ECE 203 — Section 6

Properties of Expectations

o Expectations of sums of random variables
o Covariance, variance of sums, and correlation

o Conditional expectations and variances

Moment generating function and its properties

Multivariate normal random variables

The slides have been prepared based on the lecture notes of Prof. Patrick Mitran.




Expected values

~

@ Recall that the mean value of X is
> . epx (), if X is discrete

E[X] =
2o xfx(x)de if X is continuous

o Since E[X] is a weighted sum of all possible values of X, when we have
Pla < X <b] =1, then a < E[X] <b. Why?

e Since fx(z) =0 for x ¢ [a, b], we have

b

BX] = /oo o fx (2)dz :/ ofx (z)dz >

— o0 a

> /bafx(x)dx = a/bfx(a:)dx:a




Expectation of Sums of Random Variables

o Proposition: Let X and Y be two random variables. Let g(x,y) be a
function. Then

Zy > 9@ ypxy (z,y) if X & Y are discrete
Elg(X,Y)] =
I 170 9@, y) fxy (z,y)dedy  if X & Y are continuous

o Indeed, since E[Z] = [° P[Z > t]dt, we have

Elg(X,Y)] = /000 Plg(X,Y) > t]dt = /000 // fxy(z,y)dzdy dt =

(z,y):9(z,y) >t

-/ /0 " v (@)t dady = [ ste.wtx @ )dudy
B2 R2

o The discrete case can be proven similarly.
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e Two persons are randomly positioned on a road of length L. If their
positions are independent, and uniformly distributed on the length L,
what is the mean distance between them?

o Solution: Let X and Y be the positions. Then

1

fxv(z,y) = {Lz’

O<zx<LO0<y<L

0, otherwise
We want
%) %) 1 L L
BIX Y= [ [ le-viformudedy =75 [ [ o yldody
—oo J —oo 0 0
Now,
L y L 12 )
[la-vide= [(w-odnt [ @-pdo=T+yt -0
0 0 Yy 2
So,

1 [r/r? L
E[|X—Y|}:ﬁ/0 (7+y2—yL>dy:§




Another example

o In the continuous case, use g(z,y) = z + y to find E[X 4+ Y].

o Solution:

EX+Y]=E[g(X,Y) =

/ / (z,y) fxv (z,y)dzdy —/ / (@ +y) fxvy (z,y)dedy =
/ / zfxy(z,y dyder/ / yfxvy(z,y)dzdy

:/_ fx(x )dx+/_ yfv (W)dy = E[X] + E[Y]

e By induction, we also have

7~

\

EXi+- + Xn] = E[Xa] + - + E[X,) ]

for any set of random variables X1, ..., X,.
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The sample mean

o Defintion: Let Xi, Xo,..., X, be iid with mean u. The quantity

X=22 %

is called the sample mean.

—_

o What is F[X]?

1 <& 1
nZXl} =

EX]=E




@ In one of our earlier examples, n persons throw their hat into the
centre of a room and pick a hat at random. Let Z = # people that get
back their hat. What is E[Z]?

e Solution: Let

X, — 1, if person i get back their hat
T 0, otherwise

Then Z = X1 + -+ + X,, while P[X; = 1] = 1/n. Consequently,

1 1
E[Z}:E[X1+---+Xn]=E[X1]+--~+E[Xn]:;+~--+E:1




Another example

@ You and 9 friends play a game at a carnival. You each have one ball,
and must try to hit 10 moving targets. When the game starts, each of
you picks your target randomly, independently of the others. Each of
you has probability p of hitting your target. What is the expected
number of targets not hit?

o Solution: Let X; = 1 when target i is not hit, and 0 otherwise.

Each person will, independently, hit target ¢ with probability p/10. So,

o P10
P[lel]f(lf—lo)
Further,
1. _ } _ 0l = P\
E[X;]=1-P[X;=1]+0 P[Xzf()]f(l 10)

and, consequently,

BIX] = B[X: + ...+ Xuo] = BXa) + ..+ E[Xao] = 10 (1 - 2"




Monotonicity of expectation

Suppose that for random variables X and Y, we have X > Y (i.e.,
X(s) > Y(s) for every s € S).

