX(u− y)fY (y) =
1√
2πσ

exp

{
− (u− y)2

2σ2

}
1√
2π

exp

{
−y

2

2

}
=

=
1

2πσ
exp

{
− (u− y)2

2σ2
− y2

2

}
=

1

2πσ
exp

{
− u2

2(1 + σ2)
− c

(
y − u

1 + σ2

)2
}

where c = (1 + σ2)/(2σ2).

1The result for the case of n variables then follows by applying the result for 2
variables repeatedly.
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Normal (Gaussian) random variables (cont.)

Therefore,

fX(u− y)fY (y) =
1

2πσ
exp

{
−u2

2(1 + σ2)

}
exp

{
−c
(
y − u

1 + σ2

)2
}

and

fU (u) =

∫ ∞
−∞

fX(u− y)fY (y)dy =

=
1

2πσ
exp

{
−u2

2(1 + σ2)

}∫ ∞
−∞

exp

{
−c
(
y − u

1 + σ2

)2
}
dy =

= C exp

{
−u2

2(1 + σ2)

}
and C is some constant. But then U is normal with parameters µU = 0
and σ2

U = 1 + σ2.
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Normal (Gaussian) random variables (cont.)

Now, suppose X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2). Then,

X1 +X2 = σ2

(
X1 − µ1

σ2
+
X2 − µ2

σ2

)
+ µ1 + µ2

Since (X1 − µ1)/σ2 ∼ N (0, σ2
1/σ

2
2) and (X2 − µ2)/σ2 ∼ N (0, 1), we

have

Z =
X1 − µ1

σ2
+
X2 − µ2

σ2
∼ N (0, 1 +

σ2
1

σ2
2

)

and, consequently,

X1 +X2 = σ2Z + (µ1 + µ2) ∼ N (µ1 + µ2, σ
2
1 + σ2

2)
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Some definitions

Definition: A random variable Y is called lognormal with parameters
µ and σ if log Y is normal with parameter µ and σ2, i.e., if

Y = eX ,

where X ∼ N (µ, σ2).

Definition: If the random variables X1, X2, . . . , Xn are independent
and identically distributed, we say that they are i.i.d., or iid.
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Example

Let S(n) be the value of an investment at the end of week n.

A model for the evolution of S(n) is that the ratios S(n)/S(n− 1) are
iid lognormal random variables with parameters µ and σ. What is the
probability that

1 the value increases in each of the next two weeks?
2 the value at the end of two weeks is higher than it is today?

Solution (1): Let U1 and U2 be independent normal variables with
mean µ and σ2. Let Z ∼ N (0, 1).

P [S(1) > S(0)] = P

[
S(1)

S(0)
> 1

]
= P

[
log

S(1)

S(0)
> 0

]
=

= P [U1 > 0] = P

[
U1 − µ
σ

>
−µ
σ

]
= P

[
Z >

−µ
σ

]
= 1− Φ(−µ/σ)

Similarly,
P [S(2) ≥ S(1)] = 1− Φ(−µ/σ)
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Example (cont.)

Consequently, we have

P [S(1) > S(0), S(2) > S(1)] = P

[
log

S(1)

S(0)
> 0, log

S(2)

S(1)
> 0

]
=

= P

[
log

S(1)

S(0)
> 0

]
P

[
log

S(2)

S(1)
> 0

]
= (1− Φ(−µ/σ))2

Solution (2):

P [S(2) > S(0)] = P

[
S(2)

S(0)
> 1

]
= P

[
S(2)

S(1)

S(1)

S(0)
> 1

]
=

= P

[
log

S(2)

S(1)
+ log

S(1)

S(0)
> 0

]
= P [U2 + U1 > 0] =

= P

[
U2 + U1 − 2µ√

2σ2
>

0− 2µ√
2σ2

]
= P

[
Z > − 2µ√

2σ2

]
=

= 1− Φ

(
− 2µ√

2σ2

)
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Another example

Let X and Y be independent Poisson random variables with parame-
ters λ1 and λ2. What is the pmf of Z = X + Y ?

