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Optimal Power Control in Interference-Limited
Fading Wireless Channels With Outage-Probability
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Sunil Kandukuri and Stephen Boyd, Fellow, IEEE

Abstract—We propose a new method of power control for
interference-limited wireless networks with Rayleigh fading of
both the desired and interference signals. Our method explictly
takes into account the statistical variation of both the received
signal and interference power and optimally allocates power
subject to constraints on the probability of fading induced outage
for each transmitter/receiver pair. We establish several results for
this type of problem. We establish tight bounds that relate the
outage probability caused by channel fading to the signal-to-in-
terference margin calculated when the statistical variation of
the signal and intereference powers is ignored. This allows us to
show that well-known methods for allocating power, based on
Perron–Frobenius eigenvalue theory, can be used to determine
power allocations that are provably close to achieving optimal
(i.e., minimal) outage probability. We show that the problems of
minimizing transmitter power subject to constraints on outage
probability and minimizing outage probability subject to power
constraints can be posed as a geometric program (GP). A GP is a
special type of optimization problem that can be transformed to a
nonlinear convex optimization problem by a change of variables
and therefore solved globally and efficiently by recently developed
interior-point methods. We also give a fast iterative method
for finding the optimal power allocation to minimize outage
probability.

Index Terms—Fading channels, personal communication
networks, power control, radio communication.

I. INTRODUCTION

W ISE allocation of power is critical in wireless networks
for both longer battery life of the mobile devices and for

increased utilization of the limited wireless spectrum. Power
control provides an intelligent way of determining transmitting
power to achieve the quality of service (QoS) goals in wireless
channels. Because of these benefits, it has been very well
studied [1]–[8]. Traditional power-control schemes whether
centralized [9]–[12] or distributed [8], [13], [14] always assume
quasi-stationarity of the fading wireless channels and base their
power-control schemes on the observed signal-to-interference
ratio (SIR) at the receiver or the knowledge of the gains of
all the links. Thus, the implicit assumption made is that the
power-control updates are made every time the fading state
of the channel changes, i.e., whenever the gain of any link

Manuscript received June 9, 2000; revised January 17, 2001; accepted Jan-
uary 17, 2001. The editor coordinating the review of this paper and approving
it for publication is V. Veeravalli.

The authors are with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305-9510 USA (e-mail: sunilkn@stanford.edu;
boyd@stanford.edu).

Publisher Item Identifier S 1536-1276(02)00183-6.

changes. In wireless communication channels, which exhibit
fast fading where the fades can change within milliseconds
(at 900 MHz and mobile traveling at 60 mph), this might not
always be practical. Very frequent power updates can also
consume a lot of signal processing energy.

In this paper, we propose a power-control scheme in which
the power does not need to be updated whenever the channel
meanders from one fading state to another. Instead, we explic-
itly take into account the statistical variation of the SIR of each
transmitter/receiver pair and optimally allocate power to mini-
mize probability of fading-induced outage (which occurs when
the SIR falls below a threshold ). Thus, in this paper, we
assume that between successive power-control updates, outage
occurs because of fast fading (of both signal and interference)
and that factors such as log-normal shadowing and distance de-
pendent attenuation remain constant. The outage caused varia-
tions in received SIR can be handled by signal processing and
coding.

We find a global solution to this minimum outage-probability
problem by showing that it can be posed as a nonlinear convex
optimization problem. Solution methods for these problems not
only produce the global optimum (efficiently), but also unam-
biguously determine feasibility. This enables us to make QoS
guarantees or determine beforehand whether the services re-
quested by the mobile user can be provided or not. Most im-
portantly, our power-control analysis allows power updates to
be carried out at a time scale far larger than the Rayleigh fading
time scale, which is often the log-normal shadowing time scale.
This is a significant contrast1 compared to the research in the
literature [1]–[14], [17].

