University of Waterloo Department of Electrical and Computer Engineering Spring, 2023

ECE 602: Introduction to Optimization

FINAL EXAMINATION

Surname						
Legal Given Name(s)						
	1	1		1	 	
UW Student ID Number						
UW Student ID Number						

Instruction:

- 1. There are 100 points in total.
- 2. This is a written, open-book exam. Please turn off all electronic media and store them under your desk.
- 3. Be neat. Poor presentation will be penalized.
- 4. No questions will be answered during the exam. If in doubt, state your assumption(s) and proceed.
- 5. Do not leave during the examination period without permission.
- 6. Do not stand up until all the exams have been picked up.

Do well!

Question 1 (25 points)

Formulate the following problems as LPs.

- a) min $||Ax b||_1$ subject to $||x||_{\infty} \le 1$.
- b) min $||x||_1$ subject to $||Ax b||_{\infty} \le 1$.
- c) min $||Ax b||_1 + ||x||_{\infty}$.

In each problem, $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$ are given.

Question 2 (25 points)

Derive a Lagrange dual for the problem

minimize
$$\sum_{i=1}^{m} \phi(r_i)$$

subject to $r = Ax - b$

where

$$\phi(u) = \begin{cases} u^2, & |u| \le 1\\ 2|u| - 1, & |u| > 1. \end{cases}$$

Question 3 (25 points)

Consider the function $f(\mathbf{x}) = f(x_1, x_2) = (x_1 + x_2)^2$.

- a) Derive the gradient of f(x).
- b) At the point $\mathbf{x}_0 = (0, 1)^T$, consider the search direction $\mathbf{d} = (1, -1)^T$. Show that \mathbf{d} is a descent direction.
- c) Find the stepsize α that minimizes $f(\mathbf{x}_0 + \alpha \mathbf{d})$; that is, what is the result of this exact line search? Provide the value of $f(\mathbf{x}_0 + \alpha \mathbf{d})$.
- d) Derive the Hessian of f(x).
- e) Perform one Newton step with $\alpha = 1$ starting at $\mathbf{x}_0 = (0, 1)^T$ to compute \mathbf{x}_1 . What are \mathbf{x}_1 and $f(\mathbf{x}_1)$?

Question 4 (25 points)

Formulate the following problem as a convex minimization problem. Find the rectangle

$$\mathcal{R} = \{ x \in \mathbb{R}^n \mid u \preceq x \preceq l \}$$

of maximum volume, enclosed in a polyhedron $\mathcal{P} = \{x \mid Ax \leq b\}$. The variables are u and l.

Solutions

Question 1

a) With $t \in \mathbf{R}^m$, the equivalent problem is given by

$$\min_{x,t} \mathbf{1}^T t$$

s.t. $-t \leq Ax - b \leq t$
 $-\mathbf{1} \leq x \leq \mathbf{1}$

with implicit constraint $t \succeq 0$.

b) With $t \in \mathbf{R}^m$, the equivalent problem is given by

$$\min_{x,t} \mathbf{1}^T t$$

s.t. $-t \leq x \leq t$
 $-\mathbf{1} \leq Ax - b \leq \mathbf{1}$

with implicit constraint $t \succeq 0$.

c) With $t \in \mathbf{R}^m$ and $s \in \mathbf{R}$, the equivalent problem is given by

$$\min_{\substack{x,t,s}} \mathbf{1}^T t + s$$

s.t. $-t \preceq Ax - b \preceq t$
 $-s \mathbf{1} \preceq x \preceq s \mathbf{1}$

with implicit constraints $t \succeq 0$ and s > 0.

Question 2

The Lagrangian is given by

$$L(x, r, \nu) = \sum_{i=1}^{m} \phi(r_i) + \nu^T (Ax - b - r) = \sum_{i=1}^{m} \phi(r_i) + (A^T \nu)^T x - \nu^T (b + r).$$

Note that, as a function of x, $L(x, r, \nu)$ is unbounded below unless $A^T \nu = 0$. When the equality holds, we have

$$g(\nu) = \inf_{x} L(x, r, \nu) = -\nu^{T} b + \inf_{r} \left(\sum_{i=1}^{m} \phi(r_{i}) - \nu^{T} r \right) = -\nu^{T} b - \sum_{i=1}^{m} \sup_{r_{i}} (-\phi(r_{i}) + \nu_{i} r_{i}) =$$
$$= -\nu^{T} b - \sum_{i=1}^{m} \phi^{*}(\nu_{i}),$$

where ϕ^* is the convex conjugate of ϕ . Consequently, the dual problem becomes

$$\max_{\nu} -\nu^T b - \sum_{i=1}^m \phi^*(\nu_i), \quad \text{s.t. } A^T \nu = 0.$$

Finally, the convex conjugate of the Huber penalty can be shown to be

$$\phi^*(y) = \begin{cases} y^2/4, & \text{if } |y| \le 2\\ \infty, & \text{otherwise} \end{cases}$$

which results in a QP given by

$$\max_{\nu} -\nu^T b - \|\nu\|_2^2 / 4, \quad \text{s.t.} \ A^T \nu = 0, \ \|\nu\|_{\infty} \le 2.$$

Question 3

- a) The gradient of f is equal to $\nabla f(x) = (2(x_1 + x_2), 2(x_1 + x_2))^T$.
- b) At point $x_0 = [0, 1]^T$, the gradient is equal to $\nabla f(x_0) = (2, 2)^T$. For the direction $d = (1, -1)^T$ to be a strictly descend direction, we must have $\nabla f(x_0)^T d < 0$. Instead, we have

$$\nabla f(x_0)^T d = [2, 2][1, -1]^T = 0.$$

Thus, d is not a strictly descend direction.

c) For an arbitrary $\alpha \geq 0$, we have

$$x = x_0 + \alpha \, d = (0, \, 1)^T + \alpha \, (1, \, -1)^T = (\alpha, \, 1 - \alpha)^T.$$

Consequently,

$$f(x_0 + \alpha d) = (\alpha + 1 - \alpha)^2 = 1$$

The function remains constant along the chosen direction.

d) The Hessian of f is given by

$$\nabla^2 f(x) = \left[\begin{array}{cc} 2 & 2\\ 2 & 2 \end{array} \right].$$

e) Since the Hessian is not invertible, the Newton method cannot be applied in this case.

Question 4

Define $a_{ij}^+ = \max\{a_{ij}, 0\}$ and $a_{ij}^- = \max\{-a_{ij}, 0\}$. Then, $\mathcal{R} \subseteq \mathcal{P}$ if and only if

$$\sum_{i=1}^{n} (a_{ij}^{+} u_j - a_{ij}^{-} l_j) \le b_i, \quad i = 1, 2, \dots, m.$$

Therefore, the maximum volume rectangle is the solution of

$$\max_{u,l} \left(\prod_{i=1}^{n} (u_i - l_i) \right)^{1/n}$$

s.t.
$$\sum_{i=1}^{n} (a_{ij}^+ u_j - a_{ij}^- l_j) \le b_i, \quad i = 1, 2, \dots, m.$$

with implicit constraint $u \succeq l$.