Solution:

P [Z = n] = P [X + Y = n] = P [∪∞k=−∞{X = k, Y = n− k}] =

=

∞∑
k=−∞

P [X = k, Y = n− k] =

∞∑
k=−∞

P [X = k]P [Y = n− k] =

=

∞∑
k=−∞

pX(k)pY (n−k) =

n∑
k=0

pX(k)pY (n−k) =

n∑
k=0

λk1
k!
e−λ1

λn−k2

(n− k)!
e−λ2 =

= e−(λ1+λ2)
n∑
k=0

λk1
k!

λn−k2

(n− k)!
=
e−(λ1+λ2)

n!

n∑
k=0

n!

k!(n− k)!
λk1λ

n−k
2 =

=
e−(λ1+λ2)

n!

n∑
k=0

(
n

k

)
λk1λ

n−k
2 =

e−(λ1+λ2)

n!
(λ1 + λ2)n

Therefore, Z is Poisson with parameter λ1 + λ2.
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Yet another example

Let X and Y be independent binomial random variables with para-
meters (n, p) and (m, p). What is the pmf of Z = X + Y ?

Solution: Let X = # ones in n repeated independent Bernoulli(p)
trials and let Y = # ones in m repeated independent Bernoulli(p)
trials. As X and Y are independent, Z = # ones in n+m repeated
independent Bernoulli(p) trials. Therefore,

P [Z = k] =

(
n+m

k

)
pk(1− p)n+m−k

for k = 0, 1, . . . , n+m.
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Conditional distributions

In the discrete case, recall that for P [F ] > 0,

P [E | F ] =
P [EF ]

P [F ]

We want the distribution of X, conditioned on Y = y. The conditional
pmf for X given Y is given by

pX|Y (x|y) = P [X = x|Y = y] =
P [X = x, Y = y]

P [Y = y]
=
pXY (x, y)

pY (y)

The conditional cdf for X given Y is given by

FX|Y (x|y) = P [X ≤ x|Y = y] =
P [X ≤ x, Y = y]

P [Y = y]
=

=
∑
a≤x

P [X = a, Y = y]

P [Y = y]
=
∑
a≤x

pX|Y (a|y)

If X and Y are independent, then

pX|Y (x|y) =
pXY (x, y)

pY (y)
=
pX(x)pY (y)

pY (y)
= pX(x)
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Example

Say the joint pmf of X and Y is

pXY (0, 0) = 0.4 pXY (1, 0) = 0.1

pXY (0, 1) = 0.2 pXY (1, 1) = 0.3

Compute the conditional pmf of X given Y = 1.

Solution:

pY (1) =
∑
x

pXY (x, 1) = pXY (0, 1) + pXY (1, 1) = 0.5

Therefore,

pX|Y (0|1) =
pXY (0, 1)

pY (1)
=

2

5

and

pX|Y (1|1) =
pXY (1, 1)

pY (1)
=

3

5
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Another example

Say X and Y are independent Poisson with parameters λ1 and λ2.
What is the conditional distribution for X given X + Y = n?

Solution:

P [X = k|X + Y = n] =
P [X = k,X + Y = n]

P [X + Y = n]
=

=
P [X = k, Y = n− k]

P [X + Y = n]
=
P [X = k]P [Y = n− k]

P [X + Y = n]

Since X + Y is Poisson with parameter λ1 + λ2, we have

P [X = k|X + Y = n] =
λk1e
−λ1

k!

λn−k2 e−λ2

(n− k)!

[
(λ1 + λ2)ne−(λ1+λ2)

n!

]−1

=

=
n!

k!(n− k)!

λk1λ
n−k
2

(λ1 + λ2)n
=

(
n

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k
and this is binomial with parameters n and λ1/(λ1 + λ2).
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Yet another example

Consider n iid Bernoulli trials X1, X2, . . . , Xn with parameter p. Given
that these trials result in k ones, show that each of the

(
n
k

)
possible

orderings are equally likely.

