
ECE 203 – Section 6
Properties of Expectations

Expectations of sums of random variables

Covariance, variance of sums, and correlation

Conditional expectations and variances

Moment generating function and its properties

Multivariate normal random variables

The slides have been prepared based on the lecture notes of Prof. Patrick Mitran.
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Expected values

Recall that the mean value of X is

E[X] =


∑
x xpX(x), if X is discrete

∫∞
−∞ xfX(x)dx if X is continuous

Since E[X] is a weighted sum of all possible values of X, when we have
P [a ≤ X ≤ b] = 1, then a ≤ E[X] ≤ b. Why?

Since fX(x) = 0 for x /∈ [a, b], we have

E[X] =

∫ ∞
−∞

xfX(x)dx =

∫ b

a

xfX(x)dx ≥

≥
∫ b

a

afX(x)dx = a

∫ b

a

fX(x)dx = a
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Expectation of Sums of Random Variables

Proposition: Let X and Y be two random variables. Let g(x, y) be a
function. Then

E[g(X,Y )] =


∑
y

∑
x g(x, y)pXY (x, y) if X & Y are discrete

∫∞
−∞

∫∞
−∞ g(x, y)fXY (x, y)dxdy if X & Y are continuous

Indeed, since E[Z] =
∫∞
0
P [Z > t]dt, we have

E[g(X,Y )] =

∫ ∞
0

P [g(X,Y ) > t]dt =

∫ ∞
0

∫∫
(x,y):g(x,y)>t

fXY (x, y)dxdy dt =

=

∫∫
R2

∫ g(x,y)

0

fXY (x, y)dt dxdy =

∫∫
R2

g(x, y)fXY (x, y)dxdy

The discrete case can be proven similarly.

ECE 203 - Section 6 Instructor: Dr. O. Michailovich, 2022 3/56



Example

Two persons are randomly positioned on a road of length L. If their
positions are independent, and uniformly distributed on the length L,
what is the mean distance between them?

Solution: Let X and Y be the positions. Then

fXY (x, y) =

{
1
L2 , 0 < x < L, 0 < y < L

0, otherwise

We want

E[|X − Y |] =

∫ ∞
−∞

∫ ∞
−∞
|x− y|fXY (x, y)dxdy =

1

L2

∫ L

0

∫ L

0

|x− y|dxdy

Now,∫ L

0

|x− y|dx =

∫ y

0

(y − x)dx+

∫ L

y

(x− y)dx =
L2

2
+ y2 − yL

So,

E[|X − Y |] =
1

L2

∫ L

0

(
L2

2
+ y2 − yL

)
dy =

L

3
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Another example

In the continuous case, use g(x, y) = x+ y to find E[X + Y ].

Solution:
E[X + Y ] = E[g(X,Y )] =

=

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fXY (x, y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

(x+ y)fXY (x, y)dxdy =

=

∫ ∞
−∞

∫ ∞
−∞

xfXY (x, y)dydx+

∫ ∞
−∞

∫ ∞
−∞

yfXY (x, y)dxdy

=

∫ ∞
−∞

xfX(x)dx+

∫ ∞
−∞

yfY (y)dy = E[X] + E[Y ]

By induction, we also have

E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn]

for any set of random variables X1, ..., Xn.
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The sample mean

Defintion: Let X1, X2, . . . , Xn be iid with mean µ. The quantity

X̄ =
1

n

n∑
i=1

Xi

is called the sample mean.

What is E[X̄]?

E[X̄] = E

[
1

n

n∑
i=1

Xi

]
=

1

n
E

[
n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] =
1

n

n∑
i=1

µ = µ
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Example

In one of our earlier examples, n persons throw their hat into the
centre of a room and pick a hat at random. Let Z = # people that get
back their hat. What is E[Z]?

Solution: Let

Xi =

{
1, if person i get back their hat

0, otherwise

Then Z = X1 + · · ·+Xn, while P [Xi = 1] = 1/n. Consequently,

E[Z] = E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] =
1

n
+ · · ·+ 1

n
= 1
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Another example

You and 9 friends play a game at a carnival. You each have one ball,
and must try to hit 10 moving targets. When the game starts, each of
you picks your target randomly, independently of the others. Each of
you has probability p of hitting your target. What is the expected
number of targets not hit?

Solution: Let Xi = 1 when target i is not hit, and 0 otherwise.

