ECE 203 Probability Theory and Statistics I Tutorial 4

June 2025

We throw a fair four-sided die twice. Let E be the event that "the sum of the dice is 4", and let F be the event that "the first die thrown has value 2". Are the events E and F independent?

Problem 1 - Solution

The events E and F are therefore not independent.

Consider the following connection of switches:

Define the event: E_i , i = 1, 2, 3, 4 as: Switch S_i is closed. Assume that $P(E_1) = P(E_2) = P(E_3) = P(E_4) = a$. Define the event \mathcal{E} as the event that point A is connected to point B. Compute the probability of the event \mathcal{E} .

Problem 2 - Solution

- E_1 : Switch S_1 is closed. $\implies E_1^c$: Switch S_1 is open.
- E_2 : Switch S_2 is closed. $\implies E_2^c$: Switch S_2 is open.
- E_3 : Switch S_3 is closed. $\implies E_3^c$: Switch S_3 is open.
- E_4 : Switch S_4 is closed. $\implies E_4^c$: Switch S_4 is open.

Assume that $P(E_1) = P(E_2) = P(E_3) = P(E_4) = a$, and consequently, $P(E_1^c) = P(E_2^c) = P(E_3^c) = P(E_4^c) = 1 - a$.

Note that switch closures are independent of each other.

$$\mathcal{E} = [(E_1 E_2) \cup E_3] E_4$$

$$P(\mathcal{E}) = P[(E_1 E_2) \cup E_3] \times P(E_4)$$

$$P[(E_1 E_2) \cup E_3] = P(E_1 E_2) + P(E_3) - P(E_1 E_2 E_3) = a + a^2 - a^3$$

$$P(\mathcal{E}) = a(a + a^2 - a^3) = a^2 + a^3 - a^4$$

The number of customers who enter a small shop at a given hour is a discrete random variable X with the following probability mass function:

x (customer/hour)	0	1	2	3	4
P(X=x)	0.1	0.2	0.4	0.2	0.1

- a) Verify that this defines a valid PMF.
- b) Compute the expected number of customers per hour, E[X].
- c) Interpret the result briefly in context.

Problem 3 - Solution

a) All probabilities are not negative. Also, we should have $\sum_{x \in \mathcal{X}} p_X(x) = 1$. $0.1 + 0.2 + 0.4 + 0.2 + 0.1 = 1 \longrightarrow \text{valid PMF}$

b)
$$\mathbb{E}[X] = \sum_{x} x \cdot P(X = x) = 0(0.1) + 1(0.2) + 2(0.4) + 3(0.2) + 4(0.1)$$

$$= 0 + 0.2 + 0.8 + 0.6 + 0.4 = 2.0$$

c) On average, the shop receives 2 customers per hour.

The discrete random variable U has a geometric distribution of the form

$$P(U = j) = ap^j$$
, $j = 0, 1, 2, \cdots$

If $P(U \ge 4) = 1/256$, find $P(U \ge 2)$.

Problem 4 - Solution

Since the given distribution must sum to unity we have $\sum_{j=0}^{\infty} ap^j = 1 = a/(1-p)$ which implies

that a = 1 - p. Now $P(U \ge 4) = \sum_{j=4}^{\infty} ap^j = 1/256 = \frac{ap^4}{1-p} = \frac{1}{256} \implies p = \frac{1}{4}$

Then $P(U \ge 2) = (1-p)p^2/(1-p) = 1/16.$

Let the PMF of X be given by

 $p_X(x) = ax^2$ for x = -2, -1, 0, 1, 2, 3

a) Find a.

b) What is $P[-1 < X \le 2]$?

c) What is E[X]?

Problem 5 - Solution

a)

 $p_X(-2) = 4a$ $p_X(-1) = a$ $p_X(0) = 0$ $p_X(1) = a$ $p_X(2) = 4a$ $p_X(3) = 9a.$

These must sum to 1. So $4a + a + 0 + a + 4a + 9a = 19a = 1 \rightarrow a = 1/19$. b) $P[-1 < X \le 2] = P[X \in \{0, 1, 2\}] = P_X(0) + P_X(1) + P_X(2) = 5/19$. c)

$$E[X] = \sum_{x} p_X(x)x$$

= 4a × -2 + a × -1 + 0 × 0 + a × 1 + 4a × 2 + 9a × 3
= 27/19