Then Z =X —Y >0, implying E[Z] > 0.
e Equivalently E[X — Y] = E[X] — E[Y] > 0 and, thus, E[X] > E[Y].

e To conclude,

~

X>Y = E[X]>E[Y]
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Boole’s inequality

o Let Ay,..., A, be events, and X1, ..., X, be the indicator variables

1, A; occurs
X; = P ocetn
0, otherwise

Then X =37 | X; is the # events that have occurred.

o Let Y be another random variable that is equal to 1 when X > 1, and
0, when X = 0. Then X >Y and, therefore, E[X] > E[Y].

@ Specifically,
E[X]=) E[X]=) P[A]
i=1 i=1

E[Y] = P[{at least one A; occurs}] = P[A1 U---UA,]

and, therefore,

7
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Covariance, Variance of Sums, and Correlation

o Proposition: If X and Y are independent, then for any func-
tions g and h:

Elg(X)n(Y)] = Elg(X)]E[R(Y)]

o Indeed,
Elg(X)h(Y)] = /°° /00 g(@)h(y) fxv (z,y)dzdy =
B / . / " g(@)h(y)fx (@) v (4)dody =

= /(><> g9(x)fx (x)dx /OO h(y) fy (y)dy

—0o0 — 00

= E[h(Y)]E[g(X)]
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Covariance, Variance of Sums, and Correlation (cont.)

o Proposition: If X and Y are independent, then for any functions g
and h, g(X) and h(Y) are independent.

o To see that let A ={z | g(z) <a} and B={y| h(y) < b}. Then
Plg(X) <a,h(Y)<b=P[X €AY ecB|=PXcAPYecB]=

= Plg(X) < a] P[h(Y) < b]

e For a single random variable X, its mean and variance give us some
information about X.

e For two random variables X and Y, its covariance (and correlation)
will give us information about the relationship between the pair X and
Y.




Covariance

o Definition: The covariance between X and Y, denoted
Cov[X,Y], is defined to be

Cov[X,Y] = E[(X — E[X])(Y — E[Y])]

o Just as Var[X] = E[X?] — (E[X])?, we also have
Cou[X,Y]=FE[ (X - E[X]))(Y —E[Y]) ] =
= E[ XY + (-E[X]Y) + (-E[Y]X) + E[X]E[Y]) ]
= E[XY]+ E[-E[X]Y |+ E[-E[Y]X |+ E[ EIX]E[Y] ]
= E[XY] - E[X]E[Y] - E[Y]|E[X] + E[X]E[Y]
— E[XY] - E[X]E[Y]

o Note If X and Y are independent, then E[XY] = E[X]E[Y], and so
Cov[X,Y]=0.
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@ Does Cov[X,Y] =0 imply X and Y are independent? Actually, not
always.

o To see that, let P[X =0] = P[X = 1] = P[X = —1] = 1/3. Also, let

v {0 X#0
1, X=0

@ X and Y are not independent, since
P[X=0,Y =0]=0# P[X =0]P[Y =0]
while P[X =0] =1/3 and P[Y = 0] =2/3.
Q@ XY =0,s0 E[XY] =0, and, since E[X] = 0, we have
Cov[X,Y]=E[XY]|-E[X]E[Y]=0-0-E[Y]=0

@ So, in this example, Cov[X,Y] = 0, while X and Y are dependent.
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Properties of covariance

o Covariance has a number of important and useful properties which are
summarized below.

o Proposition:
Q Cov[X,Y] = CovlY, X]
Q@ Cov[X, X] = Var[X]

@ Cov[aX,Y]=aCov[X,Y]

© Cov L1, Xi, L, ¥s] = iy Xy CovliXs, Vi)

e For proof, see the textbook.




Sample variance

o Recall the sample mean of iid X1, X2, ... X,, (with mean p and
variance ¢?) is defined as

—_

X’:EZXi

§ = L3 - X)?

is called the sample variance.

o The variance of X is given by

Var(X] = Var

1
= ﬁVar

>xi
=1

1 & o?
= EZVGT[XZ'} =
=1
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Sample variance (cont.)

e Note that

and, hence,

(n—1)E[S’| = E




o Compute the variance of X ~ Binomial(n, p).

o Solution: X = X1 + --- + X, where X1, ..., X,, are iid and distributed
according to Bernoulli(p).