Each person will, independently, hit target i with probability p/10. So,

P [Xi = 1] =
(

1− p

10

)10
Further,

E[Xi] = 1 · P [Xi = 1] + 0 · P [Xi = 0] =
(

1− p

10

)10
and, consequently,

E[X] = E[X1 + . . .+X10] = E[X1] + . . .+ E[X10] = 10
(

1− p

10

)10
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Monotonicity of expectation

Suppose that for random variables X and Y , we have X ≥ Y (i.e.,
X(s) ≥ Y (s) for every s ∈ S).

Then Z = X − Y ≥ 0, implying E[Z] ≥ 0.

Equivalently E[X − Y ] = E[X]− E[Y ] ≥ 0 and, thus, E[X] ≥ E[Y ].

To conclude,

X ≥ Y =⇒ E[X] ≥ E[Y ]
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Boole’s inequality

Let A1, . . . , An be events, and X1, . . . , Xn be the indicator variables

Xi =

{
1, Ai occurs

0, otherwise

Then X =
∑n
i=1Xi is the # events that have occurred.

Let Y be another random variable that is equal to 1 when X ≥ 1, and
0, when X = 0. Then X ≥ Y and, therefore, E[X] ≥ E[Y ].

Specifically,

E[X] =

n∑
i=1

E[Xi] =

n∑
i=1

P [Ai]

E[Y ] = P [{at least one Ai occurs}] = P [A1 ∪ · · · ∪An]

and, therefore,

P [A1 ∪ · · · ∪An] ≤
n∑
i=1

P [Ai]
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Covariance, Variance of Sums, and Correlation

Proposition: If X and Y are independent, then for any func-
tions g and h:

E[g(X)h(Y )] = E[g(X)]E[h(Y )]

Indeed,

E[g(X)h(Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fXY (x, y)dxdy =

=

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX(x)fY (y)dxdy =

=

∫ ∞
−∞

g(x)fX(x)dx

∫ ∞
−∞

h(y)fY (y)dy

= E[h(Y )]E[g(X)]
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Covariance, Variance of Sums, and Correlation (cont.)

Proposition: If X and Y are independent, then for any functions g
and h, g(X) and h(Y ) are independent.

To see that let A = {x | g(x) ≤ a} and B = {y | h(y) ≤ b}. Then

P [g(X) ≤ a, h(Y ) ≤ b] = P [X ∈ A, Y ∈ B] = P [X ∈ A] P [Y ∈ B] =

= P [g(X) ≤ a] P [h(Y ) ≤ b]

For a single random variable X, its mean and variance give us some
information about X.

For two random variables X and Y , its covariance (and correlation)
will give us information about the relationship between the pair X and
Y .
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Covariance

Definition: The covariance between X and Y , denoted
Cov[X,Y ], is defined to be

Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])]

Just as V ar[X] = E[X2]− (E[X])2, we also have

Cov[X,Y ] = E [ (X − E[X])(Y − E[Y ]) ] =

= E [ XY + (−E[X]Y ) + (−E[Y ]X) + E[X]E[Y ]) ]

= E[XY ] + E[ −E[X]Y ] + E[ −E[Y ]X ] + E[ E[X]E[Y ] ]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ]

Note If X and Y are independent, then E[XY ] = E[X]E[Y ], and so
Cov[X,Y ] = 0.
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Example

Does Cov[X,Y ] = 0 imply X and Y are independent? Actually, not
always.

To see that, let P [X = 0] = P [X = 1] = P [X = −1] = 1/3. Also, let

Y =

{
0, X 6= 0

1, X = 0

1 X and Y are not independent, since

P [X = 0, Y = 0] = 0 6= P [X = 0]P [Y = 0]

while P [X = 0] = 1/3 and P [Y = 0] = 2/3.

2 X Y = 0, so E[X Y ] = 0, and, since E[X] = 0, we have

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = 0− 0 · E[Y ] = 0

So, in this example, Cov[X,Y ] = 0, while X and Y are dependent.
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Properties of covariance

Covariance has a number of important and useful properties which are
summarized below.

Proposition:

1 Cov[X,Y ] = Cov[Y,X]

2 Cov[X,X] = V ar[X]

3 Cov[aX, Y ] = aCov[X,Y ]

4 Cov
[∑n

i=1Xi,
∑m
j=1 Yj

]
=
∑n
i=1

∑m
j=1 Cov[Xi, Yj ]

For proof, see the textbook.
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Sample variance

Recall the sample mean of iid X1, X2, . . . Xn (with mean µ and
variance σ2) is defined as

X̄ =
1

n

n∑
i=1

Xi

Then Xi − X̄ is called the i-th deviation, and

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

is called the sample variance.