Clearly, the probability of outage can be reduced by allocating
power in such a way that each mobile has an extra margin of
SIR, i.e., its SIR is somewhat above the minimum value
required for reception. Increasing the margin of SIR reduces the
probability of outage, but costs extra power. Our method can be
interpreted as an intelligent way to carry out thisad hocmethod
of giving SIR margins to the mobiles. Our method gives each
mobile a margin of SIR that is directly based on the required
probability of fading-induced outage.

Maximizing the minimum SIR present in the system, an
approach known as SIR balancing, is a well-studied topic

1It should be noted that we are referring toclosed-loop power control, which
tracks Rayleigh fading and power control inad hocnetworks, which assume
quasi-stationarity rather thanopen-loop power control, which is done at the log-
normal shadowing time scale [15], [16].
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[10]–[12], [17]. This paper derives the relationship between
SIR margin (for a power-control scheme designed for quasi-sta-
tionary conditions) and the outage probability (for the same
power-control scheme operating in fading conditions). We
obtain upper and lower bounds on the outage probability for a
given SIR margin and show that these bounds are very tight for
high SIR margins. We also get analytical results on the outage
probability achieved by a power-control scheme designed to
maximize SIR margin. While the SIR margin maximizing
power-allocation method is very well studied [6], [7], [12],
[13], [17], there is no literature that addresses power-allocation
methods to minimize outage probability. In this paper, we
propose two methods that minimize outage probability: one
that finds the global optimum, even if other constraints are
included in the problem, and also a fast heuristic based on
Perron–Frobenius theory and existing SIR balancing methods.

Using the above results, we compute the outage probability
attained by the SIR margin maximizing power-allocation
method and find that it is very close to the optimum outage
probability. The practical implication of this fact is very im-
portant. The power updates can still be done using the efficient
SIR margin maximizing power-allocation method, but now the
updates can be done at the log-normal shadowing time scale
rather than every time the channel changes.

We briefly summarize the contributions and findings of the
paper below.

1) This paper offers a unified approach for analyzing power
control in interference-limited fading wireless networks
by analytically studying the relationship between outage
probability and SIR margin.

2) The analytical relationship between the outage proba-
bility and SIR margin is used to give bounds on how
suboptimal the SIR balancing power allocation is for the
problem of achieving minimum outage probability.

3) The problem of power allocation that minimizes outage
probability is shown to be a convex problem that can
be solved globally and efficiently, even when other
constraints (such as on individual powers, total power,
etc.) are included in the power-allocation problem. We
also give a fast heuristic method for solving the basic
outage-probability minimization problem, which is based
on Perron–Frobenius methods.

4) The outage probability obtained by the SIR margin maxi-
mizing power-allocation method is shown to be very close
to the optimal outage probability.

The paper is organized as follows. In Section II, we describe
the system and fading model. In Section III, we derive an ex-
pression for the probability that a mobile experiences fading-in-
duced outage and also some tight bounds that relate the proba-
bility of outage to a margin of SIR, ignoring statistical variation
of the interference and signal powers. In Section IV, we for-
mulate different power-allocation problems to minimize outage
probability, minimize transmit powers, maximize SIR margin
with different constraints, and give different methods for solving
them. In Section V, we give a simple illustrative example.

II. RAYLEIGH–RAYLEIGH FADING ENVIRONMENT

We consider the following setup. We havetransmitters, la-
beled , which transmit at power level , which
are the variables in our optimization problem. We also havere-
ceivers, labeled ; receiver is meant to receive the signal
from transmitter . (By transmitter and receiver, we do not nec-
essarily mean different physical transmitters and receivers; dif-
ferent receivers, for example, might refer to the same physical
receiver with different frequency channels, codes, or antenna
beams in an antenna array.) The power received from transmitter

at receiver , is given by

(1)

The number , which is positive, represents the path gain (not
including fading) from the th transmitter to theth receiver.
This gain term can be interpreted in many ways: it can represent
distance dependent power attenuation, log-normal shadowing,
cross correlations between codes in a code division multiple ac-
cess (CDMA) system, as well as gain dependency on antenna di-
rection. In the analysis below, we assume thatareconstant,
i.e., do not change (much) with time. Therefore, the analysis
holds for a time scale over which the factors that determine
are approximately constant: the distance between transmitters
and receivers does not change much, the log-normal shadowing
does not change much, direction dependent antenna gains do not
change much.

