University of Waterloo Department of Electrical and Computer Engineering Winter, 2019

ECE 602: Introduction to Optimization

FINAL EXAMINATION

Surname				
Legal Given Name(s)	 	 	 	
UW Student ID Number				

Instruction:

- 1. There are 100 points in total.
- 2. This is a written, open-book exam (only annotated lecture slides are allowed). Please turn off all electronic media and store them under your desk.
- 3. Be neat. Poor presentation will be penalized.
- 4. No questions will be answered during the exam. If in doubt, state your assumption(s) and continue.
- 5. Do not leave during the examination period without permission.
- 6. Do not stand up until all the exams have been picked up.

Do well!

Question 1 (20 points)

Suppose $p < 1, p \neq 0$. Show that the function

$$f(x) = \left(\sum_{i=1}^{n} x_i^p\right)^{1/p}$$
, with $\operatorname{dom} f = \mathbb{R}_{++}^n$,

is concave.

<u>Hint</u>: To prove that $\nabla^2 f(x)$ is negative semi-definite, it is sufficient to show that

 $v^T \nabla^2 f(x) v \le 0, \quad \forall v \in \mathbb{R}^n.$

Question 2 (20 points)

Consider the problem, with variable $x \in \mathbb{R}^n$,

minimize
$$c^T x$$

subject to $Ax \leq b$ for all $A \in \mathcal{A}$,

where $\mathcal{A} \in \mathbb{R}^{m \times n}$ is the set

$$\mathcal{A} = \left\{ A \in \mathbb{R}^{m \times n} \mid \bar{A}_{ij} - V_{ij} \le A_{ij} \le \bar{A}_{ij} + V_{ij}, \ i = 1, \dots, m, \ j = 1, \dots, n \right\},\$$

with some given matrices \overline{A} and V. This problem can be interpreted as an LP where each coefficient of A is only known to lie in an interval, and we require that x must satisfy the constraints for all possible values of the coefficients.

Express this problem as an LP.

Question 3 (20 points)

Consider the following unconstrained geometric program with the variable $x \in \mathbb{R}^n$

minimize_x
$$\log\left(\sum_{i=1}^{m} \exp(a_i^T x + b_i)\right),$$

for some given $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$ and $b_1, b_2, \ldots, b_m \in \mathbb{R}$. This problem can be reformulated in an equivalent constrained form by introducing an additional optimization variable $y \in \mathbb{R}^m$ defined as

$$y = Ax + b,$$

with $A = [a_1 a_2 \dots a_m]^T \in \mathbb{R}^{m \times n}$ and $b = [b_1 b_2 \dots b_m]^T \in \mathbb{R}^m$. The equivalent problem can then be defined as

minimize_(x, y)
$$f_0(y) = \log\left(\sum_{i=1}^m \exp y_i\right)$$

subject to $Ax + b = y$.

Derive the dual form of the above optimization problem.

Question 4 (20 points)

Consider the following linear program

minimize
$$c^T x$$

subject to $Ax = b$
 $l \leq x \leq u$

with some given $c, u, l \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$. This problem can be equivalently reformulated as

minimize
$$f_0(x)$$

subject to $Ax = b$

for some extended-value function $f_0 : \mathbb{R}^n \to (-\infty, +\infty]$.

- a) Find an explicit definition of the function $f_0(x)$. Is the function convex? Is it closed?
- b) Find the dual function $g(\nu)$ for the equivalent problem above, where $\nu \in \mathbb{R}^m$ is the vector of Lagrange multipliers.
- c) Formulate the corresponding dual problem.

<u>Hint</u>: The final answer should involve maximization (with respect to $\nu \in \mathbb{R}^m$) of a piece-wise linear function whose definition depends on the same given c, b, u, l and A, as well as on the use of functions $(\cdot)^+ : \mathbb{R}^n \to \mathbb{R}^n_+$ and $(\cdot)^- : \mathbb{R}^n \to \mathbb{R}^n_+$ and $(\cdot)^- : \mathbb{R}^n \to \mathbb{R}^n_+$ defined as given by

 $(y)_i^+ = \max\{y_i, 0\}$ and $(y)_i^- = \max\{-y_i, 0\}, \quad \forall y \in \mathbb{R}^n.$

Question 5 (20 points)

Formulate the following robust approximation problems as LPs, QP, SOCPs, or SDPs. For each subproblem, consider the ℓ_1 -, ℓ_2 -, and the ℓ_{∞} -norms.

a) Stochastic robust approximation with a finite set of parameter values:

minimize
$$\sum_{i=1}^{k} p_i \|A_i x - b\|$$

where $p \succeq 0$ and $\mathbf{1}^T p = 1$. Both $A_1, A_2, \ldots, A_k \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are assumed to be given.

b) Worst-case robust approximation with coefficient bounds:

minimize
$$\sup_{A \in \mathcal{A}} ||Ax - b||,$$

where

$$\mathcal{A} = \left\{ A \in \mathbb{R}^{m \times n} \mid l_{ij} \le a_{ij} \le u_{ij}, \ i = 1, \dots, m, \ j = 1, \dots, n \right\}.$$

Note that here the uncertainty set is described by giving upper and lower bounds for the components of A. It is assumed that $\{l_{ij}\}$ and $\{u_{ij}\}$ are given and that $l_{ij} < u_{ij}, \forall (i, j)$.