The variance of X̄ is given by

V ar[X̄] = V ar

[
1

n

n∑
i=1

Xi

]
=

=
1

n2
V ar

[
n∑
i=1

Xi

]
=

1

n2

n∑
i=1

V ar [Xi] =
σ2

n
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Sample variance (cont.)

Note that

(n− 1)S2 =

n∑
i=1

(Xi − µ+ µ− X̄)2 =

=

n∑
i=1

(Xi − µ)2 +
n∑
i=1

(X̄ − µ)2 − 2
n∑
i=1

(X̄ − µ)(Xi − µ) =

=

n∑
i=1

(Xi − µ)2 + n(X̄ − µ)2 − 2(X̄ − µ)n(X̄ − µ) =

=

n∑
i=1

(Xi − µ)2 − n(X̄ − µ)2

and, hence,

(n− 1)E[S2] = E

[
n∑
i=1

(Xi − µ)2
]
− nE[(X̄ − µ)2] =

=
n∑
i=1

E[(Xi − µ)2]− nV ar[X̄] = nσ2 − nσ
2

n
= (n− 1)σ2

suggesting that E[S2] = σ2.
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Example

Compute the variance of X ∼ Binomial(n, p).

Solution: X = X1 + · · ·+Xn where X1, ..., Xn are iid and distributed
according to Bernoulli(p).

Now V ar[Xi] = E[X2
i ]− (E[Xi])

2 = p− p2 = p(1− p) and, therefore,

V ar[X] = V ar[X1 + . . .+Xn] = V ar[X1] + . . .+ V ar[Xn] =

= nV ar[X1] = np(1− p)

Thus, we have

X ∼ Binomial(n, p) =⇒ E[X] = np, V ar[X] = np(1− p)
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Properties of Expectations

The correlation of two random variables X and Y , denoted
ρ(X,Y ), is defined to be

ρ(X,Y ) =
Cov[X,Y ]√
V ar[X] V ar[Y ]

with −1 ≤ ρ(X,Y ) ≤ 1.

The correlation coefficient is a measure of the degree of linearity bet-
ween X and Y .

ρ(X,Y ) close to ±1 indicates high degree of linearity between X and Y .

ρ(X,Y ) > 0 indicates Y tends to increase when X does; we say X and
Y are positively correlated.

ρ(X,Y ) < 0 indicates Y tends to decrease when X does; we say X and
Y are negatively correlated.

If ρ(X,Y ) = 0 then X and Y are called uncorrelated.
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Example

Let IA and IB be indicator variables for events A and B, viz.

IA =

{
1, A occurs

0, otherwise
and IB =

{
1, B occurs

0, otherwise

In this case, we have

Cov[IA, IB ] = E[IAIB ]− E[IA]E[IB ] = P [AB]− P [A]P [B] =

= P [A|B]P [B]− P [A]P [B] = P [B] (P [A|B]− P [A])

IA and IB are positively correlated when P [A|B] > P [A].

IA and IB are negatively correlated when P [A|B] < P [A].

IA and IB are uncorrelated when P [A|B] = P [A].

Important: The independence of X and Y always suggests that
Cov(X,Y ) = ρ(X,Y ) = 0. The opposite direction, however, would
generally be incorrect.
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Another example

Let X1, . . . , Xn be iid with variance σ2, and recall that

X̄ =
1

n

n∑
i=1

Xi

is called the sample mean and Xi − X̄ is called the i-th deviation.
Show that

Cov[Xi − X̄, X̄] = 0

for each i = 1, . . . , n.

Solution:

Cov[Xi − X̄, X̄] = Cov[Xi, X̄]− Cov[X̄, X̄] =

= Cov[Xi,
1

n

n∑
j=1

Xj ]− V ar[X̄] =
1

n
Cov[Xi,

n∑
j=1

Xj ]−
σ2

n
=

=
1

n

n∑
j=1

Cov[Xi, Xj ]−
σ2

n
=

1

n
Cov[Xi, Xi]−

σ2

n
=

1

n
σ2 − σ2

n
= 0
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Conditional Expectation

For two discrete random variables X and Y with P [Y = y > 0], we had

pX|Y (x|y) = P [X = x|Y = y] =
P [X = x, Y = y]

P [Y = y]
=
pXY (x, y)

pY (y)

So, we can define the conditional expectation as

E[X|Y = y] =
∑
x

xP [X = x|Y = y] =
∑
x

xpX|Y (x|y)

Similarly, if X and Y are continuous, then provided fY (y) > 0, we have

fX|Y (x|y) =
fXY (x, y)

fX(x)

and, consequently,

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx
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Example

Suppose X and Y have joint pdf

fXY (x, y) =

{
e−x/ye−y

y
, 0 < x <∞, 0 < y <∞

0, otherwise

Find E[X|Y = y].

