Last Name

First letter of last name

UW Userid

ECE-327 Midterm

2017t1 (Winter)

Instructions and General Information

- 100 marks total
- Time limit: 1 hour and 20 minutes (80 minutes)
- No books, no notes, no computers. Calculators are allowed
- If you need extra paper, request some from a proctor.
- Write neatly.
- To earn part marks, you must show the formulas you use and all of your work.
- The proctors and instructors will not answer questions, except in cases where an error on the exam is suspected. If you are confused about a question, write down your assumptions or interpretation.
- Justifications of answers will be marked according to correctness, clarity, and concision.

		 Total Marks	Approx. Time	Page
Q0	!!Almost Free!!	2	2	2
Q1	VHDL Simulation	25	15	3
Q2	The Flu, the Fever, and the Nausea	25	15	5
Q3	DFD	25	25	9
Q4	FSM	25	15	11
Tota	ls	100	72	

Q0 (2 Marks) !!Almost Free!!

(estimated time: 2 minutes)

Q0a (1 Mark) Best part

What is the best part of the course?

Q0b (1 Mark) Most improve

What one thing could be done to most improve the course for the remainder of the term?

ECE-327

Q1 (25 Marks) VHDL Simulation

(estimated time: 15 minutes)

For the VHDL program below, calculate the values for the signals c0, c1, c2, and at 45ns.

NOTES:

- 1. All of the processes are in the same architecture.
- 2. The signals a0, a1, a2, b0, b1, b2, c0, c1, and c2, are declared to be unsigned (15 downto 0).

3. Don't panic. Although the code is long, it is systematic:

- The a signals drive the b signals
- \bullet The ${\tt b}$ signals drive the ${\tt c}$ signals

Ca	ategory of eac	h signa	l
timed	comb	clk1	clk2
a0		a1	a2
	b0,b1,b2		
	с0	c1	c2

4. For full marks you must justify your answer, using text and/or the waveform diagram. You may, but are *not* required to, show a delta-cycle simulation.

Midterm

<pre>process begin clk1 <= '0'; wait for 10 ns; clk1 <= '1'; wait for 10 ns; end process; clk2 <= clk1;</pre>	<pre>process begin wait until rising_edge(clk1); if reset = '1' then a1 <= (others => '0'); else a1 <= a1 + 20; end if; end process;</pre>
	-
<pre>process begin reset <= '1'; wait for 11 ns; reset <= '0'; wait;</pre>	<pre>process begin wait until rising_edge(clk2); if reset = '1' then a2 <= (others => '0'); else</pre>
end process;	a2 <= a2 + 200; end if;
<pre>process begin a0 <= (others => '0'); wait for 10 ns; a0 <= a0 + 1; a0 <= a0 + 2; wait for 10 ns;</pre>	end process; b0 <= a0; b1 <= a1; b2 <= a2;
a0 <= a0 + 4; a0 <= a0 + 8;	c0 <= b0 + b1 + b2;
<pre>a0 <= a0 + 0; wait for 10 ns; a0 <= a0 + 16; a0 <= a0 + 32; wait for 10 ns; a0 <= a0 + 64;</pre>	<pre>process begin wait until rising_edge(clk1); c1 <= b0 + b1 + b2; end process;</pre>
a0 <= a0 + 128; wait for 10 ns; end process;	<pre>process begin wait until rising_edge(clk2); c2 <= b0 + b1 + b2; end process;</pre>

Answer on the next page

	+			+								1			 -	
				-				-							†	value at 45ns
	-														≐ c0	
															¢ c1	
				-											⊨ c2	
															-	
															+-	
	-			-					<u> </u>	1	1	1			<u>+-</u>	
	-															
															Þ	
															t-	
	-		-		-		-								t	
	+															
	-			-											—	
															†	
								<u> </u>					<u> </u>		<u></u>	
				+											 -	
															_	
											1	1			+-	
															ŧ	
															‡	
	1	-		+			-	-					-		È	
			1						1	1		1				
																
	-														—	
	-			-											†	
		<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>					È	
															+	
	+					-									<u>·</u>	
	-			+							1	1			+	
	-			-									-		ŧ	
															ŧ	
	-			-											F	
				-									-		†	
															‡	
	-															

Q2 (25 Marks) The Flu, the Fever, and the Nausea

(estimated time: 15 minutes)

For each of the code fragments Q2a–Q2e:

1. Answer whether the code is *legal*

2. If the code is *illegal*: explain why, and proceed to the next code fragment.

3. Answer whether the code is *synthesizable*.

4. If the code is unsynthesizable: explain why, and proceed to the next code fragment.

5. Answer whether the code adheres to good coding practices, according to the guidelines for ECE 327.

6. If the code does not follow good coding practices: explain why, and proceed to the next code fragment

7. Calculate the number of flip-flops that will be synthesized from the code.

NOTES:

1. The signal declarations are: clk, a : std_logic;

b, c, d, e, f : unsigned(7 downto 0);

Q2a

```
d <= b + c when d(0) = '1'
else b - c;</pre>
```


Explanation if illegal, unsynthesizable, or bad practice:

Answer:

Legal, synth, bad (comb loop through d(0)). If said "Legal, synth, good", then part marks for 0 flops.

