University of Waterloo Department of Electrical and Computer Engineering Winter, 2016

FINAL EXAMINATION ECE 602

Surname				
Legal Given Name(s)				
UW Student ID Number				

Instruction:

- 1. There are 100 marks.
- 2. This is a written, closed-book exam. Please turn off all electronic media and store them under your desk.
- 3. Be neat. Poor presentation will be penalized.
- 4. No questions will be answered during the exam. If in doubt, state your assumption(s) and continue.
- 5. Do not leave during the examination period.
- 6. Do not stand up until all exams have been picked up.

Question 1 (10 points)

Let $C \subset \mathbf{R}^n$ be the solution set of a quadratic inequality

$$C = \left\{ x \in \mathbf{R} \mid x^T A x + b^T x + c \le 0 \right\}$$

with $A \in \mathbf{S}^n$, $b \in \mathbf{R}$, and $c \in \mathbf{R}$. Show that C is convex if $A \succeq 0$. Is the converse of this statement true?

Hint: A set is convex if and only if its intersection with an arbitrary line is convex.

Question 2 (15 points)

For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.

- 1. $f(x) = e^x 1$ on **R**.
- 2. $f(x_1, x_2) = x_1 x_2$ on \mathbf{R}^2_{++} .
- 3. $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbf{R}^2_{++} .
- 4. $f(x_1, x_2) = x_1/x_2$ on \mathbf{R}^2_{++} .
- 5. $f(x_1, x_2) = x_1^2/x_2$ on $\mathbf{R} \times \mathbf{R}_{++}$.

Question 3 (10 points)

Prove that if f and g are convex, both nondecreasing (or nonincreasing), and positive functions on an interval, then $f \cdot g$ is convex.

Question 4 (10 points)

- 1. Define $g(x) = f(x) + c^T x + d$, where f is convex. Express g^* in terms of f^* (and c, d).
- 2. Express the conjugate of the perspective of a convex function f in terms of f^* .

Question 5 (10 points)

Consider an LP in inequality form,

minimize $c^T x$ subject to $a_i^T x \le b_i$, $i = 1, 2, \dots, m$,

in which there is some uncertainty in the parameters a_i . In particular, a_i are known to lie in given ellipsoids $a_i \in \mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \leq 1\}$, where $P_i \in \mathbb{R}^{n \times n}$. Express this robust LP as a SOCP.

Question 6 (10 points)

Prove that $x^* = (1, 1/2, -1)$ is optimal for the optimization problem

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $-1 \le x_i \le 1$, $i = 1, 2, 3$,

where

$$P = \begin{bmatrix} 13 & 12 & -2\\ 12 & 17 & 6\\ -2 & 6 & 12 \end{bmatrix}, \quad q = \begin{bmatrix} -22.0\\ -14.5\\ 13.0 \end{bmatrix}, \quad r = 1.$$

Question 7 (15 points)

Formulate the following problems as LPs.

- 1. min $||Ax b||_1$ subject to $||x||_{\infty} \leq 1$.
- 2. min $||x||_1$ subject to $||Ax b||_{\infty} \le 1$.
- 3. min $||Ax b||_1 + ||x||_{\infty}$.

In each problem, $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$ are given.

Question 8 (10 points)

Derive a Lagrange dual for the problem

minimize
$$\sum_{i=1}^{m} \phi(r_i)$$

subject to $r = Ax - b_i$

where

$$\phi(u) = \begin{cases} u^2, & |u| \le 1\\ 2|u| - 1, & |u| > 1. \end{cases}$$

Question 9 (10 points)

Consider the problem

minimize
$$f(x) = \sum_{i=1}^{n} \psi(x_i - y_i) + \lambda \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$$
,

where $\lambda > 0$ is a smoothing parameter, ψ is a convex penalty function, and $x \in \mathbb{R}^n$ is the variable. What is the structure of the Hessian of f?

QUESTION 1

Solution. A set is convex if and only if its intersection with an arbitrary line $\{\hat{x}+tv \mid t \in \mathbf{R}\}$ is convex.