Now Var[X;] = E[X?] — (E[X:])? = p — p* = p(1 — p) and, therefore,
Var(X] =Var[X1 + ... + Xp] =Var[Xq]+ ... + Var[X,] =
=nVar[Xi] = np(1 —p)

@ Thus, we have

~

X ~ Binomial(n,p) = E[X]=np, Var[X]=np(l—p)
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Properties of Expectations

s )

o The correlation of two random variables X and Y, denoted
p(X,Y), is defined to be

Cov[X,Y]

pIXY) = Var[X] VarlY]

with —1 < p(X,Y) < 1.

@ The correlation coefficient is a measure of the degree of linearity bet-
ween X and Y.

e p(X,Y) close to £1 indicates high degree of linearity between X and Y.

p(X,Y) > 0 indicates Y tends to increase when X does; we say X and
Y are positively correlated.

p(X,Y) < 0 indicates Y tends to decrease when X does; we say X and
Y are negatively correlated.

o If p(X,Y) =0 then X and Y are called uncorrelated.




o Let 14 and Ip be indicator variables for events A and B, viz.

1, A occurs 1, B occurs
Ia = . and Ip = .
0, otherwise 0, otherwise

o In this case, we have
Cov|la,Ip] = E[Ialp] — E[I1A)E|I5] = P|[AB] — P[A|P[B] =
= P[A|B]P[B] — P[A]P[B] = P[B] (P[A|B] — P[A])
o I4 and Ip are positively correlated when P[A|B] > P[A].

o I4 and Ip are negatively correlated when P[A|B] < P[A].

e I, and Ip are uncorrelated when P[A|B] = P[A].

o Important: The independence of X and Y always suggests that
Cov(X,Y) = p(X,Y) = 0. The opposite direction, however, would
generally be incorrect.




Another example
e Let X1,..., Xn be iid with variance o2, and recall that
X=-) X;
a2

is called the sample mean and X; — X is called the i-th deviation.
Show that

—_

Cov[X; — X, X]=0

foreachi=1,...,n.

o Solution:

Cov[X; — X, X] = Cov[X;, X] — Cov[X,X] =

1 o1 = o?
= Cov[X;, - ZXJ-} —Var[X] = ECO’U[XZ',ZXJ-] - =
Jj=1 j=1
n 2 2 2
_1 S covlXi, X1 - % = Loox,x) - =122 g
n

n n n n n

j=1




Conditional Expectation

@ For two discrete random variables X and Y with P[Y =y > 0], we had

PX =z,Y =y _ pxy (x,y)
PY =y py (y)

PX\Y(ﬂZ/) =P X =z|Y =y] =

7

@ So, we can define the conditional expectation as

EX|Y =y|= ZIP[X =zlY =y| = prxw(x‘y)

o Similarly, if X and Y are continuous, then provided fy (y) > 0, we have

fxv (z,y)

fX\Y(13|y) = Tx(2)

and, consequently,

~

oo}

mmyzm:/)xhwmwm

— 00
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e Suppose X and Y have joint pdf

et < g <00, 0<y < 00
x7 — y b b
fxv(@y) {O, otherwise
Find E[X|Y = y].
o Solution: For x > 0, we have
fxv(z,y) fxv(z,y)
Py (ely) = - -
=R T T S (wy)de
l —z/Y,—y 1.—x/y,—y
_ e e _3® e _ le—z/y
eV [, ye*z/ydm ev-1 Yy

Therefore,
MMY:m:/ ZemVdn = y
o Y
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Conditional Expectation (cont.)

o Conditional expectations satisfy all the properties of ordinary

expectation.
> 9(@)px |y (2]y), discrete case
Elg(X))Y =y] =
f_ z) fx |y (z|y), dz  continuous case
and
[ZX IY—y] ZE[X ¥ =y
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Computing Expectations by Conditioning

o E[X|Y =y] is a function of y, say g(y).

e Let F[X|Y] be g(Y) and, hence, in the last example we’d have had
EX]Y =y]=y
and so E[X|Y] =Y.

