ECE 602 - Introduction to Optimization

Solutions to Home Assignment 4

Exercise 1

What is the solution of the norm approximation problem with one scalar
variable x € R
minimize [|1z — b||

for the ¢;-, £5-, and /,-norms? Explain your answers.

Solution:

(a) fy-norm: the average 17b/n.
(b) £1-norm: the (or a) median of the coefficient of b.

(¢) fo-norm: the midrange point (maxb; + minb;)/2.

For the [;—norm:

min ||[1z — b||;

m
min E [|=* — b||
i=1
Since the problem is not constraint, the optimal condition is contingent on

(1 m
— Y " |lz* = b =0
da —
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The [; -norm is not differentiable around the center of coordinates b;, and it is
differentiable elsewhere yielding values that are either {—1,+1}. Therefore,
to stay consistent, we can express as:

Z sign(z* = b;) = 0,whenz, # b;;
i=1

0, whenz, = b;;

Let’s assume that b = {1,2,9}, which is odd. The optimal answer would
bexrx = 2, since it corresonpds to —1 4+ 0+ 1 = 0. Ifb = {1,2,3,9} , which

is even. The optimal answer would berx = (2,3), since it corresonpds to
—1-1+4+1+41 = 0. Therefore, the optimal answer would be z* = median(b).
For the l,—norm:
min |1z — b||,

is equivalent to minimize
. 2
min |1z — b|[;

Ther are no constraints, thus, the minimization is simpley by differentiating
and equation to 0, ie,

d T(q. _ d T4T+. ) T\ _
E((lx—b) (1z=0b)) = E(.L’ 1"1z = 2b(1z) +b°b) =0
21712 = 2"1

T = Z:ilbi

m

For the [.,—norm: This should be the -norm between the max and min
elements. This is a natural choice when considering this -norm wishes to
shrink the largest value. If we select the optimal to be the min value the
largest error will be its distance to the largest value and vice versa. When
moving closer to the max element but before the half way make the largest
error must be the distance to the max. After the half way point the distance
from the min is now larger than that of the max point. At the middle thet
are equal rendering a min.

min |1z — b||»

max |z = bpin|, |2 = bmaz|

T =bpin = —(2" = baz)
22* = (bumin + bmaz)
* = (bmin + bmax)
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Exercise 2

An interval matriz in R™*"™ is a matrix whose entries are intervals:
A= {AGRmxn | |Azg_Az]| SRija 1= 1,...,m,j= 1,...,7’1,}

The matrix A € R™ " is called the nominal value or centre value, and
R € R™*™, which is element-wise nonnegative, is called the radius.
The robust least-squares problem, with interval matrix, is

min sup ||Az — b,
x Ae

The problem data are A (i.e., A and R) and b € R™. The objective, as a
function of z, is called the worst-case residual norm. The robust least-squares
problem is evidently a convex optimization problem.

Formulate the interval matrix robust least-squares problem as a standard
optimization problem, e.g., a QP, SOCP, or SDP. You can introduce new
variables if needed. Your reformulation should have a number of variables
and constraints that grows linearly with m and n, and not exponentially.

Solution:

a. The problme looks like a QP when reformulated.

min sup ||[Az — b||,
A€A

st.A = {Ae R™||A; - Ay|,ie N™ je N"}

This can be rewritten as,

min sup (Az — b)T(A;zf - b)
T Ae€A

Also.

=S

sup (Az —b), = (Aijz; + Rijlz;])
A€A



A€A

inf (Az —b), = Y (Aiyz; — Rijlaj]) — b,
j=1

Thus, the QP can be written as

., T
mint t
x.t

st.Ar+ Ry—b<t
Az + Ry —b > —t
—y<r=<y

Now since we are taking ||z||, we can bound it between values —y < z < .
As a result, the QP can be written as,

min 7t
x.t

st.Ar+ Ry—b<t
-y<zr<y

Exercise 3

Using MATLAB, generate the following test signal of length 256:

m=256;
t=linspace(0,1,m)"';
y=exp (-128% ((£t-0.3).72))-3x(abs(t-0.7).70.4);

Also, generate the following matrix of size 256 x512:

mpdict=wmpdictionary (m, 'LstCpt',{'dct',{ 'wpsymd',2}});
A=full (mpdict) ;



The columns of A consist of two orthogonal bases commonly used in signal
analysis, viz. a discrete cosine transform basis (the first 256 columns) and
a wavelet basis (the last 256 columns). Our goal is to represent y in terms
of the columns of A, i.e., to find x such that Az = y. Needless to say, since
the columns of A are linearly dependent, there is no unique way to achieve
the above goal. To overcome this difficulty, we consider the following norm
minimization problem

min [|z]|
T
subject to Ax =y

which finds the “smallest” x among all possible solutions of Az = b.

(a) Find solutions to the above problem for the case of ¢5- and ¢;-norm. In
particular, in the case of /;-norm, cast the problem as an LP and then
solve it using CVX.

(b) Using the above solutions (which we denote by zs and z;, respectively),
reconstruct their corresponding approximations of y. How close are they
to the original signal y? (You may want to use || Axx;—yl|3/||yl|3, i = 1, 2,
as a measure of relative error.)

(c) Modify z; and x2 by keeping only 5% of their largest (in absolute value)
entries, while setting the rest of their entries to zero. What is the accu-
racy of your reconstructions now in both cases? Plot these reconstruc-
tions overlapped over the original y and indicate the relative errors.

(d) Repeat the previous experiment, while keeping 3% and then 1% of the
largest (in absolute value) entries of z; and z,. What percentage of the
entries of z, should you keep to (approximately) reach the same relative
error as in the case of z; with 3% “compression rate”.