(a) We have

$$(\hat{x} + tv)^T A(\hat{x} + tv) + b^T (\hat{x} + tv) + c = \alpha t^2 + \beta t + \gamma$$

where

$$\alpha = v^T A v, \qquad \beta = b^T v + 2 \hat{x}^T A v, \qquad \gamma = c + b^T \hat{x} + \hat{x}^T A \hat{x}.$$

The intersection of C with the line defined by \hat{x} and v is the set

$$\{\hat{x} + tv \mid \alpha t^2 + \beta t + \gamma \le 0\},\$$

which is convex if $\alpha \ge 0$. This is true for any v, if $v^T A v \ge 0$ for all v, *i.e.*, $A \succeq 0$. The converse does not hold; for example, take A = -1, b = 0, c = -1. Then $A \not\ge 0$, but $C = \mathbf{R}$ is convex.

QUESTION 2

- (a) f(x) = e^x 1 on R.
 Solution. Strictly convex, and therefore quasiconvex. Also quasiconcave but not concave.
- (b) $f(x_1, x_2) = x_1 x_2$ on \mathbf{R}^2_{++} . Solution. The Hessian of f is

$$abla^2 f(x) = \left[egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight],$$

which is neither positive semidefinite nor negative semidefinite. Therefore, f is neither convex nor concave. It is quasiconcave, since its superlevel sets

$$\{(x_1, x_2) \in \mathbf{R}^2_{++} \mid x_1 x_2 \ge \alpha\}$$

are convex. It is not quasiconvex.

(c) $f(x_1, x_2) = 1/(x_1x_2)$ on \mathbf{R}^2_{++} . Solution. The Hessian of f is

$$abla^2 f(x) = rac{1}{x_1 x_2} \left[egin{array}{cc} 2/(x_1^2) & 1/(x_1 x_2) \ 1/(x_1 x_2) & 2/x_2^2 \end{array}
ight] \succeq 0$$

Therefore, f is convex and quasiconvex. It is not quasiconcave or concave.

(d) $f(x_1, x_2) = x_1/x_2$ on \mathbf{R}^2_{++} . Solution. The Hessian of f is

$$abla^2 f(x) = \left[egin{array}{cc} 0 & -1/x_2^2 \ -1/x_2^2 & 2x_1/x_2^3 \end{array}
ight]$$

which is not positive or negative semidefinite. Therefore, f is not convex or concave. It is quasiconvex and quasiconcave (*i.e.*, quasilinear), since the sublevel and superlevel sets are halfspaces.

(e) f(x₁, x₂) = x₁²/x₂ on R × R₊₊.
 Solution. f is convex, as mentioned on page 72. (See also figure 3.3). This is easily verified by working out the Hessian:

$$\nabla^2 f(x) = \begin{bmatrix} 2/x_2 & -2x_1/x_2^2 \\ -2x_1/x_2^2 & 2x_1^2/x_2^3 \end{bmatrix} = (2/x_2) \begin{bmatrix} 1 \\ -2x_1/x_2 \end{bmatrix} \begin{bmatrix} 1 & -2x_1/x_2 \end{bmatrix} \succeq 0.$$

Therefore, f is convex and quasiconvex. It is not concave or quasiconcave (see the figure).

QUESTION 3

Solution.

(a) We prove the result by verifying Jensen's inequality. f and g are positive and convex, hence for 0 ≤ θ ≤ 1,

$$\begin{aligned} f(\theta x + (1 - \theta)y) g(\theta x + (1 - \theta)y) &\leq (\theta f(x) + (1 - \theta)f(y)) (\theta g(x) + (1 - \theta)g(y)) \\ &= \theta f(x)g(x) + (1 - \theta)f(y)g(y) \\ &+ \theta (1 - \theta)(f(y) - f(x))(g(x) - g(y)). \end{aligned}$$