7

e Proposition: E[X] = E[E[X]|Y]], namely
>, EIX|Y =y|PlY =y] [discrete case]
E[X] =
o E[X|Y =ylfy(y)dy [continuous case]

. J

Indeed,

/:; EX|Y =ylfy(y)dy = /:; /i: e fx)y (zly)de fy (y)dy =

o A RO R T e
:/_‘:/_ixfxy(x,y) dydx:/_ixfx(w) da = E[X]




@ You are in a room containing 3 doors. The first door exits the building
after 3 minutes of travel. The second door returns you to where you
are after 5 minutes of travel. The third door returns you to where you
are after 7 minutes of travel. If each time you enter this room, you are
equally likely to pick each of the 3 doors, what is the expected time
until you leave the building?

o Solution: Let X be the time it takes to leave building and Y be the
door choice.

—_

3
E[X] = ZEX\Y*I@]P[Y*I@ gz [(X]Y = k]
k=1 k=1
Also,
EX]Y =1]=3
E[X|Y =2] =5+ E[X]
EIX|]Y =1 =7+ E[X]

Combining, we have
1
EX] = g(3 +5+ E[X]+ 7+ E[X])

and, therefore, E[X] = 15.
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Another example

@ The number of people that enter a store in a day is a random variable
with mean 50. The amounts spent by the persons that enters are iid
with mean $8. The amounts spent by the persons that enter are
independent of the number of people that enter. What is the expected
amount spent in the store in one day?

o Solution: Let N = # customers that enter store in one day. Let X; =
amount spent by i-th customer. Therefore, the total amount spent is
given by Y = Zf;l X;.

N
i=1

=FE|E

2]

and

E

N n
> Xi|N=n :E{ZXiN:n] =
i=1 =1

i=1

ENZXZ- | N] = NE[X]

i=1
Hence,

N

I

E = E[NE[X)]] = E[N]E[X1] =50 -8




Properties of conditional expectations

@ Recall that X and Y are called jointly Gaussian (normal) or bivariate
Gaussian (normal) with parameters pux, py, ox >0, oy > 0, and
—1 < p <1, when

1
fXY z,Yy) = —————"F—=X
( ) 2roxoyy/1 — p?

Xexp{_Q(lip2) [(w U;X)2+ (yayw>2 _zp(xfﬂfgggyf #Y)]}

o We already know that

E[X] = px, E[Y] = py, Var[X] = o%, Var[Y] = 0%

and, therefore,

p(X,Y) = Cov[X, Y] — E[XY] — pxpy

OxX0Yy OX0Yy

Section 6



Properties of conditional expectations (cont.)

o To determine E[XY], recall that fx|y(x|y) is a pdf for X where X has

mean p
X
px +p—(y — py)
gy

and the variance of X is 0% (1 — p?). So

o
E[X|Y =y] = px +p£(y—uy)

e Now FE[XY] = E[E[XY]Y]] and

EIXY|Y =y = E[XylY =y| =yE[X]Y =y] =

ox ox
=y (ux +p—(y— uy)) =puxy+p—u° — pyy)
oy gy

implying
BIXY|Y] = ux¥ +p7(V* — pyY)

Section 6



Properties of conditional expectations (cont.)

o Consequently,
E[XY] = E[E|XY|Y] = E {MXY + p%(YQ - uyy)} -
g ag
= uxE[Y]+ p== (E[Y®] = uy E[Y]) = pxpy + p= (E[Y?] = piy) =
gy oy
= pxpy + pZXVar[Y] = pxpy + pX0% = pxpy + poxoy
oy Oy
o Thus, finally, we obtain

BIXY] - pxpy _ poxoy _

p(X,Y) =

OXO0Yy OX0Yy
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Computing Probabilities by Conditioning

o We can use conditioning to compute probabilities as well as expec-
tations.

o Let A be an event, and

1, A occurs
Ia = ]
0, otherwise
e Then
E[la] = P[A]
ElI4lY = y] = PIA]Y =y]
and hence

7

PlA] = >, PIAIY =y]P[Y =y], Y is discrete
J=, PIAY =yl fv (y)dy, Y is continuous

\

o Note that, if Y is discrete, then defining B; = {Y = y;} yields
P[A] =) P[A|B|P[B]

where B1, Bs, ... partition the sample space.
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e Say X and Y are independent random variables with densities fx ()
and fy(y). Find P[X <Y].

o Solution: One could always compute
PIX<¥)= [[ ix@p @iz
<y
and then simplify. Alternatively,
PIX <Y = [ PIX <Y |Y = ylfr )y =
=/ PIX <y |Y =ylfy(y)dy :/ PIX <ylfy(y)dy =

= /jo Fx (y)fv (y)dy

where

Y




Another example

e Say X and Y are independent random variables with densities fx (x)
and fy (y). Find the cdf and pdf of X + Y.

o Solution: Lets solve this by conditioning on Y.