The numbers modelRayleigh fading. They are assumed
to be independent exponentially distributed random variables
with unit mean. (In a Rayleigh fading environment, the received
signal envelope has a Rayleigh distribution; the received signal
power has an exponential distribution [19].) In other words, the
power received at receiverfrom transmitter is an exponen-
tially distributed random variable with mean value

We refer to this situation in which both desired signals and
interference signals are subject to Rayleigh fading, as a
Rayleigh/Rayleigh fading environment. The assumption behind
the Rayleigh/Rayleigh fading environment is that the receiver
gets no direct line-of-sight signal component, either from its
own transmitter or from the interfering transmitters.

We will also assume that the interference from other trans-
mitters is much larger than the white noise in the receivers
and, therefore, ignore receiver noise in our analysis. Both the
Rayleigh/Rayleigh fading environment and this assumption
of interference-limited communication are very realistic in
urban wireless networking environments. Sometimes, the noise
component in the SIR may arise not from just receiver white
noise, but also from cochannel users that are not included in
the power-control problem formulation. This may mean that
the noise is not negligible. One possible way of accounting for
this fact is to assume that there are more thantransmitters
and that the ( )th transmitter transmits power .
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III. OUTAGE PROBABILITY AND CERTAINTY-EQUIVALENT

MARGIN

A. SIR and Outage Probability

The signal power at theth receiver is given by and
the total interference power is given by

The SIR of the th receiver (or transmitter) is given by

Note that in a Rayleigh/Rayleigh fading environment, is a
random variable with what would appear to be a very complex
distribution, since it is the ratio of an exponential random vari-
able to a sum of exponential random variables (with different
means). (We will see later, however, that there is an analytical
expression for its density.)

We assume that the QoS requested is provided when the SIR
exceeds a given threshold . Theoutage probabilityof the
th receiver/transmitter pair is given by

(2)

The outage probability can be interpreted as the fraction of
time the th transmitter/receiver pair experiences an outage due
to fading. Note that in our expression for , we take into ac-
count statistical variation of both received signal power and re-
ceived interference power.

Surprisingly, the outage probability can be expressed in
analytical form; it was derived in [18] (see also [19] and [22]),
although we will use an equivalent form that has not appeared
in the literature, as far as we know. The analytic expression for

is derived from the following result. Suppose are
independent exponentially distributed random variables with
means . Then, we have

We give a self-contained derivation of this result in Appendix I.
We can include the effect of an additive white Gaussian noise

(AWGN) in the receivers, which introduces a constantin the
interference term, so the expression above becomes

This greatly complicates the analysis and resulting optimization
problems, so we assume in the sequel that AWGN is not present

or, more accurately, insignificant compared to the interference
powers.

Applying the result above to (2), we find that the outage prob-
ability for the th transmitter/receiver pair can be expressed as

(3)

We define the worst outage probability over all transmitter/re-
ceiver pairs as

and simply refer to as theoutage probability of the system.
(More accurately, it is the maximum of the outage probabili-
ties of the transmitter/receiver pairs.) The outage probability
serves as a simple figure of merit for the system and power al-
location.

B. Certainty-Equivalent Margin

We now consider thecertainty-equivalent systemin which we
ignore all statistical variation of both signal and noise power
by replacing these random variables with their expected values.
The certainty-equivalent signal power at theth receiver is then

and the certainty-equivalent interference power at the
th receiver is given by . We define the certainty-

equivalent SIR at theth receiver as

(4)

We can interpret as follows: it is what the signal-to-in-
terference of theth transmitter/receiver pair would be, if the
fading state of the system were .