Solution: For x > 0, we have

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

fXY (x, y)∫∞
−∞ fXY (x, y)dx

=

=

1
y
e−x/ye−y

e−y
∫∞
0

1
y
e−x/ydx

=

1
y
e−x/ye−y

e−y · 1 =
1

y
e−x/y

Therefore,

E[X|Y = y] =

∫ ∞
0

x

y
e−x/ydx = y
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Conditional Expectation (cont.)

Conditional expectations satisfy all the properties of ordinary
expectation.

E[g(X)|Y = y] =


∑
x g(x)pX|Y (x|y), discrete case

∫∞
−∞ g(x)fX|Y (x|y), dx continuous case

and

E

[
n∑
i=1

Xi | Y = y

]
=

n∑
i=1

E[Xi|Y = y]
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Computing Expectations by Conditioning

E[X|Y = y] is a function of y, say g(y).

Let E[X|Y ] be g(Y ) and, hence, in the last example we’d have had

E[X|Y = y] = y

and so E[X|Y ] = Y .

Proposition: E[X] = E [E[X|Y ]], namely

E[X] =


∑
y E[X|Y = y]P [Y = y] [discrete case]

∫∞
−∞E[X|Y = y]fY (y)dy [continuous case]

Indeed,∫ ∞
−∞

E[X|Y = y]fY (y)dy =

∫ ∞
−∞

∫ ∞
−∞

xfX|Y (x|y)dx fY (y)dy =

=

∫ ∞
−∞

∫ ∞
−∞

xfX|Y (x|y)fY (y) dxdy =

∫ ∞
−∞

∫ ∞
−∞

xfXY (x, y) dxdy =

=

∫ ∞
−∞

∫ ∞
−∞

xfXY (x, y) dydx =

∫ ∞
−∞

xfX(x) dx = E[X]
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Example

You are in a room containing 3 doors. The first door exits the building
after 3 minutes of travel. The second door returns you to where you
are after 5 minutes of travel. The third door returns you to where you
are after 7 minutes of travel. If each time you enter this room, you are
equally likely to pick each of the 3 doors, what is the expected time
until you leave the building?

Solution: Let X be the time it takes to leave building and Y be the
door choice.

E[X] =

3∑
k=1

E[X|Y = k]P [Y = k] =
1

3

3∑
k=1

E[X|Y = k]

Also,

E[X|Y = 1] = 3

E[X|Y = 2] = 5 + E[X]

E[X|Y = 1] = 7 + E[X]

Combining, we have

E[X] =
1

3
(3 + 5 + E[X] + 7 + E[X])

and, therefore, E[X] = 15.
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Another example

The number of people that enter a store in a day is a random variable
with mean 50. The amounts spent by the persons that enters are iid
with mean $8. The amounts spent by the persons that enter are
independent of the number of people that enter. What is the expected
amount spent in the store in one day?

Solution: Let N = # customers that enter store in one day. Let Xi =
amount spent by i-th customer. Therefore, the total amount spent is
given by Y =

∑N
i=1Xi.

E

[
N∑
i=1

Xi

]
= E

[
E

[
N∑
i=1

Xi | N

] ]
and

E

[
N∑
i=1

Xi | N = n

]
= E

[
n∑
i=1

Xi | N = n

]
=

= E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] = nE[X1] =⇒ E

[
N∑
i=1

Xi | N

]
= NE[X1]

Hence,

E

[
N∑
i=1

Xi

]
= E [NE[X1]] = E[N ]E[X1] = 50 · 8
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Properties of conditional expectations

Recall that X and Y are called jointly Gaussian (normal) or bivariate
Gaussian (normal) with parameters µX , µY , σX > 0, σY > 0, and
−1 < ρ < 1, when

fXY (x, y) =
1

2πσXσY
√

1− ρ2
×

× exp

{
− 1

2(1− ρ2)

[(
x− µX
σX

)2

+

(
y − µY
σY

)2

− 2ρ
(x− µX)(y − µY )

σXσY

]}

We already know that

E[X] = µX , E[Y ] = µY , V ar[X] = σ2
X , V ar[Y ] = σ2

Y

and, therefore,

ρ(X,Y ) =
Cov[X,Y ]

σXσY
=
E[XY ]− µXµY

σXσY
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Properties of conditional expectations (cont.)