The third term is less than or equal to zero if f and g are both increasing or both decreasing. Therefore

$$f(\theta x + (1 - \theta)y) g(\theta x + (1 - \theta)y) \le \theta f(x)g(x) + (1 - \theta)f(y)g(y).$$

QUESTION 4

(a) Conjugate of convex plus affine function. Define g(x) = f(x) + c^Tx + d, where f is convex. Express g* in terms of f* (and c, d).
 Solution.

$$g^*(y) = \sup(y^T x - f(x) - c^T x - d)$$

= $\sup((y - c)^T x - f(x)) - d$
= $f^*(y - c) - d.$

(b) Conjugate of perspective. Express the conjugate of the perspective of a convex function f in terms of f^{*}. Solution.

$$g^{*}(y,s) = \sup_{x/t \in \text{dom } f,t>0} (y^{T}x + st - tf(x/t))$$

=
$$\sup_{t>0} \sup_{x/t \in \text{dom } f} (t(y^{T}(x/t) + s - f(x/t)))$$

=
$$\sup_{t>0} t(s + \sup_{x/t \in \text{dom } f} (y^{T}(x/t) - f(x/t)))$$

=
$$\sup_{t>0} t(s + f^{*}(y))$$

=
$$\begin{cases} 0 & s + f^{*}(y) \le 0 \\ \infty & \text{otherwise.} \end{cases}$$

QUESTION 5

See the textbook.

QUESTION 6

Solution. We verify that x^* satisfies the optimality condition (4.21). The gradient of the objective function at x^* is

$$\nabla f_0(x^*) = (-1, 0, 2).$$

Therefore the optimality condition is that

$$abla f_0(x^*)^T(y-x) = -1(y_1-1) + 2(y_2+1) \ge 0$$

for all y satisfying $-1 \leq y_i \leq 1$, which is clearly true.

QUESTION 7

(c) Equivalent to the LP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T y\\ \text{subject to} & -y \preceq Ax - b \preceq y\\ & -\mathbf{1} \leq x \leq \mathbf{1}, \end{array}$

with variables $x \in \mathbf{R}^n$ and $y \in \mathbf{R}^m$.

(d) Equivalent to the LP

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T y\\ \text{subject to} & -y \leq x \leq y\\ & -\mathbf{1} \leq Ax - b \leq \mathbf{1} \end{array}$$

with variables x and y.

(e) Equivalent to

minimize
$$\mathbf{1}^T y + t$$

subject to $-y \preceq Ax - b \preceq y$
 $-t\mathbf{1} \preceq x \preceq t\mathbf{1},$

with variables x, y, and t.

QUESTION 8

Solution. We first derive a dual for general penalty function approximation. The Lagrangian is

$$L(x,r,\lambda) = \sum_{i=1}^m \phi(r_i) +
u^T (Ax - b - r).$$

The minimum over x is bounded if and only if $A^T \nu = 0$, so we have

$$g(\nu) = \begin{cases} -b^T \nu + \sum_{i=1}^m \inf_{r_i} (\phi(r_i) - \nu_i r_i) & A^T \nu = 0\\ -\infty & \text{otherwise.} \end{cases}$$

Using

$$\inf_{r_i} (\phi(r_i) - \nu_i r_i) = - \sup_{r_i} (\nu_i r_i - \phi(r_i)) = -\phi^*(\nu_i),$$

we can express the general dual as

maximize
$$-b^T \nu - \sum_{i=1}^m \phi^*(\nu_i)$$

subject to $A^T \nu = 0.$

Huber penalty.

$$\phi^*(z) = \left\{ egin{array}{cc} z^2/4 & |z| \leq 2 \ \infty & ext{otherwise}, \end{array}
ight.$$

so we get the dual problem

$$\begin{array}{ll} \text{maximize} & -(1/4) \|\nu\|_2^2 - b^T \nu \\ \text{subject to} & A^T \nu = 0 \\ & \|\nu\|_\infty \leq 2. \end{array}$$

QUESTION 9

Tridiagonal.