SOLUTIONS

Question 1

Solution. The first derivatives of f are given by

$$\frac{\partial f(x)}{\partial x_i} = \left(\sum_{i=1}^n x_i^p\right)^{(1-p)/p} x_i^{p-1} = \left(\frac{f(x)}{x_i}\right)^{1-p}.$$

The second derivatives are

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{1-p}{x_i} \left(\frac{f(x)}{x_i}\right)^{-p} \left(\frac{f(x)}{x_j}\right)^{1-p} = \frac{1-p}{f(x)} \left(\frac{f(x)^2}{x_i x_j}\right)^{1-p}$$

for $i \neq j$, and

$$\frac{\partial^2 f(x)}{\partial x_i^2} = \frac{1-p}{f(x)} \left(\frac{f(x)^2}{x_i^2}\right)^{1-p} - \frac{1-p}{x_i} \left(\frac{f(x)}{x_i}\right)^{1-p}.$$

We need to show that

$$y^{T} \nabla^{2} f(x) y = \frac{1-p}{f(x)} \left(\left(\sum_{i=1}^{n} \frac{y_{i} f(x)^{1-p}}{x_{i}^{1-p}} \right)^{2} - \sum_{i=1}^{n} \frac{y_{i}^{2} f(x)^{2-p}}{x_{i}^{2-p}} \right) \le 0$$

This follows by applying the Cauchy-Schwarz inequality $a^T b \leq ||a||_2 ||b||_2$ with

$$a_i = \left(rac{f(x)}{x_i}
ight)^{-p/2}, \qquad b_i = y_i \left(rac{f(x)}{x_i}
ight)^{1-p/2},$$

and noting that $\sum_i a_i^2 = 1$.

Question 2

Solution. The problem is equivalent to

$$\begin{array}{ll}\text{minimize} & c^T x\\ \text{subject to} & \bar{A}x + V|x| \preceq b \end{array}$$

where $|x| = (|x_1|, |x_2|, \dots, |x_n|)$. This in turn is equivalent to the LP

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & \bar{A}x + Vy \preceq b\\ & -y \preceq x \preceq y \end{array}$$

with variables $x \in \mathbf{R}^n$, $y \in \mathbf{R}^n$.

Question 3

Now let us reformulate the problem as

minimize
$$f_0(y)$$

subject to $Ax + b = y$.

Here we have introduced new variables y, as well as new equality constraints Ax + b = y.

The Lagrangian of the reformulated problem is

$$L(x, y, \nu) = f_0(y) + \nu^T (Ax + b - y).$$

To find the dual function we minimize L over x and y. Minimizing over x we find that $g(\nu) = -\infty$ unless $A^T \nu = 0$, in which case we are left with

$$g(
u) = b^T
u + \inf_y (f_0(y) -
u^T y) = b^T
u - f_0^*(
u),$$

where f_0^* is the conjugate of f_0 . The dual problem can therefore be expressed as

maximize
$$b^T \nu - f_0^*(\nu)$$

subject to $A^T \nu = 0$.

The conjugate of the log-sum-exp function is

$$f_0^*(\nu) = \begin{cases} \sum_{i=1}^m \nu_i \log \nu_i & \nu \succeq 0, \ \mathbf{1}^T \nu = 1\\ \infty & \text{otherwise} \end{cases}$$

so the dual of the reformulated problem can be expressed as

 $\begin{array}{ll} \text{maximize} & b^T \nu - \sum_{i=1}^m \nu_i \log \nu_i \\ \text{subject to} & \mathbf{1}^T \nu = 1 \\ & A^T \nu = 0 \\ & \nu \succeq 0, \end{array}$

which is an entropy maximization problem.

Question 4

We can, of course, derive the dual of this linear program. The dual will have a Lagrange multiplier ν associated with the equality constraint, λ_1 associated with the inequality constraint $x \leq u$, and λ_2 associated with the inequality constraint $l \leq x$. The dual is

maximize
$$-b^T \nu - \lambda_1^T u + \lambda_2^T l$$

subject to $A^T \nu + \lambda_1 - \lambda_2 + c = 0$
 $\lambda_1 \succeq 0, \quad \lambda_2 \succeq 0.$

Instead, let us first reformulate the problem as

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Ax = b, \end{array}$$

where we define

$$f_0(x) = \begin{cases} c^T x & l \leq x \leq u \\ \infty & \text{otherwise.} \end{cases}$$

The dual function for the problem is

$$g(\nu) = \inf_{l \le x \le u} \left(c^T x + \nu^T (Ax - b) \right) \\ = -b^T \nu - u^T (A^T \nu + c)^- + l^T (A^T \nu + c)^+$$

where $y_i^+ = \max\{y_i, 0\}, y_i^- = \max\{-y_i, 0\}$. So here we are able to derive an analytical formula for g, which is a concave piecewise-linear function.

