ECE 203 Probability Theory and Statistics I Tutorial 1

May 2025

• Describe the sample spaces of the following random experiments:

a) Draw a ball from an urn containing balls numbered 1 to 10.

b) Draw a card from a deck that only contains the following four cards: i) 2 of hearts, ii) the three of spades, iii) the four of diamonds, and iv) the three of clubs.

c) Measure the lifetime of a memory chip.

d) Measure the value of two $1k\Omega$ resistors with tolerances of 10%.

Problem 1 - Solution

• Describe the sample spaces of the following random experiments:

a) Draw a ball from an urn containing balls numbered 1 to 10.

b) Draw a card from a deck that only contains the following four cards: i) 2 of hearts, ii) the three of spades, iii) the four of diamonds, and iv) the three of clubs.

c) Measure the lifetime of a memory chip.

d) Measure the value of two $1k\Omega$ resistors with tolerances of 10%.

a)
$$S = \{1, 2, \dots, 10\}.$$

b) $S = \{(2, \heartsuit), (3, \spadesuit), (4, \diamondsuit), (3, \clubsuit)\}$
c) $S = \{x \in \mathbb{R} \mid x \ge 0\}$
d) $S = \{(x, y) \in \mathbb{R}^2 \mid 900 \le x \le 1100, 900 \le y \le 1100\}$

• In problem 1, sketch the event that the sum of the two resistors is within 5% of $2k\Omega$.

Problem 2 - Solution

• In problem 1, sketch the event that the sum of the two resistors is within 5% of $2k\Omega$.

 $S = \{(x, y) \in \mathbb{R}^2 \mid 900 \le x \le 1100, 900 \le y \le 1100\}$ $E = \{(x, y) \in S \mid 1900 \le x + y \le 2100\}$

• Let A, B, and C be three events. Show that $P[AB^cC^c] \ge P[A] - P[AB] - P[AC]$.

Problem 3 - Solution

• Let A, B, and C be three events. Show that $P[AB^cC^c] \ge P[A] - P[AB] - P[AC]$.

$$\begin{split} A &= A(B \cup B^c)(C \cup C^c) \\ &= ABC \cup AB^cC \cup ABC^c \cup AB^cC^c \end{split}$$

and each of these four sets are disjoint. So

$$P[A] = P[ABC] + P[AB^{c}C] + P[ABC^{c}] + P[AB^{c}C^{c}]$$

and hence

$$P[AB^{c}C^{c}] = P[A] - P[ABC] - P[AB^{c}C] - P[ABC^{c}]$$

$$= P[A] - (P[ABC] + P[AB^{c}C]) - P[ABC^{c}]$$

$$= P[A] - P[ABC \cup AB^{c}C] - P[ABC^{c}]$$

$$= P[A] - P[AC] - P[ABC^{c}]$$

$$\ge P[A] - P[AC] - P[AB]$$

where we used the fact that $P[AB] \ge P[ABC^c]$.

• An urn has 10 balls numbered from 1 to 10. If we draw 3 balls at random, what is the probability that one of them is even and the other two are odd?

Problem 4 - Solution

• An urn has 10 balls numbered from 1 to 10. If we draw 3 balls at random, what is the probability that one of them is even and the other two are odd?

$$|S_{1}| = \binom{10}{3} = 120$$
$$|E_{1}| = \binom{5}{2}\binom{5}{1} = 50$$

and therefore $P[E_{\gamma}] = 5/12$

• Question: Does order matter or not?

• Show that $P[A \cup B \cup C] = P[A] + P[A^cB] + P[A^cB^cC]$

Problem 5 - Solution

• Show that $P[A \cup B \cup C] = P[A] + P[A^cB] + P[A^cB^cC]$ We first show that $P[A \cup B] = P[A] + P[A^cB]$. Now

$$A \cup B = A \cup (SB)$$
$$= A \cup ((A \cup A^c)B)$$
$$= A \cup ((A \cup A^c)B)$$
$$= (A \cup AB \cup A^cB)$$
$$= (A \cup AB) \cup A^cB$$
$$= A \cup A^cB$$

Since A and $A^c B$ are disjoint, then

$$P[A \cup B] = P[A \cup A^{c}B] = P[A] + P[A^{c}B]$$
 (*)

Problem 5 - Solution

• Show that $P[A \cup B \cup C] = P[A] + P[A^cB] + P[A^cB^cC]$

To get the desired result, we apply (*) twice:

$$\begin{split} P[A \cup B \cup C] &= P[A \cup (B \cup C)] \\ &= P[A] + P[A^c(B \cup C)] \\ &= P[A] + P[A^cB \cup A^cC] \\ &= P[A] + P[A^cB] + P[(A^cB)^cA^cC] \\ &= P[A] + P[A^cB] + P[(A \cup B^c)A^cC] \\ &= P[A] + P[A^cB] + P[AA^cC \cup A^cB^cC] \\ &= P[A] + P[A^cB] + P[\emptyset \cup A^cB^cC] \\ &= P[A] + P[A^cB] + P[A^cB^cC] \end{split}$$

