# ECE 203 Probability Theory and Statistics I Tutorial 3

May 2025



Alice and Bob have a pair of biased coins:

| P[hh] = 0.2 | P[ht] = 0.3 |
|-------------|-------------|
| P[th] = 0.3 | P[tt] = 0.2 |

Let

- $A = \{ \text{first coin is heads} \}$
- $B = \{\text{second coin is heads}\}\$
- a) Are the events  $\{hh\}, \{ht\}, \{th\}, \{tt\}$  independent?
- b) Are the events A and B independent?

c) Can you find two events that are independent (other than the trivial case of  $\emptyset$  and S)?



### **Problem 1 - Solution**

a) No, they are not. If I know hh has occured, I know that ht has not occured. So hh and ht are not independent. So the 4 events are not independent. Specifically:

$$P[hh]P[ht] = 0.2 \times 0.3 \neq 0 = P[\{hh\} \cap \{ht\}]$$

b) No.

P[A] = 0.2 + 0.3P[B] = 0.2 + 0.3

but  $P[A]P[B] = 0.5 \times 0.5 \neq 0.2 = P[AB] = P[hh]$ .



#### **Problem 1 - Solution**

c) Let  $C = \{ht, hh\}$  and  $D = \{hh, tt\}$ . Then  $P[C]P[D] = 0.5 \times 0.4 = 0.2 = P[hh] = P[CD]$ 

Also, note that

$$P[C|D] = P[CD]/P[D] = 0.2/0.4 = 0.5 = P[C]$$
$$P[D|C] = P[CD]/P[C] = 0.2/0.5 = 0.4 = P[D]$$



- In a factory, units are manufactured by machines  $H_1, H_2, H_3$  in the proportions 25, 35, and 40. The percentages are 5%, 4%, and 2%, respectively, of the manufactured units that are defective. The units are mixed and sent to the customers.
- a) Find the probability that a randomly chosen unit is defective.
- b) Suppose that a customer discovers that a certain unit is defective. What is the probability that it has been manufactured by machine  $H_1$ ?



# **Problem 2 - Solution**

- In a factory, units are manufactured by machines H<sub>1</sub>,H<sub>2</sub>,H<sub>3</sub> in the proportions 25, 35, and 40. The percentages are 5%, 4%, and 2%, respectively, of the manufactured units that are defective. The units are mixed and sent to the customers. (a) Find the probability that a randomly chosen unit is defective.
  (b) Suppose that a customer discovers that a certain unit is defective. What is the probability that it has been manufactured by machine H<sub>1</sub>?
- a) The law of total probability:

 $H_i =$  "unit produced by machine  $H_i$ " A="unit is defective"

$$P(A) = \sum_{i=1}^{n} P(H_i) P(A|H_i) \qquad P(A) = 0.25 \cdot 0.05 + 0.35 \cdot 0.04 + 0.40 \cdot 0.02 = 0.0345.$$

• b) Bayes' Theorem

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{\sum_{j=1}^{n} P(H_j)P(A|H_j)} \qquad P(H_1|A) = \frac{0.25 \cdot 0.05}{0.25 \cdot 0.05 + 0.35 \cdot 0.04 + 0.40 \cdot 0.02} = 0.36$$



Suppose A and B are independent events. Does it follow that A<sup>c</sup> and B<sup>c</sup> are also independent? That is, does P(AB) = P(A)P(B) guarantee that P(A<sup>c</sup>B<sup>c</sup>) = P(A<sup>c</sup>)P(B<sup>c</sup>)?