To determine E[XY ], recall that fX|Y (x|y) is a pdf for X where X has
mean

µX + ρ
σX
σY

(y − µY )

and the variance of X is σ2
X(1− ρ2). So

E[X|Y = y] = µX + ρ
σX
σY

(y − µY )

Now E[XY ] = E [E[XY |Y ]] and

E[XY |Y = y] = E[Xy|Y = y] = yE[X|Y = y] =

= y

(
µX + ρ

σX
σY

(y − µY )

)
= µXy + ρ

σX
σY

(y2 − µY y)

implying

E[XY |Y ] = µXY + ρ
σX
σY

(Y 2 − µY Y )
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Properties of conditional expectations (cont.)

Consequently,

E[XY ] = E [E[XY |Y ]] = E

[
µXY + ρ

σX
σY

(Y 2 − µY Y )

]
=

= µXE[Y ] + ρ
σX
σY

(E[Y 2]− µY E[Y ]) = µXµY + ρ
σX
σY

(E[Y 2]− µ2
Y ) =

= µXµY + ρ
σX
σY

V ar[Y ] = µXµY + ρ
σX
σY

σ2
Y = µXµY + ρσXσY

Thus, finally, we obtain

ρ(X,Y ) =
E[XY ]− µXµY

σXσY
=
ρσXσY
σXσY

= ρ
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Computing Probabilities by Conditioning

We can use conditioning to compute probabilities as well as expec-
tations.

Let A be an event, and

IA =

{
1, A occurs

0, otherwise

Then
E[IA] = P [A]

E[IA|Y = y] = P [A|Y = y]

and hence

P [A] =

{∑
y P [A|Y = y]P [Y = y], Y is discrete∫∞
−∞ P [A|Y = y]fY (y)dy, Y is continuous

Note that, if Y is discrete, then defining Bi = {Y = yi} yields

P [A] =
∑
i

P [A|Bi]P [Bi]

where B1, B2, ... partition the sample space.

ECE 203 - Section 6 Instructor: Dr. O. Michailovich, 2022 31/56



Example

Say X and Y are independent random variables with densities fX(x)
and fY (y). Find P [X < Y ].

Solution: One could always compute

P [X < Y ] =

∫∫
x<y

fX(x)fY (y)dxdy

and then simplify. Alternatively,

P [X < Y ] =

∫ ∞
−∞

P [X < Y | Y = y]fY (y)dy =

=

∫ ∞
−∞

P [X < y | Y = y]fY (y)dy =

∫ ∞
−∞

P [X < y]fY (y)dy =

=

∫ ∞
−∞

FX(y)fY (y)dy

where

FX(y) =

∫ y

−∞
fX(x)dx
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Another example

Say X and Y are independent random variables with densities fX(x)
and fY (y). Find the cdf and pdf of X + Y .

Solution: Lets solve this by conditioning on Y .

P [X + Y ≤ a] =

∫ ∞
−∞

P [X + Y ≤ a | Y = y]fY (y)dy =

=

∫ ∞
−∞

P [X + y ≤ a | Y = y]fY (y)dy =

∫ ∞
−∞

P [X + y ≤ a]fY (y)dy =

=

∫ ∞
−∞

P [X ≤ a− y]fY (y)dy =

∫ ∞
−∞

FX(a− y)fY (y)dy

and, taking the derivatives, we obtain

fX+Y (a) =
d

da
P [X + Y ≤ a] =

d

da

∫ ∞
−∞

FX(a− y)fY (y)dy =

=

∫ ∞
−∞

d

da
FX(a− y)fY (y)dy =

∫ ∞
−∞

fX(a− y)fY (y)dy

ECE 203 - Section 6 Instructor: Dr. O. Michailovich, 2022 33/56



Conditional Variance

So far, we have defined expectation, conditional expectation and
variance.

Definition: The conditional variance of X given Y is defined
as

V ar[X|Y ] = E[X2|Y ]− ( E[X|Y ] )2

In this case, we also have

E[ V ar[X|Y ] ] = E
[
E[X2|Y ]

]
− E

[
( E[X|Y ] )2

]
=

= E[X2]− E
[

( E[X|Y ] )2
]
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Conditional Variance (cont.)

Also, E[X|Y ] = g(Y ) for some function g is a random variable, so

V ar[ g(Y ) ] = E
[

( g(Y ) )2
]
− (E[ g(Y ) ])2

V ar[ E[X|Y ] ] = E
[

( E[X|Y ] )2
]
− (E[ E[X|Y ] ])2 =

= E
[

( E[X|Y ] )2
]
− (E[X])2

Adding the above two results yields an important proposition.