We also define

which is the minimum certainty-equivalent SIR of the system
over all transmitter/receiver pairs. We refer to as, simply,
the certainty-equivalent SIR. Like the outage probability

, gives a figure of merit for the system and power
allocation.

We define the certainty-equivalent margin (CEM) of the
system and power allocation as the ratio of the certainty-equiv-
alent SIR to the signal-to-interference reception threshold

(5)

Clearly, there is a relation between and : when
is large (which means that the SIR, ignoring statistical variation,
is well above the minimum required for reception), we should
have small . The relation between and is the topic of
Section III-C.
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Fig. 1. Upper and lower bound on outage probabilityO as a function ofCEM.

C. Relation Between the CEM and Outage Probability

In this section, we derive some bounds between the CEM and
the outage probability. We use the following result (derived in
Appendix II): if , then

(6)

By definition, we have

Using the right-hand inequality in (6), we get

In a similar way, using the left-hand inequality in (6), we have

Putting these two inequalities together, we have the bounds

(7)

A plot of these bounds is given in Fig. 1. From the plot, it is
clear that for outage probabilities of interest, i.e., those smaller
than 20% or so, the lower and upper bounds are very close,
within about 5%. For larger (and smaller outage prob-
ability), the bounds are much closer, confirming our intuition
that the CEM and outage probability are closely related. Fig. 2
shows the ratio of the upper to the lower bound as a function of

. This plot shows that the bounds are very close for outage
probabilities smaller than 10% or so and not far from each other
even for small (and large ). For example, with
equal to one, the probability of outage is at least 50%, but no
more than 63.3%.

IV. OPTIMAL POWER ALLOCATION

In this section we consider the problems of finding the power
allocations that maximize the CEM, minimize transmit powers,
and minimize the outage probability, respectively. The problem
of minimizing outage probability can be expressed as

minimize

subject to (8)

and the problem of maximizing the CEM can be expressed as
the optimization problem

maximize

subject to (9)
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Fig. 2. Ratio of upper to lower bound on outage probabilityO as function ofCEM.

In these problems, the variables are the powers . The
constants and , , are problem parame-
ters. We will assume that .

We observe that the objective functions are homogeneous,
i.e., if we scale all powers by any (positive) scale factor,and

remain the same. In other words, outage probability and
CEM depend only on the ratios of the powers. Since the con-
straints are also homogeneous, it follows that ifis an
optimal power-allocation vector (for either problem), then so is

, for any .
We will let denote a power-allocation vector that is op-

timal for the problem (8), i.e., that minimizes the outage prob-
ability. Similarly, we will let denote a power-allocation
vector that is optimal for the problem (9), i.e., that maximizes
the CEM.

Our next observation is that in each problem, the optimum
is acheived with the values of the maximum (for minimizing

) or minimum (for maximizing ) all equal. Let us first
consider the problem (8) of minimizing the outage probability.
We claim that at an optimal power allocation , the outage
probabilities of each transmitter/receiver pair must be equal. In
other words, we have

where denotes the minimal value of outage probability.
To establish the result, we first observe thatis monotone

increasing in for and monotone decreasing in .

Now suppose that not all are equal. Choose an index
for which . Now, if we decrease ,

increases and all other decrease. It follows that if we
decrease by a small amount, will decrease.
However, this contradicts the assumption that minimizes

.
The analogous result holds for the problem (9) of maximizing

. In this problem, we observe that each is monoton-
ically increasing in and monotonically decreasing in for

. Arguing exactly as above, we conclude that we must have

where is the maximal value of .

A. Maximizing CEM

In the field of wireless networks, power control by maxi-
mizing CEM has been well studied and understood [2], [7],
[10]–[12], [17], [23]–[25]. It is based on the Perron–Frobenius
theorem for the maximum eigenvalue of a matrix that has non-
negative elements [2].

