
ECE 602 – Introduction to Optimization

Solutions to Home Assignment 1

�� ��Exercise 1

First, we rewrite the cost function as

f(x) =
〈
1,
√
(Ax)2 + ε

〉
,

with 1 = [1, 1, . . . , 1]T ∈ Rn, where the functions (·)2 and
√
· are applied element-

wise. In this case,

df(x) = f(x+ dx)− f(x) =
〈
1,
√
(A(x+ dx))2 + ε

〉
− f(x) =

=
〈
1,
√

(Ax+ Adx)2 + ε
〉
−f(x) =

〈
1,
√

(Ax)2 + 2(Ax) · (Adx) + (Adx)2 + ε
〉
−f(x) ≈

≈
〈
1,
√(

(Ax)2 + ε
)
+ 2(Ax) · (Adx)

〉
− f(x),

where we discard the high-order term (Ax)2 due to its relative smallness. Note
that, in the expressions above, the dot · denotes an element-wise product of two
vectors.

Next, we use the following (1st-order) Taylor approximation around
(
(Ax)2+ε

)
√(

(Ax)2 + ε
)
+ 2(Ax) · (Adx) ≈

√
(Ax)2 + ε+

1√
(Ax)2 + ε

· (Ax) · (Adx) =

=
√
(Ax)2 + ε+

Ax√
(Ax)2 + ε

· (Adx),

where the vector division is assumed to be element-wise. Thus, we have

df(x) =
〈
1,
√

(Ax)2 + ε+
Ax√

(Ax)2 + ε
· (Adx)

〉
− f(x) =

=
〈
1,
√

(Ax)2 + ε
〉
+
〈
1,

Ax√
(Ax)2 + ε

·(Adx)
〉
−f(x) =

〈
1,

Ax√
(Ax)2 + ε

·(Adx)
〉
=

1



=
〈 Ax√

(Ax)2 + ε
, Adx

〉
=
〈
AT
( Ax√

(Ax)2 + ε

)
, dx
〉
.

Therefore,

∇f(x) = AT
( Ax√

(Ax)2 + ε

)
.

�� ��Exercise 2

PART A

a) Let x1, x2 ∈ Cα. Let’s show that, for any 0 ≤ θ ≤ 1, θx1 + (1− θ)x2 ∈ Cα,
meaning f(θx1+(1− θ)x2) ≤ α. Indeed, due to the convexity of f , we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) ≤ θα + (1− θ)α = α.

b) Let Q1, Q2 ∈ Sn+. Let’s show that, for any 0 ≤ θ ≤ 1, Q = θQ1+(1−θ)Q2 ∈
Sn+, meaning xTQx ≥ 0, for any x ∈ Rn. Indeed, we have

xTQx = xT
(
θQ1 + (1− θ)Q2

)
x = θ xTQ1x+ (1− θ)xTQ2x ≥ 0,

since both xTQ1x ≥ 0 and xTQ2x ≥ 0.

PART B

a) The Hessian of f(x) = 1/2xTQx + cTx is equal to Q, which is a positive-
definite matrix. Therefore, the function is convex (albeit, not strictly).

b) Let x1, x2 ∈ R. To prove the convexity of f(x) = g(h(x)), we need to show
that, for any θ ∈ [0, 1], we have

f(θ x1 + (1− θ)x2) ≤ θ f(x1) + (1− θ)f(x2).

First, we observe that, by the convexity of h, we have

h(θ x1 + (1− θ)x2) ≤ θh(x1) + (1− θ)h(x2).

Consequently, due to the monotonicity of g, we have

g(h(θ x1 + (1− θ)x2)) ≤ g(θh(x1) + (1− θ)h(x2)).
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At the same time, due to the convexity of g, we can write

g(θh(x1) + (1− θ)h(x2)) ≤ θ g(h(x1)) + (1− θ)g(h(x2)).

In summary,

f(x) = g(θ h(x1)+(1−θ)h(x2)) ≤ θ g(h(x1))+(1−θ) g(h(x2)) = θ f(x1)+(1−θ) f(x2).

�� ��Exercise 3

Let p? be the global minimum of f . Then the set of all global minimizer of f
can be defined as

Cp? = {x ∈ Rn | f(x) ≤ p?}.

This is a sublevel set of a convex function, which makes it convex.

�� ��Exercise 4

a) To show that ‖z‖∞ = sup‖x‖1≤1 x
T z, we first notice that

xT z ≤ |xT z| ≤
n∑
i=1

|xi||zi| ≤ max
i
|zi|

n∑
i=1

|xi| = ‖z‖∞‖x‖1
∣∣∣
‖x‖1=1

= ‖z‖∞.

However, it is not clear yet if the bound is tight. To show that, we need
to find a vector x (with ‖x‖1 = 1) for which xT z = ‖z‖∞. Such x can be
defined as

xi =

{
sign(zi?), if i = i?

0, otherwise
,

with i? = argmax1≤i≤n |zi|.

b) To show that ‖z‖2 = sup‖x‖2≤1 x
T z, we simply use the Cauchy–Schwarz

inequality
xT z ≤ |xT z| ≤ ‖z‖2‖x‖2

∣∣∣
‖x‖2=1

= ‖z‖2,

which is known to be tight for x = z/‖z‖2.
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