Conditional Variance Formula:

V ar[X] = E[ V ar[X|Y ] ] + V ar[ E[X|Y ] ]
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Example

Let X1, X2, · · · be iid and let N be a non-negative random variable,

independent of the Xi, i = 1, 2, . . . Let’s compute V ar
[∑N

i=1Xi
]

by

conditioning on N .

Solution: We know that

V ar[X] = E[ V ar[X|Y ] ] + V ar[ E[X|Y ] ]

and we choose

X =
N∑
i=1

Xi, Y = N

Then

E

[
N∑
i=1

Xi | N = n

]
= E

[
n∑
i=1

Xi | N = n

]
= E

[
n∑
i=1

Xi

]
= nE[X1]

(Since N is independent of the Xi) and hence

E

[ N∑
i=1

Xi | N
]

= NE[X1]
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Example (cont.)

For the same reason,

V ar

[
N∑
i=1

Xi | N = n

]
= V ar

[
n∑
i=1

Xi | N = n

]
=

= V ar

[
n∑
i=1

Xi

]
= nV ar [X1]

and, therefore,

V ar

[
N∑
i=1

Xi | N

]
= NV ar[X1]

Finally, by the conditional variance formula:

V ar

[
N∑
i=1

Xi

]
= E [ NV ar[X1] ] + V ar [ NE[X1] ] =

= E[N ]V ar[X1] + (E[X1])2V ar[N ]
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Conditional Expectation and Prediction

Say we observe a random variable X = x.

We want to make an estimate ŷ = g(x) of the outcome that the
random variable Y will take.

In this case g(X) is called a predictor (or estimator) of Y .

A common criterion to design g(x) is to minimize the mean
squared error (MSE) defined as

E[ (Y − g(X))2 ]

Proposition: The minimum MSE (MMSE) estimator g(X)
of Y is given by

g(x) = E[Y |X = x]
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Conditional Expectation and Prediction (cont.)

To see that, we first note that

E[(Y − g(X))2] =

∫ ∞
−∞

E[(Y − g(X))2 | X = x]fX(x)dx =

=

∫ ∞
−∞

E[(Y − g(x))2 | X = x]fX(x)dx =

=

∫ ∞
−∞

∫ ∞
−∞

(y − g(x))2fY |X(y|x)dy fX(x)dx

Now, let’s minimize the inner integral for each x, i.e., find g(x) that
minimizes ∫ ∞

−∞
(y − g(x))2fY |X(y|x)dy

To do this, take the derivative with respect to g(x) and set to 0:

0 =
d

dg(x)

∫ ∞
−∞

(y − g(x))2fY |X(y|x)dy =

=

∫ ∞
−∞

2(g(x)− y)fY |X(y|x)dy = 2g(x)

∫ ∞
−∞

fY |X(y|x)dy−

−2

∫ ∞
−∞

yfY |X(y|x)dy = 2g(x)− 2E[Y |X = x]
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Example

Two random variables X and Y are jointly Gaussian with parameters
µX , µY , σX > 0, σY > 0, and −1 < ρ < 1. What is the minimum mean
squared error estimate of Y given that X = x?

Solution:

g(x) = E[Y |X = x] = µY + ρ
σY
σX

(x− µX)
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Moment Generating Functions (MGF)

Definition: The moment generating function MX(t) of a ran-
dom variable X is defined as

MX(t) = E[etX ]

Note: there is also a closely related concept called characteristic
function defined as

φX(t) = E[eıtX ], with ı =
√
−1

MX(t) is called moment generating function because we can find the
moments E[Xn] from it easily:

M
(1)
X (t) =

dMX(t)

dt
= E

[
d

dt
etX
]

= E
[
XetX

]
M

(n)
X (t) = E

[
XnetX

]
and, hence,

M
(1)
X (0) = E[X], M

(n)
X (0) = E[Xn]
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Example

Find MX(t) if X ∼ Binomial(n, p) and use this to find E[X], E[X2],
and V ar[X].

Solution:

MX(t) = E[etX ] =

n∑
k=0

etkpX(k) =

=

n∑
k=0

etk
(
n

k

)
pk (1−p)n−k =

n∑
k=0

(
n

k

)
(pet)k (1−p)n−k = (pet+1−p)n

M
(1)
X (t) = n(pet + 1− p)n−1pet

M
(2)
X (t) = n(n− 1)(pet + 1− p)n−2(pet)2 + n(pet + 1− p)n−1pet

Hence,

E[X] = M
(1)
X (0) = np, E[X2] = M

(2)
X (0) = n(n− 1)p2 + np

and, therefore,

V ar[X] = E[X2]− (E[X])2 = np(1− p)
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Another example

Find MX(t) if X ∼ Poisson(λ) and use this to find E[X], E[X2], and
V ar[X].