P[X+Y§a]=/oo PIX+Y <a|Y =ylfr(y)dy =

=/_°° PIX ty<al Y:y]fy<y>dy:/°° PIX +y < alfy (y)dy =

[e<)

-/ ¥ PIX <a—ylfy(y)dy = )i ()dy

and, taking the derivatives, we obtain

y) fy (y)dy =

= [ P
frov(@) = P +Y <d= 2 [ Feta-
:/oo %Fx(a—y)fy(y)dy:[:f ( )

—o0

—y)fy(y)dy
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Conditional Variance

@ So far, we have defined expectation, conditional expectation and
variance.

7

o Definition: The conditional variance of X given Y is defined
as

Var[X|Y] = E[X?Y] — ( E[X|Y])?

o In this case, we also have
E[Var[X|Y]]=E[EX*Y]] - E[(E[X|Y])’] =

= BIX’] - E[ (BIX|Y])*]
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Conditional Variance (cont.)

e Also, E[X|Y] = g(Y) for some function g is a random variable, so
Varlg(Y)] = E [ (g(Y))*] = (E[g(Y)])*
Var EIX|Y]] = E[ ( EIX|Y])] - (B[ E[X|Y]))* =
= E[(EXY])"] - (B[X])?

o Adding the above two results yields an important proposition.

7

e Conditional Variance Formula:

Var[X] = E[Var[X|Y]] + Var[ EIX|Y]]
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o Let Xy, X2, -+ beiid and let N be a non-negative random variable,
independent of the X;, i = 1,2,... Let’s compute Var [Zi\le Xi] by
conditioning on .

o Solution: We know that

Var[X] = E[Var[X|Y] ]+ Var[ E[X|Y]]

and we choose

Then

n

>

i=1

E —E = nE[X]

N n
ZXi|N:n] :E{ZXiN:n
i=1 i=1

(Since N is independent of the X;) and hence

E[ﬁ;X \ N] = NE[X]
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Example (cont.)

o For the same reason,

N
Y Xi|N=n

=1

Var =Var

iXi|N—n:| =

i=1

S

=1

=Var =nVar [Xi1]

and, therefore,

Var

=1

> X N} = NVar[Xi]

e Finally, by the conditional variance formula:

N
>
=1

= E[N]Var[X1] + (E[X1])*Var[N]

Var =E[NVar[Xi] |+ Var[ NE[X1]] =




Conditional Expectation and Prediction

@ Say we observe a random variable X = x.

o We want to make an estimate § = g(z) of the outcome that the
random variable Y will take.

o In this case g(X) is called a predictor (or estimator) of Y.

7

o A common criterion to design g(z) is to minimize the mean
squared error (MSE) defined as

E[(Y - g(X))*]

\

e Proposition: The minimum MSE (MMSE) estimator g(X)
of Y is given by
4(z) = BIY|X = 2]




Conditional Expectation and Prediction (cont.)

o To see that, we first note that

BIY - g0 = [ BUY = g(0))* | X =alfx(o)ds =
— [ B~ 9@ | X = alfx (o) =

— [ 9@ x o)y fx(@)e
o Now, let’s minimize the inner integral for each z, i.e., find g(z) that
minimizes -
| @ g@) i)y

o To do this, take the derivative with respect to g(x) and set to 0:

-/ " 2g(e) — y) frx (yle)dy = 29(2) / " o ix o) dy—

-2 /jo yfyx (ylr)dy = 2g(x) — 2E[Y|X = x]
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o Two random variables X and Y are jointly Gaussian with parameters

ux, by, ox >0, 0y >0, and —1 < p < 1. What is the minimum mean
squared error estimate of Y given that X = z?

o Solution:

7

9(@) = B[Y|X =] = py +p7"(z — px)
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Moment Generating Functions (MGF)

