Homework 3

ECE 602 – Introduction to Optimization Due: March 18

Exercise 1 (Lagrangian duality)

The relative entropy between two vectors $x, y \in \mathbf{R}_{++}^n$ is defined as

$$\sum_{k=1}^n x_k \log\left(\frac{x_k}{y_k}\right) \, .$$

This is a convex function, jointly in x and y. In the following problem we calculate the vector x that minimizes the relative entropy with a given vector y, subject to the following constraints on x:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \sum_{k=1}^{n} x_k \log\left(\frac{x_k}{y_k}\right) \\ \text{subject to} & Ax = b \\ & \mathbf{1}^T x = 1 \\ & x \succ \mathbf{0} \,. \end{array}$$

The given parameters are $y \in \mathbf{R}_{++}^n$, $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$. Note that $\mathbf{1}^T x = 1$ and $x \ge \mathbf{0}$ mean that x is a probability vector. Derive the Lagrange dual of this problem and simplify it to get

$$\underset{\nu}{\text{maximize}} \quad b^T \nu - \log \sum_{k=1}^n y_k e^{a_k^T \nu} \,,$$

where a_k is the k-th column of A and $\nu \in \mathbf{R}^m$ is the Lagrange multiplier associated with the equality constraint.

Exercise 2 (Support Vector Machine)

Consider a set of training data $(x_1, y_1), \ldots, (x_n, y_n)$, with $x_i \in \mathbb{R}^p$ and $y_i \in \{-1, 1\}$. In supervised classification, y_i usually represents the class that x_i belongs to, and one's goal is to find $w \in \mathbb{R}^p$ and $b \in \mathbb{R}$ which define a hyperplane $w^T x = b$ that separates the two classes, i.e.,

$$w^T x_i - b \ge 1$$
, for all $x_i \in X_{+1} := \{x_i \mid y_i = 1\},\$

while

$$w^T x_i - b \le 1$$
, for all $x_i \in X_{-1} := \{x_i \mid y_i = -1\}.$

Note that the above approach uses an affine classification function $f(x) = w^T x - b$, in which case it belongs to the family of linear Support Vector Machines (SVM).

In many practical cases, the convex hulls of X_{+1} and X_{-1} admit some overlap and, as a result, the separating hyperplane cannot be defined. One way to overcome this difficulty is to introduce a vector of *slack variables* $\zeta \in \mathbb{R}^n_{++}$ which can be used to "relax" the classification constraints as follows:

$$w^T x_i - b \ge 1 - \zeta_i, \quad \forall \ x_i \in X_{+1} \quad \text{and} \quad w^T x_i - b \le -1 + \zeta_i, \quad \forall \ x_i \in X_{-1}$$

or, alternatively,

$$y_i(w^T x_i - b) \ge 1 - \zeta_i, \quad \forall \ x_i.$$

Normally, we expect the values of ζ to be dominated by zeros, thus implying that $\sum_{i=1}^{n} \zeta_i$ is relatively small. In this case, the problem of SVM classification can be formulated as given by

$$\min_{\substack{w,b,\zeta\\ w}} \frac{1}{2} ||w||_2^2 + \lambda \sum_{i=1}^n \zeta_i$$

s.t. $y_i(x_i^T w + b) \ge 1 - \zeta_i, \ i = 1, 2, \dots, n,$
 $\zeta \succeq 0,$

where $\lambda > 0$ is a user-defined scalar parameter (e.g., $\lambda = 1$).

- 1. Write the above optimization problem in a standard form. What type of optimization problem is that?
- 2. Derive the dual optimization problem corresponding to the primal problem. What type of optimization problem is that?

- 3. Implement the dual problem in CVX and apply it to the medical diagnostic data available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/ datasets/binary.html#breast-cancer.
- 4. Given the dual optimal solution, derive a closed-form solution to the primal problem and compute the resulting w^* and b^* .
- 5. Split the data set randomly into a training set ($\approx 90\%$ of the total number of points) and a validation set ($\approx 10\%$ of the total number of points). Train the SVM classifier using the former set and report the relative number of misclassified x_i in the latter set.

Exercise 3 (KKT optimality conditions)

Consider the equality constrained least-squares problem of the form

 $\begin{array}{l} \text{minimize} \quad \|Ax - b\|_2^2\\ \text{subject to} \quad Cx = h, \end{array}$

subject to Cx = h, where $A \in \mathbb{R}^{m \times n}$, with rank A = n, and $C \in \mathbb{R}^{p \times n}$, with rank C = p. Specify the KKT conditions and derive expressions for the primal and dual optimal solutions.