## **Problem 3 - Solution**

- Suppose *A* and *B* are independent events. Does it follow that  $A^c$  and  $B^c$  are also independent? That is, does P(AB) = P(A)P(B) guarantee that  $P(A^cB^c) = P(A^c)P(B^c)$ ?
- The answer is yes, the proof being accomplished by equating two different expressions for *P*(*A<sup>c</sup>B<sup>c</sup>*). First, we know that

$$P(A^{c} \cup B^{c}) = P(A^{c}) + P(B^{c}) - P(A^{c}B^{c})$$

But the union of two complement is also the complement of their intersection. Therefore,

$$P(A^c \cup B^c) = 1 - P(AB)$$

Combining the two equations above, we get

$$1 - P(AB) = 1 - P(A) + 1 - P(B) - P(A^{c}B^{c})$$

Since A and B are independent,  $P(AB) = P(A) \cdot P(B)$ , so

$$P(A^{c}B^{c}) = 1 - P(A) + 1 - P(B) - (1 - P(A)P(B))$$
  
= (1 - P(A))(1 - P(B))  
= P(A^{c})P(B^{c})



Suppose you have a hypothesis H. So either H or  $H^c$  occurs,

 $H = \{$ there is a plane in the sky $\}$ 

You now observe event  $E_1$  occurs and know prior P[H] and both  $P[E_1|H]$ and  $P[E_1|H^c]$ .

a) What is posterior  $P[H|E_1]$  in terms of what you know?

b) Now suppose you observe that  $E_2$  also occured. What is posterior  $P[H|E_1E_2]$ ?

c) Suppose that  $E_1$  and  $E_2$  are i) conditionally independent given H, and ii) conditionally independent given  $H^c$ . Express the posterior  $P[H|E_1E_2]$  in terms of  $P[H|E_1]$ .



## **Problem 4 - Solution**

• a) Deriving Baye's rule from first principles:

$$P[H|E_1] = \frac{P[HE_1]}{P[E_1]}$$
  
= 
$$\frac{P[E_1|H]P[H]}{P[E_1|H]P[H] + P[E_1|H^c]P[H^c]}$$

b) This is the same as a), except we replace  $E_1$  with  $E_2E_1$ :

$$P[H|E_2E_1] = \frac{P[E_2E_1|H]P[H]}{P[E_2E_1|H]P[H] + P[E_2E_1|H^c]P[H^c]}$$



# **Problem 4 - Solution**

 $P[E_2E_1|H] = P[E_2|H]P[E_1|H]$  $P[E_2E_1|H^c] = P[E_2|H^c]P[E_1|H^c]$ 

So

$$\begin{split} P[H|E_{2}E_{1}] &= \frac{P[E_{2}E_{1}|H]P[H]}{P[E_{2}E_{1}|H]P[H] + P[E_{2}E_{1}|H^{c}]P[H^{c}]} \\ &= \frac{P[E_{2}|H]P[E_{1}|H]P[H]}{P[E_{2}|H]P[E_{1}|H]P[H] + P[E_{2}|H^{c}]P[E_{1}|H^{c}]P[H^{c}]} \\ &= \frac{P[E_{2}|H]\frac{P[E_{1}|H]P[H]}{P[E_{1}]}}{P[E_{2}|H]\frac{P[E_{1}|H]P[H]}{P[E_{1}]} + P[E_{2}|H^{c}]\frac{P[E_{1}|H^{c}]P[H^{c}]}{P[E_{1}]}} \\ &= \frac{P[E_{2}|H]P[H|E_{1}]}{P[E_{2}|H]P[H|E_{1}]} + P[E_{2}|H^{c}]P[H^{c}|E_{1}]} \end{split}$$



## **Problem 4 - Solution**

Basically, same as Baye's rule, but:

- $P[E_1|H]$  replaced with  $P[E_2|H]$  (since we want to incorporate effect of event  $E_2$ )
- P[H] replaced with  $P[H|E_1]$

This technique lets you update in an 'online' manner the probability of H as observations  $E_1, E_2, E_3, \ldots$  are collected. You just update your last posterior probability  $P[H|E_1 \cdots E_{n-1}]$  by applying Baye's rule with  $P[H|E_1 \cdots E_{n-1}]$  as your prior and  $P[E_n|H]$  and  $P[E_n|H^c]$ .