7

o Definition: The moment generating function Mx(t) of a ran-
dom variable X is defined as

Mx(t) = E[e"™]

\

e Note: there is also a closely related concept called characteristic
function defined as

ox(t) = E[e"™], with 1= +v—1

o Mx (t) is called moment generating function because we can find the
moments E[X"] from it easily:
dM x (t)

MO @) = ) g |:%etX:| 5 [Xetx]

M (1) = B [X"e]

and, hence,

[ MP(0) = E[X], M (0) = E[X"] ]

Section 6



e Find Mx (t) if X ~ Binomial(n,p) and use this to find E[X], E[X?],

and Var[X].
o Solution: .
M) = B = 3 (k) =
k=0
= n otk n pk (lfp)”*k — i n (pet)k (17p)n7k _ (pet+1fp)"
k=0 k k=0 k

M (1) = n(pe' +1—p)" 'pe'
M (t) = n(n — 1)(pe’ +1 —p)"*(pe')* + n(pe’ +1—p)"'pe’
Hence,
B[X] = My (0) =np,  E[X"] = M(0) = n(n— 1)p" +np

and, therefore,

Var[X] = E[X?] — (E[X])* = np(1 — p)




Another example

o Find Mx(t) if X ~ Poisson(\) and use this to find E[X], E[X?], and
Var[X].

o Solution:

o0 o0 An _
Mx(t) = E[etx} = e"px(n) = Zemme A=
n=0

n=0

e t\n
= Z (Ae) =e exp(he') = exp( A(e — 1))
Consequently,
M)((l)(t) = Xefexp( A(e" = 1))
M)((Q)(t) = (Ae")?exp( A(e" — 1)) + e’ exp( A(e’ — 1))
and, hence,
ElX]=MP0) =), BX*]=MP(0) =X+

finally yielding
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Yet another example

o Find Mx (t) if X ~ Exponential(\) and use this to find E[X], E[X?],
and Var[X].

o Solution: -
Mx(t) = E[e"] = / e fx(z)dx =

:/ e e Mdx = )\/ e~ VT = A
0 o A—t

for t < A. Thus,

MP(t) = MP(t) =

A —1)2 (A —1)3
and, therefore,
B[X] =M (0) =1/, E[X®] =M (0) =2/\°

yielding
Var[X] = E[X?] — (E[X])? = 1/\*
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Final example

o Find Mx(t) if X ~ N (u,0?) and use this to find E[X], EF[X?], and
Var[X].

o Solution: Let Z ~ N(0,1). We first compute Mz (¢):

Mz (t) = E[e"”] = /00 e fz(2)dz =

— 00

_ L /00 e 2y = L /00 ex 7722 — 2z dz =
N7 NG P 2 N

I S (z=1)* £\, _
v e (e

_ 22 1 /oo ( (z - t)Q) 2/2
—e [ exp | — dz=-¢e
NoT o R 2




Final example (cont.)

e Since X =pu+o02:
Mx(t) = E[e"*] = E[¢""*1°9)] =
= E[e"e'7?] = e E[e'"?] = " Mz (to) =
= et“e# = exp ( tQ;Q +,ut)

and, thus, we have

252
M)((l)(t):(qutaz)exp( ;+,ut)

2 2

t t2 2
M§f)(t):(u+taz)2exp( ;’ +ut>+026xp< ; +ut)

yielding

EX]=MP0) = p, E[X*=MP0)=p*+0>

and, finally,
Var|X] = E[X?] — (E[X])? = o*
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MGF of Sum of Independent RVs

o Let X and Y be independent random variables. Then

MX+Y(t) - E |:€t(X+Y)] —E [etXetY] —

-F [etx] E [e”] — Mx (t)My (t)

o Another useful fact is that the distribution of X is uniquely determined
by Mx (t). (The textbook has tables of MGF for various distributions.)




@ Let X ~ Poisson(A1) and Y ~ Poisson(A2) be independent. What is
the distribution of X +Y?

o Solution:
Mx 4y (t) = Mx (t) My (t) =

— exp( Aale’ — 1) )exp( Aa(e’ — 1)) = exp( (1 +Aa)(¢' — 1))
and, therefore, X 4+ Y is Poisson(A1 + Az2).
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Another example

o Let X ~ N(ux,0%) and Y ~ N (uy,0%) be independent. What is the
distribution of X +Y'?

o Solution:
t2U§(
Mx v (t) = Mx(t)My (t) = exp | —= + pxt | =
t2 2 2
= exp ( w + (px + uy)t)

So X +Y is ~ N(ux + py, 0% + o¥).