Using our observation that at the optimum, are all
equal, we can reformulate the problem (9) as

maximize

subject to
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where is another variable, whose optimal value is the optimal
value of . Substituting the variable , we can ex-
press this problem as

minimize

subject to

where the matrix is defined as

We recognize the problem above as an eigenvalue problem
in which the matrix has all entries nonnegative. According
to Perron–Frobenius theory, the eigenvalueof that is
largest in magnitude is real and positive and has an associated
eigenvector all of whose components are positive. (Here, we
use the fact that is not cyclic or reducible, which follows
from .) The eigenvector (and associated eigenvalue

) are called the Perron–Frobenius eigenvector (eigenvalue) of
. The Perron–Frobenius eigenvectorgives an optimal power

allocation, i.e., maximizes CEM. The optimal CEM
is exactly .

Even though the above optimal solution assumes a centralized
controller, there exist distributed methods to achieve the same
solution [7], [13], [14] (actually, the specified SIRs on each
link are achieved rather than the SIRs that maximize CEM).
As mentioned before, these distributed algorithms assume that
link gains remain constant. However, it can easily be modified
for the Rayleigh fading channel with the accompanying penalty
of having outage as below. The distributed algorithm, in a time
slotted system, is iterative and uses the value of its link gain
and the received interference value in the previous time slot for
computing the power to be transmitted in the current time slot.
For a Rayleigh fading channel with gain changing from slot to
slot instead of using just the values in the previous time slot, we
could average the values over the previous few slots to obtain the
values of its link gain and the interference at the receiver.
This effectively averages out the Rayleigh fading components

(approximately). The number of time slots over which the
average is taken depends determines the tradeoff between get-
ting an accurate estimate of the parametersand the rate of
convergence of the algorithm. Using this method, we update the
power only once in a few slots rather than every slot.

1) Relation Between Optimal and Optimal Allo-
cations: Using the bounds of Section III, we can show that
a power allocation that maximizes CEM (which can be
found by computing the Perron–Frobenius eigenvector of an

matrix) is not too far from minimizing outage probability.
Let denote an arbitrary power allocation (with ).

Then, we have

since, by definition, maximizes CEM. It follows that

[since the function mapping into is monotone
decreasing for ]. Combining this inequality with the
left-hand bound in (7), we have

This inequality holds for all , so we have

where denotes the minimum possible outage probability, i.e.,
the optimal value of the problem (8).

From this inequality, we can make several conclusions. First
of all, if we compute (by solving a Perron–Frobenius
eigenvalue problem), then we can bracket: it is certainly
between the lower bound and the upper
bound . These bounds are often extremely close and
in any case never far apart. Indeed, since

we always have

Since the ratio of these bounds is often near one and never far
from one, it follows that maximizing CEM is often very nearly
the same as minimizing outage probability and provably never
very suboptimal.

B. Minimizing Transmitter Powers

In this section, we consider the problem of minimizing total
transmitter power subject to either outage (or CEM) constraints
and bounds on individual powers. We show that the problem
of power allocation with constraints on the outage probability,
as well as other constraints such as limits on the individual
powers, can be expressed as a special type of optimization
problem called geometric programming (see Appendix III).

To minimize the total transmit power, subject to the constraint
that each transmitter/receiver attain a maximum allowed outage
probability (i.e., a minimum allowed QoS) and subject to limits
on the individual transmitter powers, we form the problem

minimize

subject to

(10)

Here, and are the minimum and maximum trans-
mitter power for transmitter; the maximum might be depen-
dent on the transmitter hardware and the minimum value guar-
antees that the white noise at receiver is overcome. The number

is the maximum allowed outage probability for theth
transmitter/receiver. Note that these can be the same or different
for each pair, allowing different QoS to be assigned to different
users.

