ECE-327 Solution to Midterm

2019t1 (Winter)

All requests for re-marks must be submitted by email to Mark Aagaard before noon on Friday March 22.

		Total Marks	Approx. Time	Page
Q1	VHDL Semantics	20	15	2
Q2	FPGA Area	25	15	4
Q3	FSM	27	18	6
Q4	Code Review	28	20	8
Tota	ls	100	68	

Q1 (20 Marks) VHDL Semantics

(estimated time: 15 minutes)

Which of the waveforms on the next page is/are the best choice(s) for a testbench waveform?

NOTES:

- 1. The testbench shall drive the clock signal (clk) and the data input (i_a), which shall increment.
- 2. Multiple waveforms may be best.
- 3. For each waveform, answer whether it is (one of) the best waveform(s).
- 4. For full marks, you must justify your answers in terms of VHDL simulation semantics.
- 5. If a waveform has the same justification as a previous waveform, write "Same as x", where x is the number of the previous waveform.

Waveform 1

Justification: 1) The problem is that *i_a* transitions at the same time as *clk*. For example, *clk* has a rising edge at the same time that *i_a* transitions from 2 to 3. In the simulation cycle where *clk='1'* for *rising_edge(clk)*, *i_a* will be 3. Thus, a flop driven by *i_a* will see 3, not 2. This will cause the flop to act like a wire, not a flop. 2) Data transitions twice per clock cycle, so only half of the values will be read by registers in the circuit.

```
Waveform 2
```

clk														Yes	No
i_a	0	\rightarrow		(2	2	(3	3	χ	4	5	X	6	Best		

Justification: Data transitions twice per clock cycle (see reason 2 in Waveform 1).

Wave	eform	3									
clk										Yes	No
i_a	0 X	1			2	X	3	X 4	Best		\checkmark
		ication: D	ata transiti	ons at the sa	ame time as	the rising e	dge on the c	lock (se	e reaso	n 1 in '	Waveform
Wave	1). eform -	4									
clk										Yes	No
i_a	0	X	1	X	2	X	3		Best	\checkmark	
	Justifi	ication: D	ata is stable	e at the risir	ng edge of th	ne clock and	l transitions	once pe	r clock	cycle.	
Wave	eform	5						L			
clk										Yes	No
i_a	0	Х]		X	2	X 3		Best	\checkmark	
	Justifi	ication: Sa	ame as 4.								

(page 2 of 11)

Marking:

- +5 marks *i_a* should not change at same time as a *clk* edge.
- +5 marks *i_a* should change once per clock cycle
- +2 marks A flip-flop will act as a wire.
- +2 marks clk='1' in same simulation cycle as new value of i_a
- +6 marks Correctly identify whether waveforms are best.

Q2 (25 Marks) FPGA Area

(estimated time: 15 minutes)

Calculate the minimum number of FPGA cells needed to implement each of the VHDL code snippets below.

NOTES:

1. The signals a, b, c, d, e, f, and g are std_logic.

2. The signals m, n, p, and z are 8-bit unsigned.

3. Optimizations are allowed, so long as the externally visible input-to-output behaviour of the system does not change.

4. For full marks, you must justify your answer with a drawing and/or text.

Q2a g <= ((a and b) xor (c or d)) and (e xor f);

 $z \leq m + n$ when q = '1'else m + p; Justification LUTs Regs 2 0 Combinational function with 6 inputs and 1 output. g 8 0 8-bit adder with a 2:1 mux on one input. Ζ **Total:** 10 0 Number of FPGA cells: 10

Marking:

- +2 marks g requires 2 LUTs
- +2 marks z requires 1 LUT/bit
- +2 marks z requires 8 LUTs in total
- +2 marks circuit requires 8+2 cells.

```
Q2b process begin
```

```
wait until rising_edge( clk );
n <= m;
end process;
```

z <= n + p;

	LUTs	Regs	Justification	
n	0	8	8-bit register	
Z	8	0	8-bit adder	
Total:	8	8	Cells = max(LUTs, Regs) = 8	
				Number of FPGA cells: 8

Marking:

- +2 marks *n* requires 1 flop/bit
- +2 marks z requires 1 LUT/bit
- +2 marks n requires 8 flops and z requires 8 LUTs
- +2 marks circuit requires max(8,8) = 8 cells.

Q2c	z <=	m	wher	n n = 0		
	el	se m	+ 1;			
				LUTs	Regs	Justification
			n=0	3	0	Combinational function with 8 inputs and 1 output
			Z	8	0	8-bit adder
			Total:	11	0	
						Number of FPGA cells: 11

Marking:

+2 marks n=0 requires 3 LUTs
+2 marks z requires 1 LUT/bit
+2 marks z requires 8 LUTs
+2 marks circuit requires 3+8 = 11 LUTs = 11 cells
+1 mark answered each of a, b, c.

Q3 (27 Marks) FSM

(estimated time: 18 minutes)

In this question, you will design and analyze a state machine that performs the computation defined in pseudocode below:

```
if M[a] > M[b] then
    M[b] = M[a];
    z = M[b];
else
    z = M[a];
```

NOTES:

- 1. The system has one input port: i1.
- 2. The input port i1 is used for both of the input values (a and b) but each value is read in a different clock cycle. The values a and b may be read from i1 in any order and in any clock cycle. Each value appears on i1 for exactly one clock cycle.
- 3. The system has an internal memory array M, which shall be *single-port*.
- 4. The system has one output port: z.
- 5. The system shall use an ASAP parcel schedule.
- 6. Optimization goal: maximize throughput.
- 7. Marks will be earned for syntactic correctness, functional correctnes, maximized throughput, simplicity and elegance, and neatness.