Solution: Let Z = X1 + . . .+Xn. We are conditioning on Z = k. Also,
let x1, x2, . . . , xn be binary, and such that x1 +x2 + · · ·+xn = k. Then,

P [X1 = x1, . . . , Xn = xn|Z = k] =
P [X1 = x1, . . . , Xn = xn, Z = k]

P [Z = k]
=

=
P [X1 = x1, . . . , Xn = xn]

P [Z = k]
=
P [X1 = x1, . . . , Xn = xn]

P [Z = k]
=

=
pk(1− p)n−k(
n
k

)
pk(1− p)n−k

=
1(
n
k

)
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Continuous case

If X and Y are continuous, for fY (y) > 0 the conditional prob-
ability density function (pdf) of X given Y = y is defined to
be

fX|Y (x|y) =
fXY (x, y)

fY (y)

Then

P [X ∈ A|Y = y] =

∫
A

fX|Y (x|y)dx

and choosing A = (−∞, a], we get

FX|Y (a|y) = P [X ≤ a|Y = y] =

∫ a

−∞
fX|Y (x|y)dx

If X and Y are independent, then

fX|Y (x|y) =
fXY (x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x)
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Example

The joint pdf of X and Y is given by

fXY (x, y) =

{
12
5
x(2− x− y), 0 < x < 1, 0 < y < 1

0, otherwise

For 0 < y < 1, what is fX|Y (x|y)?

Solution: For 0 < x < 1, 0 < y < 1, we have

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

fXY (x, y)∫∞
−∞ fXY (x, y)dx

=

=
x(2− x− y)∫ 1

0
x(2− x− y)dx

=
x(2− x− y)

2
3
− y

2

When x /∈ (0, 1) but 0 < y < 1, then fXY (x, y) = 0, so fX|Y (x|y) = 0.

ECE 203 - Section 5 Instructor: Dr. O. Michailovich, 2022 53/64



Another example

The joint pdf of X and Y is given by

fXY (x, y) =

{
e−x/ye−y

y
, 0 < x <∞, 0 < y <∞

0, otherwise

Find P [X > 1|Y = 1].

Solution: First, for y > 0, we have

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

fXY (x, y)∫∞
−∞ fXY (x, y)dx

=

=

1
y
e−x/ye−y

e−y
∫∞
0

1
y
e−x/ydx

=

1
y
e−x/ye−y

e−y · 1 =
1

y
e−x/y

Therefore,

P [X > 1|Y = y] =

∫ ∞
1

fX|Y (x|y)dx =

∫ ∞
1

1

y
e−x/ydx =

= − e−x/y
∣∣∣∞
1

= e−1/y
∣∣∣
y=1

= 1/e.
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The bivariate normal distribution

Definition: Two random variables X and Y are jointly Gaussian
(normal) or bivariate Gaussian (normal) with parameters µX , µY ,
σX > 0, σY > 0, and −1 < ρ < 1 when

fXY (x, y) =
1

2πσXσY
√

1− ρ2
×

× exp

{
− 1

2(1− ρ2)

[(
x− µX
σX

)2

+

(
y − µY
σY

)2

− 2ρ
(x− µX)(y − µY )

σXσY

]}

It is customary to denote

xxx =

[
x
y

]
, µµµ =

[
µX
µY

]
, Σ =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]
and then

fXY (x, y) =
1

2π|Σ|1/2
exp

{
−1

2
(xxx−µµµ)TΣ−1(xxx−µµµ)

}

with µµµ called the mean vector of (X,Y ) and Σ is called the covari-
ance matrix of (X,Y ). We say the pair (X,Y ) ∼ N (µµµ,Σ).
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Marginal distributions

To find the marginal density

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

we first note that(
x− µX
σX

)2

+

(
y − µY
σY

)2

− 2ρ
(x− µX)(y − µY )

σXσY
=

=

(
w − ρ(x− µX)

σX

)2

+ (1− ρ2)

(
x− µX
σX

)2

where w = (y − µY )/σY .
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Marginal distributions (cont.)

fX(x) =

C1

∫ ∞
−∞

exp

{
−1

2(1− ρ2)

[(
x− µX
σX

)2

+

(
y − µY
σY

)2

− 2ρ
(x− µX)(y − µY )

σXσY

]}
dy =

= C2

∫ ∞
−∞

exp

{
−1

2(1− ρ2)

[(
w − ρ(x− µX)

σX

)2

+ (1− ρ2)

(
x− µX
σX

)2
]}

dw =

= C2e
− (x−µX )2

2σ2
X

∫ ∞
−∞

exp

{
−1

2(1− ρ2)

(
w − ρ(x− µX)

σX

)2
}
dw =

= C2e
− (x−µX )2

2σ2
X

∫ ∞
−∞

exp

{
−v2

2(1− ρ2)

}
dv =

(
with v = w − ρ(x− µX)

σX

)

= C3e
− (x−µX )2

2σ2
X

where C1, C2, and C3 are constants that do not involve x.

