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Instruction:

1. There are 100 points in total.

2. This is a written, open-book exam (only annotated lecture slides are allowed). Please turn
off all electronic media and store them under your desk.

3. Be neat. Poor presentation will be penalized.

4. No questions will be answered during the exam. If in doubt, state your assumption(s)
and continue.

5. Do not leave during the examination period without permission.

6. Do not stand up until all the exams have been picked up.

Do well!



Question 1 (20 points)

Suppose p < 1, p # 0. Show that the function

n 1/p
flz) = (Z ﬁ) , with domf=R",,
i=1
18 concave.

Hint: To prove that V2f(x) is negative semi-definite, it is sufficient to show that

vIV2f(x)v <0, VYoveR™

Question 2 (20 points)

Consider the problem, with variable z € R,
minimize ¢’
subject to Ax <b forall A€ A,
where A € R™*" is the set
A={AeR™" | Ay; -V <Ay <Ay+Vy, i=1,....m, j=1,...,n},

with some given matrices A and V. This problem can be interpreted as an LP where each coefficient
of A is only known to lie in an interval, and we require that x must satisfy the constraints for all
possible values of the coefficients.

Express this problem as an LP.

Question 3 (20 points)

Consider the following unconstrained geometric program with the variable x € R"”
minimize, log (Z exp(a] z + bz)> :
i=1

for some given aq,as, ..., a,, € R™ and by, bs,...,b, € R. This problem can be reformulated in an
equivalent constrained form by introducing an additional optimization variable y € R™ defined as

y= Ax + b,

with A = [a az ...am]T € R™™ and b = [by by ...bm]T € R™. The equivalent problem can then
be defined as

minimize,, ) fo(y) = log (Z exp yz>
i=1
subject to Ax+b=wy.

Derive the dual form of the above optimization problem.
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Question 4 (20 points)

Consider the following linear program
minimize ¢
subject to Ax =b
[ <z =<u

with some given c,u,l € R", b € R™, and A € R™*". This problem can be equivalently reformu-
lated as

minimize fo(x)
subject to Ax = b,

for some extended-value function fy : R™ — (—o0, +00].

a) Find an explicit definition of the function fy(z). Is the function convex? Is it closed?

b) Find the dual function g(v) for the equivalent problem above, where v € R™ is the vector of
Lagrange multipliers.

¢) Formulate the corresponding dual problem.

Hint: The final answer should involve maximization (with respect to v € R™) of a piece-wise
linear function whose definition depends on the same given ¢, b, u,l and A, as well as on the use of
functions (-)* : R” — R and (-)” : R = R} and (-)~ : R* — R defined as given by

(y){ =max{y;,0}  and  (y); = max{—y,;, 0}, VyeR"

Question 5 (20 points)

Formulate the following robust approximation problems as LPs, QP, SOCPs, or SDPs. For each
subproblem, consider the ¢1-, ¢5-, and the {,,-norms.

a) Stochastic robust approzimation with a finite set of parameter values:
k
minimize ZpiHAix - b,
i=1

where p = 0 and 17p = 1. Both A;, Ay, ..., A, € R™™ and b € R™ are assumed to be given.

b) Worst-case robust approximation with coefficient bounds:

minimize sup ||Ax — bl|,
AcA

where
A:{AERmxn‘lijSCLUSUi]’, izl,...,m, jzl,,n}

Note that here the uncertainty set is described by giving upper and lower bounds for the
components of A. It is assumed that {l;;} and {u;;} are given and that {;; < u;;, V(, 7).



SOLUTIONS
Question 1

Solution. The first derivatives of f are given by

0f(z) _ N~ paempoe1_ (f@Y

The second derivatives are
Of(z) _1-p (f(a:)>_p (m) _1-p <f<m>2)1"”
Ox:0x; T T T f(x) \ ziz;
for ¢ # 7, and X )
Of(@) _1-p (f@:)?) T 1-p (Lx)) N
67~ [@) \ o7 wo\wm )
We need to show that

yTV2 f(z)y = 110(;;;7 ((Z yzj;(lx_) ) Z y; (23cp > <0

This follows by applying the Cauchy-Schwarz inequality a”b < ||a||2||b||2 with

—p/2 1-p/2
a; = (@) , bi = y; (%) )

and noting that ) af = 1.

Question 2

Solution. The problem is equivalent to

minimize cl'z

subject to Az + V|z| < b
where |x| = (|z1], |x2|, ..., |Zn|). This in turn is equivalent to the LP
minimize c_Tx
subject to Ax+Vy <b
—y=zr =y

with variables x € R"™, y € R".