Q3a (20 Marks) Design

Draw the state machine.

Marking:

- +2 marks reset is done correctly
- +2 marks state transitions cover all possibilities and are mutually exclusive
- +2 marks correct syntax and use of registered and combinational assignments
- +2 marks correct syntax and use of conditions and assignments
- +2 marks at most one memory operation per clock cycle
- +2 marks all memory reads have same target variable
- +2 marks throughput is maximized
- +2 marks uses ASAP parcel schedule
- +2 marks simplicity and elegance of design
- +2 marks neatness of drawing
- -4 marks incorrect overall functionality of algorithm
- -4 marks does not use *i1* correctly

(page 6 of 11)

Q3b (7 Marks) Analysis

What is the maximum throughput of your system?

Answer:

1/3 parcels/clock-cycle

If you were to use a dual-port memory, could you increase the throughput? For full marks, you must justify your answer.

Answer:

Yes. With a dual port memory, we could remove S2. With a single-port memory, S2 is needed so that we do only one memory operation per clock cycle. With a dual port memory, we could overlap the writing and reading Removing S2 will reduce the latency of the system from 3 to 2. Throughput is 1/Latency, therefore reducing the latency will increase the throughput.

Marking:

- 2 marks Correct throughput
- 5 marks Dual port analysis
 - 5 marks Correct answer with complete justification.
 - 4 marks Correct answer with mostly complete justification
 - 3 marks Incorrect answer with excellect justification
 - 2 marks Correct description of advantages of dual-port memory

Q4 (28 Marks) Code Review

(estimated time: 20 minutes)

In this question, you will analyze the VHDL program count_sum on the next page for synthesizability, functional correctness, and optimality.

```
The purpose of the program is to compute

sum = sum + a - b for each parcel, and count

how many parcels it takes until sum >= 17. When

sum >= 17, the system sets o_valid='1' and

outputs the count on o_count. The functional

specification in pseudocode is to the right.

Sum = sum + a - b;

count = count + 1;

if sum >= 17 then {

o_count = count; -- generate output

sum = 0;

count = 0;

}
```

NOTES:

- 1. The code is legal VHDL.
- 2. The system has 1 input data port (i_data). When i_valid='1', i_data has the value of a. In the next clock cycle i_data has the value of b.
- 3. Write down the 5 highest priority comments. The priority of comments, in decreasing order of priority is:
 - Synth Synthesizability
 - Fun Functional correctness
 - **Tput** Optimizations to increase throughput
 - **Reg** Optimizations to decrease registers
 - Comb Optimizations to decrease combinational circuitry
 - Good Praise for something good in the code
- 4. For each comment, put a $\sqrt{}$ in the box for its category. Comments may give replacement code, explain how to change the existing code, or praise a good feature of the existing code.
- 5. For full marks, each comment must be *briefly* justified.

```
library ieee;
1
  use ieee.std_logic_1164.all;
2
  use ieee.numeric std.all;
3
4
  entity count_sum is
5
    port
6
       ( clk, reset : in std_logic;
7
         i_valid
                  : in std_logic;
8
                    : in signed( 7 downto 0 );
         i data
                    : out std_logic;
         o valid
10
         o_count
                    : out unsigned( 7 downto 0 )
11
      );
12
  end entity;
13
14
  architecture main of count_sum is
15
                         : std logic vector( 0 to 3 );
    signal v
16
    signal count
                         : unsigned( 7 downto 0 );
17
    signal a, b, sum
                       : signed( 7 downto 0 );
18
  begin
19
```

```
process begin
20
     wait until rising_edge( clk );
21
     if reset = '1' then
22
       v <= ( others => '0' );
23
       count <= ( others => '0' );
24
     else
25
       v <= i_valid & v( 1 to 3 );</pre>
26
     end if;
27
  end process;
28
29
  process begin
30
     wait until rising_edge( clk );
31
     if v(0) = '1' then
32
       a <= i_data;
33
       count <= count + 1;</pre>
34
     elsif v(1) = '1' then
35
       b <= i data;</pre>
36
     end if;
37
  end process;
38
39
  process (v) begin
40
     if v(2) = '1' then
41
       sum <= sum + a - b;
42
     elsif v(3) = '1' then
43
       if sum >= 17 then
44
         sum <= (others => '0');
45
         count <= (others => '0');
46
       end if;
47
     end if;
48
  end process;
49
50
  o_valid <= '1' when sum >= 17
51
           else '0';
52
53
  o_count <= count;</pre>
54
55
56 end architecture;
```

Marking:

- +6 marks Multiple drivers on count. All assignments to count should be in the same process.
- +6 marks Process for sum and count is a latch, it should be clocked
- +5 marks v(0) should be a wire from i_valid
- +5 marks v is not shifted correctly
- +5 marks Throughput could be increased and registers could be decreased by changing b from a register to combinational and moving sum <= sum + a b from v(3) to v(2).
- +4 marks Throughput could be increased by creating a combinational signal sum_next as follows: sum_next <= sum + a - b;

```
process begin
wait until rising_edge(clk);
if v(2) = '1';
if sum_next >= 17 then
sum <= (others => '0');
count <= (others => '0');
else
sum <= sum_next;
end if;
end if;
end process;
ports Combinational/page
```

- +4 marks Combinational loop
- +4 marks Sum needs to be reset
- +1 mark clarity and neatness

NOTE: incomplete justifications earned partial marks

This page is for scratch work for any question.

+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

(page 11 of 11)