Solution:

This question request we fit two orthogonal bases to a test signal y. Both A
and y are provided. The problems form:

min ||z|
r

st.Ar =y



a. Considering the problem as the [; -norm, which has been squared for
a tidy solution, so we have:

L(z,v) = [lzll3 + p(Az —y)
VL(z,v) = 2zATp
KKT:2z* + ATp* = OandAz* =y

z = AT(AAT) 'yandv* = —2(447)7'y

Given rank A = 256 < 512, AA7 is invertable. Considering the [; -norm
version of this problem, a dummy variable t is introduced and the problme
can be written as an LP.

min17¢

t.xr

stt>xr>—-t,Ar=0>

b. Their relative error is very close to the original. They are reaching the
machine epsilon so they are roughly equal. Then results found on th etest
machine are as follows:

% 02

L't LR RETIR T
1[5

4

IAz2 =3l _ g64104—18
lyll2

c. The 5 % of max in absolute value threshold did not affect the /; -norm
in a noticable amount but the l; -norm suffered since most of the ”energy”
is centered arouond the mean value.

d. The 3% and 1% of max in absolute value threshold show the strength
of the I, -norm but the l; -norm suffers much more as seen in Figure 2 and
3. The 3% kept with the I, -norm gave relative error of 5.6 * 10> for the
[y -norm to render roughly the same error it was found to require roughly a
thershold of 18 %.



code:

m=256;
t=linespace(0,1,m)"; \\
y=/exp (-128*((t-0.3).A2))-3*(abs(t-0.7).20.4);\\
mpdict=wmpdictionary(m, 'LstCpt',{'dct',{'wpsym4',2}});\\
A=full(mpdict);\\ \\
N=size (A,2)\\
one=ones(1,N);\\
cvx_begin\\

variable x(N)\\

minimize (norm(x,1))\\
subject to \\

A*x==y\\

cvx_end\\

x1=x;\\

clear x;\\

N=size(A,2);\\
one=ones(1,N);\\
cvx_begin\\

variable x(N)\\

minimize (norm(x,2)72)\\
subject to \\

A*x==y\\

cvx_end\\

x2=x\\

\%b
errorl=norm(A*x1-y,2)*2/norm(y,2)"2;\\
error2=norm(A*x2-y,2)*2/norm(y,2)2;\\
errorl\\

error2\\

\%c
templ=zeros(length(x),1);\\
for i=1:26\\
[val,pos]=max(abs(x1));\\
temp(pos)=x1(pos);\\
x1(pos)=0;\\

end\\
temp2=zeros(length(x),1);\\
for i=1:26\\
[val,pos]=max(abs(x2));\\
temp2(pos)=x2(pos);\\
x2(pos)=0;\\



end\\
errorl_5=norm(A*temp1-y,2)*2/norm(y,2)"2;\\
error2_5=norm(A*temp2-y,2)*2/norm(y,2)*2;\\
errorl_5\\

error2_5\\

figure(1)\\

hold all;\\

plot(A*temp1)\\

plot(A*temp2)\\

plot(y)\\

ylable('A*x")\\

legend(['l-1 err=', num2str(error1_5)],['l-2 err=', num2str(error2_5)],"y')\\

\%d

x1=x1+temp1;\\

end\\
templ=zeros(length(x),1);\\
for i=1:ceil(512*.03)\\
[val,pos]=max(abs(x1));\\
temp1(pos)=x1(pos);\\
x1(pos)=0;\\

end\\

x2=x2+temp2;\\
temp2=zeros(length(x),1);\\
for i=1:ceil(512*.03)\\
[val,pos]=max(abs(x2));\\
temp2(pos)=x2(pos);\\
x2(pos)=0;\\

end\\
errorl_3=norm(A*templ-y,2)*2/norm(y,2)"2;\\
error2_3=norm(A*temp2-y,2)"2/norm(y,2)*2;\\
figure(2)\\

hold all;\\

plot(A*temp1)\\
plot(A*temp2)\\

plot(y)\\

ylable('A*x")\\

legend(['lI-1 err=', num2str(errorl_3)],['l-2 err=', num2str(error2_3)],"y')\\
x2=x2+temp2;\\
temp2=zeros(length(x),1);\\
for i=1:ceil(512*.18)\\
[val,pos]=max(abs(x2));\\
temp2(pos)=x2(pos);\\
x2(pos)=0;\\



end\\

x1=x1+temp1;\\
templ=zeros(length(x),1);\\
for i=1:ceil(512*.01)\\
[val,pos]=max(abs(x1));\\
temp1(pos)=x1(pos);\\
x1(pos)=0;\\

end\\

x2=x2+temp2;\\
temp2=zeros(length(x),1);\\
for i=1:ceil(512*.01)\\
[val,pos]=max(abs(x2));\\
temp2(pos)=x2(pos);\\
x2(pos)=0;\\

end\\

errorl_1=norm(A*temp1l-y,2)*2/norm(y,2)*2;\\
error2_1=norm(A*temp2-y,2)*2/norm(y,2)"2;\\

figure(3)\\

hold all;\\

plot(A*temp1)\\

plot(A*temp2)\\

plot(y)\\

ylable('A*x')\\

legend(['l-1 err=', num2str(errorl_1)],['l-2 err=', num2str(error2_1)],'y')\\
end\\
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Figure 1: Norm Compression Comparision 5%

5% compressed
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Figurce 2: Norm Compression Comparision 3%

3% compressed
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Figure 3: Norm Compression Comparision 1%

1% compressed
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