Joint Moment Generating Functions

o Definition: For random variables X1, Xo, ..., X,, the joint mo-
ment generating function is defined as

M (t; tn) = E [6t1X1+t2X2+~'+tan]
gooog

with

Mx, (t) = E[e"X1] = M(0,0,...,t,0,...,0)

\

o The joint MGF uniquely determines the joint pdf.
o If Xy,..., X, are independent then

Mt ta, . ta) = B [ X0 H o]

=F [etlxl] E [etzxz] ) [et"X"] = Mx, (t1)Mx,(t2) - Mx, (tn)

o Since the joint MGF uniquely specifies the joint distribution, then the
mutual independence of Xi,..., X, is equivalent to

M(ti,t2, ... tn) = Mx, (t1)Mx,(t2) - - - Mx,, (tn)




o If X and Y are independent and ~ A (u,o?), show that X +Y and
X — Y are independent.

o Solution:
E |:et(X+Y)+s(X7Y)i| - E |:e(t+s)X+(t75)Yi| - B [e<t+s)x] E [eufs)y] _
_ ep.(t+s)+o'2(t+s)2/Qe;z(t—s)+0'2(t—s)2/2 _ er.t+(72tzeo'252

Consequently,

@ The 1st term is the MGF (in ¢) for a normal with mean 2y and
variance 20°2.

@ The 2nd term is the MGF (in s) for a normal with mean 0 and
variance 2072.




Multivariate Normal Random Variables

o Let Z1,Z5,...,Z, be n independent standard normal random
variables.
o Let 1, p2, ..., tm be m constants.

o Define X1, Xo,..., X by

Xi=anZi+ -+ ainZn+m
Xo=anZ1+ -+ ammZn+ 2

Xm - amlzl ++angn+ﬂm

o Then we say that Xi,..., X are multivariate normal (Gaussian).
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Multivariate Normal Random Variables (cont.)

o We can write this compactly in matrix form as
X =AZ +p

where the matrix A is m X n and has a;; as its (7, ) entry, and

X1 Z1 J251

Xo Zs 2
X = . 5 Z = . ) B = .

Xm Zn ,LLm

o Now, let B be a k x m matrix, and v a column vector of length k. Then
Y =BX +v=(BA)Z + (Bu+v)

and, thus, Y is multivariate Gaussian too.

o To summarize, an affine transformation of a multivariate Gaussian is a
multivariate Gaussian again.




Multivariate Normal Random Variables (cont.)

@ Since each X; is a sum of independent Gaussian random variables,
each X; is Gaussian with

E[X;|=FElanZi+ ...+ ainZn + i) = i
and
Var[X:] = Varlan Zy + ... + ainZn + pi] = Var(anZy + . . . + ainZn) =
=a Var[Zi)+ ...+ al Var[Z,) = a} + ... + a2,
e Moreover,

M(ty,...,tm)=E [6z1X1+t2Xz+...+thm] - B [eu]

where

U=tX1+tXe+...+tnXn




Multivariate Normal Random Variables (cont.)

o Now, U is a linear combination of Z1,

.y Zn, so U is Gaussian. Also
ElU=EtXi 4+ +tmXn] =tipr + -+

+ tmle
n

itiXi7§:thj:| = ii t CO’U XZ,X]
i=1 j= i=1 j=1

VarlU] = Cov

o2
e Since U ~ N (u,0?), we have
M(ty,...

My (t)|t=1 = exp (,u + 02/2) =

= exp (Ztiui + % Zztit]’COv [Xi,Xj]>
i=1 j
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Multivariate Normal Random Variables (cont.)

o We see that the joint MGF of X;,...,X,, depends only on the means
M1, - .., m covariances Cov [X;, X;].

o Since the MGF uniquely determines the joint distribution, then the
joint distribution of a multivariate Gaussian (normal) depends only the
means F[X;] and covariances Cov[X;, X;].
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