The dual problem is the unconstrained problem

maximize
$$-b^T \nu - u^T (A^T \nu + c)^- + l^T (A^T \nu + c)^+$$

Question 5

(a) Stochastic robust approximation with a finite set of parameter values, i.e., the sumof-norms problem

minimize $\sum_{i=1}^{k} p_i \|A_i x - b\|$

where $p \succeq 0$ and $\mathbf{1}^T p = 1$. Solution.

• ℓ_1 -norm:

minimize
$$\sum_{i=1}^{k} p_i \mathbf{1}^T y_i$$

subject to $-y_i \preceq A_i x - b \preceq y_i, \quad i = 1, \dots, k$

An LP with variables $x \in \mathbf{R}^n$, $y_i \in \mathbf{R}^m$, i = 1, ..., k.

• ℓ_2 -norm:

minimize
$$p^T y$$

subject to $||A_i x - b||_2 \le y_i, \quad i = 1, \dots, k.$

An SOCP with variables $x \in \mathbf{R}^n$, $y \in \mathbf{R}^k$.

• ℓ_{∞} -norm:

minimize
$$p^T y$$

subject to $-y_i \mathbf{1} \preceq A_i x - b \leq y_i \mathbf{1}, \quad i = 1, \dots, k.$

An LP with variables $x \in \mathbf{R}^n$, $y \in \mathbf{R}^k$.

(b) Worst-case robust approximation with coefficient bounds:

minimize $\sup_{A \in \mathcal{A}} \|Ax - b\|$

where

$$\mathcal{A} = \{ A \in \mathbf{R}^{m \times n} \mid l_{ij} \le a_{ij} \le u_{ij}, \ i = 1, \dots, m, \ j = 1, \dots, n \}.$$

Here the uncertainty set is described by giving upper and lower bounds for the components of A. We assume $l_{ij} < u_{ij}$.

Solution. We first note that

$$\sup_{l_{ij} \leq a_{ij} \leq u_{ij}} |a_i^T x - b_i| = \sup_{l_{ij} \leq a_{ij} \leq u_{ij}} \max\{a_i^T x - b_i, -a_i^T x + b_i\} \ = \max\{\sup_{l_{ij} \leq a_{ij} \leq u_{ij}} (a_i^T x - b_i), \sup_{l_{ij} \leq a_{ij} \leq u_{ij}} (-a_i^T x + b_i)\}.$$

Now,

$$\sup_{l_{ij} \le a_{ij} \le u_{ij}} (\sum_{j=1}^{n} a_{ij} x_j - b_i) = \bar{a}_i^T x - b_i + \sum_{j=1}^{n} v_{ij} |x_j|$$

where $\bar{a}_{ij} = (l_{ij} + u_{ij})/2$, and $v_{ij} = (u_{ij} - l_{ij})/2$, and

$$\sup_{l_{ij} \le a_{ij} \le u_{ij}} (-\sum_{j=1}^n a_{ij} x_j + b_i) = -ar{a}_i^T x + b_i + \sum_{j=1}^n v_{ij} |x_j|.$$

Therefore

$$\sup_{l_{ij} \leq a_{ij} \leq u_{ij}} |a_i^T x - b_i| = |ar{a}_i^T x - b_i| + \sum_{j=1}^n v_{ij} |x_j|.$$

• ℓ_1 -norm:

minimize
$$\sum_{i=1}^m \left(|\bar{a}_i^T x - b_i| + \sum_{j=1}^n v_{ij} |x_j| \right).$$

This can be expressed as an LP

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T (y + Vw) \\ & -y \preceq \bar{A}x - b \preceq y \\ & -w \preceq x \preceq w. \end{array}$$

The variables are $x \in \mathbf{R}^n$, $y \in \mathbf{R}^m$, $w \in \mathbf{R}^n$.

• ℓ_2 -norm:

minimize
$$\sum_{i=1}^{m} \left(|\bar{a}_i^T x - b_i| + \sum_{j=1}^{n} v_{ij} |x_j| \right)^2$$
.

This can be expressed as an SOCP

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & -y \preceq \bar{A}x - b \preceq y \\ & -w \preceq x \preceq w \\ & \|y + Vw\|_2 \leq t. \end{array}$$

The variables are $x \in \mathbf{R}^n$, $y \in \mathbf{R}^m$, $w \in \mathbf{R}^n$, $t \in \mathbf{R}$.

• ℓ_{∞} -norm:

$$ext{minimize} \quad ext{max}_{i=1,...,m} \left(|ar{a}_i^T x - b_i| + \sum_{j=1}^n v_{ij} |x_j|
ight).$$

This can be expressed as an LP

$$\begin{array}{ll} \text{minimize} & t \\ & -y \preceq \bar{A}x - b \preceq y \\ & -w \preceq x \preceq w \\ & -t\mathbf{1} \preceq y + Vw \leq t\mathbf{1} \end{array}$$

The variables are $x \in \mathbf{R}^n, y \in \mathbf{R}^m, w \in \mathbf{R}^n, t \in \mathbf{R}$.