
ECE 602 – Introduction to Optimization

Solutions to Home Assignment 3

�� ��Exercise 1

Note that the last constraint x � 0 is implicitly contained in the objective
function and thus can be safely ignored. Consequently, we can define the La-
grangian to be

L(x, ν, η) =
n∑
k=1

xk log
(xk
yk

)
− νT (Ax− b)− η (1Tx− 1).

The optimal x of the Lagrangian has k-th component given by

xk
1

xk
+ log

(xk
yk

)
− aTk ν − η = 0,

where ak is the k-th column of A. The optimal xk is therefore given by

x∗k =
1

Z
yke

aTk ν ,

where Z is a constant in terms of η that allows x to sum to one, i.e.,

Z =
∑
k

yke
aTk ν .

Plugging this back into the Lagrangian, we obtain

g(ν) = L(x∗, ν, η) =
∑
k

1

Z
yke

aTk ν log
(eaTk ν
Z

)
− νT

(
A

[ 1
Z
y1e

aT1 ν

. . .
1
Z
yne

aTnν

]
− b

)
.

Simplifying the above equation, we get

g(ν) = − logZ + bTν = − log
∑
k

yke
aTk ν + bTν.
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�� ��Exercise 2

The optimization problem has three variables, i.e., w ∈ Rp, b ∈ R, and
ζ ∈ Rn, which can be combined into a single variable z = [w, b, ζ] ∈ Rd, where
d = p+ n+ 1. We can also define

P =

 Ip×p 0 0
0 0 0
0 0 0

 ∈ Rd×d, q =

 0p×1

0
λ1n×1

 .
Then, the cost function can be rewritten as

1

2
‖w‖22 + λ

n∑
k=1

ζk =
1

2
zTPz + qT z,

which is quadratic.
The first set of inequality constraints can be written as

−(yixi)Tw − yib− ζi ≤ −1, i = 1, 2, . . . , n.

Define C ∈ Rn×d as

C =


−y1 xT1 −y1 −1 0 0 · · · 0
−y2 xT2 −y2 0 −1 0 · · · 0
−y3 xT3 −y3 0 0 −1 · · · 0

· · · · · · · · · · · · · · · . . . · · ·
−yn xTn −yn 0 0 0 · · · −1

 .

Then, the constrains become Cz � −1n×1. The second inequality constraint, i.e.,
ζ � 0, can be also defined in terms of z. In particular, let B = [0n×p+1, −In×n].
Then, the constrain becomes Bz � 0n×1.

The two inequality constraints can be combined together using matrix A ∈
R2n×d and vector b ∈ R2n defined as

A =

[
C
B

]
, b =

[
−1n×1

0n×1

]
.

In these notations, the original optimization problem can be written as

min
z

1

2
zTPz + qT z

s.t. Az � b
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which is a QP.
The Lagrangian of this QP is given by

L(z, λ) =
1

2
zTPz + qT z + λT (Ax− b) = 1

2
zTPz + (q + ATλ)T z − λT b.

Differentiating (w.r.t. z) and equating to zero results in z∗ = −P−1(q + ATλ),
which we substitute back into the Lagrangian to compute the dual function. We
get

g(λ) = L(z∗, λ) = −(q + ATλ)TP−1(q + ATλ)− λT b,

which is quadratic. Hence, the dual problem

max
λ
−(q+ATλ)TP−1(q + ATλ)− λT b

s.t. λ � 0

is a QP as well.

�� ��Exercise 3

The Lagrangian is given by

L(x, ν) = ‖Ax− b‖22 + νT (Ax− b),

with its gradient w.r.t. x equal to

∇xL(x, ν) = 2AT (Ax− b) + ATν.

Consequently, the KKT conditions are:

• stationarity: 2AT (Ax∗ − b) + ATν∗ = 0;

• primal feasibility: Cx∗ = h;

• dual feasibility: none;

• complementary slackness: none.

From the stationarity, we have

x∗ = (ATA)−1(AT b− (1/2)CTν∗). (1)
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Then, plugging x∗ into the primal feasibility results in

C(ATA)−1AT b− (1/2)C(ATA)−1CTν∗ = h,

yielding
ν∗ = −2

(
C(ATA)−1CT

)−1
(h− C(ATA)−1AT b).

Finally, the value of ν∗ can be used to compute x∗ using Eq. (1).
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