So, X is normal with mean µX and variance σ2
X !

Likewise, the marginal fY (y) shows that Y ∼ N (µY , σ
2
Y ).
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Conditional distribution

The knowledge of fXY (x, y) and of the marginal density fY (y)

fY (y) =
1√

2πσY
e
− (y−µY )2

2σ2
Y

can be used to compute

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

= C4 exp

{
−1

2σ2
X(1− ρ2)

[
x−

(
µX + ρ

σX
σY

(y − µY )

)]2}

where C4 is a constant that depends neither on x nor on y.

One can see that fX|Y (x|y) is the pdf of X, with its mean and variance
equal to µX + ρσX

σY
(y − µY ) and σ2

X(1− ρ2), respectively.
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Conditional distribution (cont.)

Note that we have

fXY (x, y) = fX(x)fY (y)⇔ fX|Y (x|y) = fX(x)

and the latter happens when ρ = 0.

Thus, for bivariate normal X and Y , X and Y are independent when
ρ = 0.

Remark: ρ is called the correlation coefficient between X and Y .
When ρ = 0, the random variables X and Y are called uncorrelated.
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Joint Distribution of Functions of RVs

Given two random variables X1 and X2, let’s consider

Y1 = g1(X1, X2), Y2 = g2(X1, X2)

where we want to find the joint pdf of Y1 and Y2.

Assumption 1: The system of equations

y1 = g1(x1, x2), y2 = g2(x1, x2)

can be uniquely solved for x1 and x2 in terms of y1 and y2, i.e.,

x1 = h1(y1, y2), x2 = h2(y1, y2)

Assumption 2: The functions g1 and g2 have continuous partial
derivates such that the determinant of the 2× 2 matrix

J(x1, x2) =

∣∣∣∣∣ ∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ =
∂g1
∂x1

∂g2
∂x2
− ∂g1
∂x2

∂g2
∂x1

6= 0
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Joint Distribution of Functions of RVs (cont.)

Under these conditions, the pdf for Y1 and Y2 can be shown to be:

fY1Y2(y1, y2) = fX1X2(x1, x2) |J(x1, x2)|−1

where

x1 = h1(y1, y2)

x2 = h2(y1, y2).

ECE 203 - Section 5 Instructor: Dr. O. Michailovich, 2022 61/64



Example

Let X1 and X2 have joint pdf fX1X2(x1, x2). Let

Y1 = X1 +X2

Y2 = X1 −X2

Find the joint pdf fY1Y2(y1, y2) of Y1 and Y2 in terms of fX1X2(x1, x2).

Solution: Solving the pair of linear equations

y1 = x1 + x2, y2 = x1 − x2

we get

x1 =
1

2
y1 +

1

2
y2, x2 =

1

2
y1 −

1

2
y2

We also have

J(x1, x2) =

∣∣∣∣ 1 1
1 −1

∣∣∣∣ = −2 6= 0

and therefore

fY1Y2(y1, y2) =
1

2
fX1X2

(
1

2
y1 +

1

2
y2,

1

2
y1 −

1

2
y2

)
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Another example

What is fY1Y2(y1, y2) in the last example if

fX1X2(x1, x2) =

{
1, 0 < x1 < 1, 0 < x2 < 1

0, otherwise

Note: X1 and X2 are independent and uniform on (0, 1).

Solution: From the last equation on Slide 62, we have

fY1Y2(y1, y2) =

{
1
2
, 0 < 1

2
y1 + 1

2
y2 < 1, 0 < 1

2
y1 − 1

2
y2 < 1

0, otherwise
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Final example

What is fY1Y2(y1, y2) if now

fX1X2(x1, x2) =

{
λ1λ2e

−λ1x1e−λ2x2 , 0 ≤ x1, 0 ≤ x2
0, otherwise

Note: X1 and X2 are independent exponential random variables with
parameters λ1 and λ2.

Solution: Using the same equation, we obtain

fY1Y2(y1, y2) =

=

{
1
2
λ1λ2e

−λ1(
1
2
y1+

1
2
y2)e−λ2(

1
2
y1− 1

2
y2), 0 ≤ 1

2
y1 + 1

2
y2, 0 ≤ 1

2
y1 − 1

2
y2

0, othewise
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