Q2b

```
process begin
   c <= b;
   wait until rising_edge( clk );
end process;</pre>
```

	Yes
Legal	
Synthesizable	
Good Practice	
Number of flip-flops	

es	No

Explanation if illegal, unsynthesizable, or bad practice:

Answer:

Legal, unsynth (statement before wait). If said "Legal, synth, good", then part marks for 8 flops.

The question continues on the next page

O₂c

Q2c		Yes	No
process begin	Legal		
<pre>wait until rising_edge(clk); d <= b + 2;</pre>	Synthesizable		
f <= e + 4;	Good Practice		
end process;			
	Number of flip-flops		
e <= d;			

Explanation if illegal, unsynthesizable, or bad practice:

Answer:

Legal, synth, good. 16 flops.

Q2d

```
process begin
  wait until rising_edge( clk );
  if a = '1' then
    c <= b + 2;
    d <= b + c;
  else
    d <= b - c;
  end if;
end process;
```

	Yes	No
Legal		
Synthesizable		
Good Practice		
Number of flip-flops		

Explanation if illegal, unsynthesizable, or bad practice:

Answer:

Legal, synth, good. 16 flops

Q2e

```
process ( b, c ) begin
  d <= b + 2;
  d <= c + 5;
end process;
```

	Yes
Legal	
Synthesizable	
Good Practice	
Number of flip-flops	

No

Explanation if illegal, unsynthesizable, or bad practice:

Answer:

Legal, synth, good. 0 flops

Marking:

- 3 marks Legal, synth, good.
- 2 marks Number of flops or justification

Q3 (25 Marks) DFD

(estimated time: 25 minutes)

In this question, you will design and analyze a dataflow diagram for the equation:

z = a + a*d + 5*c + b*c + d*e

NOTES:

- 1. Inputs shall be combinational and outputs shall be registered.
- 2. The delay of a multiplier is approximately twice that of an adder.

3. Optimization goals in order of decreasing importance:

- (a) minimize number of multipliers
- (b) minimize *clock period*
- (c) minimize *latency*
- (d) minimize number of adders
- (e) minimize number of registers
- (f) minimize number of *input ports*
- (g) minimize number of output ports

4. Input values may be read in any clock cycle, but each input value shall be read exactly once.

5. Algebraic optimizations are allowed, as long as the final value of z is correct.

6. You do not need to perform allocation.

Scratch work

+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

The next page is for your answer

ECE-327	Name	_ UWUserid	(page 9 of 12)
			(page 3 01 12)

											N	umł	oer c	of reg	gs:														
	Clock period:										Number of adds:																		
	Latency: No													lumł	ber c	of mu	ıls:												
Analy	sis:											-																	
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+																										+			
+																										+			
*				+																						+			
+																										+			
+	+																									+			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+																									+			
+	+																									+			
+	+																									+			
+	+																									+			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Number of interest

Number of output ports:

Number of input ports:

_____ UWUserid __

Name _

ECE-327

Q4 (25 Marks) FSM

(estimated time: 15 minutes)

You've just been promoted to a manager and have been assigned the exciting project of designing a new state machine. Because you are manager, you delegate the design work to the three employees you supervise. Your task is to evaluate each design to determine whether it is correct.

Midterm

The state machine has one data input (a) and one data output (z). For each parcel, the value of z shall be '1' if the current parcel's a is greater than the previous parcel's a.

NOTES:

- 1. The system shall use a parcel schedule of unpredictable number of bubbles.
- 2. There is no requirement for the value of z for the first parcel after reset is deasserted. In other words, for the first parcel after reset, the value of z may be either '0' or '1'.
- 3. There is no requirement for the latency between i_valid='1' and o_valid='1'. In other words, the latency may be any number of clock cycles.
- 4. If the state machine is correct, answer what the latency is and what is the minimum number of bubbles between parcels.
- 5. If the state machine is incorrect, explain either how the machines behaviour differs from the system description or how the state machine could be modified to fix the incorrect behaviour.
- 6. In the diagrams below, "i_valid" has been shortened to "i_v" and "o_valid" has been shortened to "o_v".

Q4b

Yes No Correct
If correct:
latency =
min bubbles =
If incorrect, explanation:
Yes No Correct
If correct:

Q4c

Yes No Correct

Marking:

+1 mark gave complete answers for all fsms

+8 marks each fsm

+2 marks correct/incorrect

+6 marks justification, if answered "incorrect"

- +3 marks latency, if answered "correct"
- +3 marks bubbles, if answered "correct"

Name ___