Solution:

MX(t) = E[etX ] =

∞∑
n=0

etnpX(n) =
∞∑
n=0

etn
λn

n!
e−λ =

= e−λ
∞∑
n=0

(λet)n

n!
= e−λ exp(λet) = exp( λ(et − 1) )

Consequently,
M

(1)
X (t) = λet exp( λ(et − 1) )

M
(2)
X (t) = (λet)2 exp( λ(et − 1) ) + λet exp( λ(et − 1) )

and, hence,

E[X] = M
(1)
X (0) = λ, E[X2] = M

′(2)
X (0) = λ2 + λ

finally yielding
V ar[X] = E[X2]− (E[X])2 = λ
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Yet another example

Find MX(t) if X ∼ Exponential(λ) and use this to find E[X], E[X2],
and V ar[X].

Solution:

MX(t) = E[etX ] =

∫ ∞
−∞

etxfX(x)dx =

=

∫ ∞
0

etxλe−λxdx = λ

∫ ∞
0

e−(λ−t)xdx =
λ

λ− t
for t < λ. Thus,

M
(1)
X (t) =

λ

(λ− t)2 , M
(2)
X (t) =

2λ

(λ− t)3

and, therefore,

E[X] = M
(1)
X (0) = 1/λ, E[X2] = M

(2)
X (0) = 2/λ2

yielding
V ar[X] = E[X2]− (E[X])2 = 1/λ2
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Final example

Find MX(t) if X ∼ N (µ, σ2) and use this to find E[X], E[X2], and
V ar[X].

Solution: Let Z ∼ N (0, 1). We first compute MZ(t):

MZ(t) = E[etZ ] =

∫ ∞
−∞

etzfZ(z)dz =

=
1√
2π

∫ ∞
−∞

etze−z
2/2dz =

1√
2π

∫ ∞
−∞

exp

(
−z

2 − 2zt

2

)
dz =

=
1√
2π

∫ ∞
−∞

exp

(
− (z − t)2

2
+
t2

2

)
dz =

= et
2/2 1√

2π

∫ ∞
−∞

exp

(
− (z − t)2

2

)
dz = et

2/2
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Final example (cont.)

Since X = µ+ σZ:

MX(t) = E[etX ] = E[et(µ+σZ)] =

= E[etµetσZ ] = etµE[etσZ ] = etµMZ(tσ) =

= etµe
t2σ2

2 = exp

(
t2σ2

2
+ µt

)
and, thus, we have

M
(1)
X (t) = (µ+ tσ2) exp

(
t2σ2

2
+ µt

)

M
(2)
X (t) = (µ+ tσ2)2 exp

(
t2σ2

2
+ µt

)
+ σ2 exp

(
t2σ2

2
+ µt

)
yielding

E[X] = M
(1)
X (0) = µ, E[X2] = M

(2)
X (0) = µ2 + σ2

and, finally,
V ar[X] = E[X2]− (E[X])2 = σ2
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MGF of Sum of Independent RVs

Let X and Y be independent random variables. Then

MX+Y (t) = E
[
et(X+Y )

]
= E

[
etXetY

]
=

= E
[
etX
]
E
[
etY
]

= MX(t)MY (t)

Another useful fact is that the distribution of X is uniquely determined
by MX(t). (The textbook has tables of MGF for various distributions.)
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Example

Let X ∼ Poisson(λ1) and Y ∼ Poisson(λ2) be independent. What is
the distribution of X + Y ?

Solution:
MX+Y (t) = MX(t)MY (t) =

= exp( λ1(et − 1) ) exp( λ2(et − 1) ) = exp( (λ1 + λ2)(et − 1) )

and, therefore, X + Y is Poisson(λ1 + λ2).
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Another example

Let X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) be independent. What is the

distribution of X + Y ?

Solution:

MX+Y (t) = MX(t)MY (t) = exp

(
t2σ2

X

2
+ µXt

)
=

= exp

(
t2(σ2

X + σ2
Y )

2
+ (µX + µY )t

)
So X + Y is ∼ N (µX + µY , σ

2
X + σ2

Y ).
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Joint Moment Generating Functions

Definition: For random variables X1, X2, . . . , Xn, the joint mo-
ment generating function is defined as

M(t1, . . . , tn) = E
[
et1X1+t2X2+···+tnXn

]
with

MXi(t) = E[etXi ] = M(0, 0, . . . , t, 0, . . . , 0)

The joint MGF uniquely determines the joint pdf.

