ECE 602 – Introduction to Optimization

Home Assignment 1

Due: February 12, 2024

Exercise 1 (Gradient)

Let $x \in \mathbf{R}^n$ and $A \in \mathbf{R}^{m \times n}$. Also, let $f : \mathbf{R}^n \to \mathbf{R}$ be defined according to

$$f(x) = \sum_{i=1}^{m} \sqrt{(Ax)_i^2 + \epsilon},$$

where $(Ax)_i$ denotes the *i*th element of Ax and $0 < \epsilon \ll 1$ is a small number. Find the gradient of f(x) using its *external definition*.

Exercise 2 (Convexity)

Explain which of the following sets are convex. Show your work.

- **a)** The sublevel set of a convex function f, i.e., $C_{\alpha} = \{x \in \mathbb{R}^n \mid f(x) \le \alpha\}$.
- **b)** The set of positive semidefinite matrices \mathbf{S}_{+}^{n} .

Explain which of the following functions are convex. Show your work.

a) $f(x) = \frac{1}{2}x^TQx + c^Tx$, where $Q \in \mathbf{S}^n_+$ and $c \in \mathbf{R}^n$. **b)** f(x) = g(h(x)) where $h : \mathbb{R}^n \to \mathbb{R}$ is convex, while $g : \mathbb{R} \to \mathbb{R}$ is convex and monotonically increasing

Exercise 3 (Global minimum of convex functions)

Assume that U is a convex subset of a normed linear space E. Prove that the set of all global minimizers of f is convex. [Hint: Use the result in Exercice (2.a).]

Exercise 4 (Dual norms)

Prove the following statements:

- a) The dual norm of ||x||₁ is ||x||∞.
 b) The dual norm of ||x||₂ is ||x||₂.

Exercise 5

Consider the following optimization problem in \mathbf{R}^2 :

minimize
$$f(x) = (x_2 - x_1)^2 + (1 - x_1)^2$$

subject to $||x||_1 \le 1$.

We will find a solution to this problem using the following steps:

a) Find the gradient ∇f and the Hessian $\nabla^2 f$ of f.

b) Discuss the convexity of f and of the constraint function.

c) Find the minimizer of the unconstrained problem $\min f(x)$. Does the solution satisfy the constraint?

d) If the above solution is infeasible, find a solution to the constrained optimization problem on the boundary of the feasible region. [Hint: Validate your solution based on the result of Exercise (3.a).]

e) Finally, using either MATLAB or PYTHON, draw a contour plot of f(x) along with the feasible region to verify your solution.