Question 3

Now let us reformulate the problem as

minimize  fo(y)
subject to Ax +b=uy.

Here we have introduced new variables y, as well as new equality constraints Ax +
b=uy.
The Lagrangian of the reformulated problem is

L(z,y,v) = fo(y) + v (Az + b —y).

To find the dual function we minimize L over x and y. Minimizing over z we find
that g(v) = —oco unless ATv = 0, in which case we are left with

gv) =b"v+ inf(fo(y) - vly) =b"v — f(v),

where f§ is the conjugate of fy. The dual problem can therefore be expressed
as

maximize bTv — f}(v)

subject to ATv =0.

The conjugate of the log-sum-exp function is

S ylogy, v=0,1Tv=1

i=1
00 otherwise

fo(w) ={

so the dual of the reformulated problem can be expressed as

maximize bTv — Z:r;l v; logv;
subject to 1Ty =1

ATy =0

v =0,

which is an entropy maximization problem.

Question 4

We can, of course, derive the dual of this linear program. The dual will have a
Lagrange multiplier v associated with the equality constraint, A\; associated with the
inequality constraint x < u, and A2 associated with the inequality constraint [ <X z.
The dual is
maximize —bTv — Au+ A\l
subject to ATv4+ X1 — X2 +c=0
A1 =0, A2>=0.



Instead, let us first reformulate the problem as

minimize  fo(x)
subject to Az = b,

where we define
T

fo(fli):{ cx [z=<u

00 otherwise.

The dual function for the problem is

glv) = inf (cTa: +v (Az — b))

1<z=<u
= bv—u(ATv+e) +1T(ATv+ )T
where y;7 = max{y;,0}, y; = max{—y;,0}. So here we are able to derive an analyt-
ical formula for g, which is a concave piecewise-linear function.

The dual problem is the unconstrained problem

maximize —bTv —uT(ATv+¢)” +1T(ATv +¢)"

Question 5

(a) Stochastic robust approzimation with a finite set of parameter values, i.e., the sum-
of-norms problem

minimize Zle pi||Aix — b||
where p > 0 and 17p = 1.
Solution.

e /i-norm:
minimize Zle pilTy;
subject to —y; R Aix —b=<y;, 1=1,...,k.
An LP with variables z € R", y; e R™,i=1,...,k.
e /2-norm:
minimize pTy
subject to  ||Aiz —b|l2 <wyi, i=1,...,k.
An SOCP with variables z € R", y € RF.
e /s -norm:
minimize p’y
subject to —y;1 < Aixz—-b<yl, i=1,...,k.

An LP with variables z € R™, y € R”.



(b) Worst-case robust approzimation with coefficient bounds:
minimize sup,c 4 ||Az — b]|

where
AZ{AGRmX"HMSaUSuU, z'=1,...,m, ]=1,,n}

Here the uncertainty set is described by giving upper and lower bounds for the
components of A. We assume [;; < u;;.

Solution. We first note that

T T T
sup |a; x—bi| = sup max{a; x — bi,—a; x + b;}
lij<a;j<u;j lij<a;j<ugj

= max{ sup (ajz—0b;), sup (—a]z+b)}.

lij<a;j<u;j lij<a;j<u;j
Now,

sup (Z Q;;Tj — bz) = &;fpx —b; + Z ’Uij|.’17j|

lij<aij<uqj =1
where a;; = (l;; + us;)/2, and vi; = (ui; — lij)/2, and

n

sup (— Z aijx; + b)) = —(_1?.%' +b; + Z vijlzj.

lij<a;;j<u;j =1 =1
Therefore

sup |a?m—bi|— a; a:—b|+va|acJ|

lij<aij<uqj

e /i-norm:
minimize ) ( = bl + D7, vijlzj] ) .

This can be expressed as an LP
minimize 17 (y + Vw)
—y XAz —-b=y

—w <z X Ww.

The variables are z € R", y € R™, w € R".



e /y-norm: )
minimize )", (|&?a: —bi| + Z?:l vij|a:j|) .
This can be expressed as an SOCP
minimize ¢ ~
subject to —y Az —-b=<y

—wzr=w
ly + Vw|2: <t

The variables are x € R", y e R™, w e R",t € R.

e /. o-norm:

minimize max;—1,. m (ld?m —b;| + E?:l vij|mj|) :
This can be expressed as an LP
minimize ¢
—y2Az-b=y

—wzr=w
—t1 R y+Vw < tl.

The variables are x € R", y e R™, w € R", t € R.