If X1, . . . , Xn are independent then

M(t1, t2, . . . , tn) = E
[
et1X1+t2X2+···+tnXn

]
=

= E
[
et1X1

]
E
[
et2X2

]
· · ·E

[
etnXn

]
= MX1(t1)MX2(t2) · · ·MXn(tn)

Since the joint MGF uniquely specifies the joint distribution, then the
mutual independence of X1, . . . , Xn is equivalent to

M(t1, t2, . . . , tn) = MX1(t1)MX2(t2) · · ·MXn(tn)
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Example

If X and Y are independent and ∼ N (µ, σ2), show that X + Y and
X − Y are independent.

Solution:

E
[
et(X+Y )+s(X−Y )

]
= E

[
e(t+s)X+(t−s)Y

]
= E

[
e(t+s)X

]
E
[
e(t−s)Y

]
=

= eµ(t+s)+σ
2(t+s)2/2eµ(t−s)+σ

2(t−s)2/2 = e2µt+σ
2t2eσ

2s2

Consequently,

1 The 1st term is the MGF (in t) for a normal with mean 2µ and
variance 2σ2.

2 The 2nd term is the MGF (in s) for a normal with mean 0 and
variance 2σ2.
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Multivariate Normal Random Variables

Let Z1, Z2, . . . , Zn be n independent standard normal random
variables.

Let µ1, µ2, . . . , µm be m constants.

Define X1, X2, . . . , Xm by

X1 = a11Z1 + · · ·+ a1nZn + µ1

X2 = a21Z1 + · · ·+ a2nZn + µ2

...
...

...
...

Xm = am1Z1 + · · ·+ amnZn + µm

Then we say that X1, . . . , Xm are multivariate normal (Gaussian).
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Multivariate Normal Random Variables (cont.)

We can write this compactly in matrix form as

XXX = AZZZ +µµµ

where the matrix A is m× n and has aij as its (i, j) entry, and

XXX =


X1

X2

...
Xm

 , ZZZ =


Z1

Z2

...
Zn

 , µµµ =


µ1

µ2

...
µm

 .

Now, let B be a k×m matrix, and ννν a column vector of length k. Then

YYY = BXXX + ννν = (BA)ZZZ + (Bµµµ+ ννν)

and, thus, YYY is multivariate Gaussian too.

To summarize, an affine transformation of a multivariate Gaussian is a
multivariate Gaussian again.
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Multivariate Normal Random Variables (cont.)

Since each Xi is a sum of independent Gaussian random variables,
each Xi is Gaussian with

E[Xi] = E[ai1Z1 + . . .+ ainZn + µi] = µi

and

V ar[Xi] = V ar[ai1Z1 + . . .+ ainZn + µi] = V ar[ai1Z1 + . . .+ ainZn] =

= a2i1V ar[Z1] + . . .+ a2inV ar[Zn] = a2i1 + . . .+ a2in

Moreover,

M(t1, . . . , tm) = E
[
et1X1+t2X2+...+tmXm

]
= E

[
eU
]

where
U = t1X1 + t2X2 + . . .+ tmXm
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Multivariate Normal Random Variables (cont.)

Now, U is a linear combination of Z1, . . . , Zn, so U is Gaussian. Also,

E[U ] = E[t1X1 + · · ·+ tmXm] = t1µ1 + · · ·+ tmµm︸ ︷︷ ︸
µ

V ar[U ] = Cov

[
m∑
i=1

tiXi,
m∑
j=1

tjXj

]
=

m∑
i=1

m∑
j=1

titjCov [Xi, Xj ]︸ ︷︷ ︸
σ2

Since U ∼ N (µ, σ2), we have

M(t1, . . . , tn) = E[eU ] = MU (t)|t=1 = exp
(
µ+ σ2/2

)
=

= exp

(
m∑
i=1

tiµi +
1

2

m∑
i=1

m∑
j=1

titjCov [Xi, Xj ]

)
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Multivariate Normal Random Variables (cont.)

We see that the joint MGF of X1, . . . , Xm depends only on the means
µ1, . . . , µm covariances Cov [Xi, Xj ].

Since the MGF uniquely determines the joint distribution, then the
joint distribution of a multivariate Gaussian (normal) depends only the
means E[Xi] and covariances Cov[Xi, Xj ].
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