Evidently, the outage-probability constraints are
the challenging ones, since is a highly nonlinear function of
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the powers. Using (3), we can express the outage-probability
constraint as

which, in turn, we can express as

(11)

Since each of the terms is a posynomial
function (see Appendix III) of the powers, we conclude that the
left-hand side of the inequality (11) is, in fact, a posynomial
function of the powers .

Using this result, we can express the problem (10) as

minimize

subject to

(12)

This is a geometric program (GP) in the variables .
Therefore, we can solve the power-allocation problem (10)
globally and efficiently using interior-point methods for geo-
metric programming. Note that any other constraints that can
be handled by geometric programming can be added to the
power-allocation problem.

C. Minimum Outage Probability

As mentioned previously, there has not been any work on how
to optimize transmit powers to minimize outage probability.
In this section, we explore how we can minimize the outage
probability efficiently. The problem formulation above (12) can
be slightly modified to minimize the outage probabilityby
solving the GP

minimize

subject to

(13)

with optimization variables and . Here, is an
upper bound on , so when we solve the GP (13), the
optimal value of is , where is the minimal value
of the maximum outage probability. Even though GPs can be
solved efficiently, they still take considerable time compared to
the extremely fast requirement of signal processing at the trans-
ceiver. So, we now propose a faster heuristic to minimize outage
probability (without any minimum/maximum constraints on the
powers).

According to our observation made before that at the op-
timum, all outage probabilities are equal, the problem can be
expressed as

minimize

subject to

(14)

where is another variable. (In fact, the condition that all of
the outage probabilities be equal is not only necessary for op-
timality; it is also sufficient. This follows by examining the
convex form of the problem.) In the remainder of this section
we describe a simple iterative algorithm that, in our experience,
computes within a few iterations, where each iteration con-
sists of solving a Perron–Frobenius eigenvector problem. We do
not have a proof that the method always converges, but we have
never observed a case where it fails to converge in, at most, four
or five iterations.

To motivate our iterative method, we start with the equality
constraints

where is the variable to be minimized. This can be rewritten as

where . Here, the objective is to minimize.
We rewrite these equations in the form

where is to be minimized. This is equivalent to

which we express as , where is the matrix given
by

and .
Now our problem can be stated as finding(with positive

entries) and , which minimize and satisfy the condition
. If we ignore the fact that depends on ,

this problem can be solved as a Perron–Frobenius eigenvector
problem.

We can now describe our iterative method. We start with
, then fix and update by solving the

Perron–Frobenius eigenvector problem . This is re-
peated until does not change, so we have , which
solves the problem of minimizing outage probability. In our ex-
perience, the algorithm always converges in fewer than five or
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Fig. 3. Outage probability versusSIR for a system with 50 wireless links. Dotted curve shows the outage probability achieved both by the exact optimal power
allocation and the outage probability achieved by the power allocation that maximizes CEM (the difference is negligible). Solid curve shows the lower bound on
optimal outage probability based on CEM.

so steps to an accuracy far exceeding any significance for the
engineering problem (i.e., to ten significant figures).

This iterative algorithm requires all the link gains , i.e.,
it is not distributed. So, if one does not have access to the link
gains, one has to fall back on the CEM maximizing (SIR bal-
ancing) method which can be implemented in a distributed way.

V. EXAMPLE

In this section, we give a simple numerical example demon-
strating the results of this paper. We consider a system with 50
transmitters and receivers with Rayleigh/Rayleigh fading and
ambient white-noise power that is insignificant compared to in-
terference power.

Before we proceed with the description of thematrix, it
is useful to recall what the entries represent and what the opti-
mization problem parameters are. The path gaintakes into
account distance dependent attenuation, log-normal shadowing,
antenna gains, and cross correlations between CDMA codes. To
solve the optimization problem of minimizing powers subject to
outage constraints (or the problem of minimizing outage proba-
bility) at any time instant, one requires the values of at that
time instant as input parameters (i.e., one instance of link gains,
not expected value of link gains). Since, is the product of
different time-varying random quantities, we simplify the ex-
ample as described below.

We take all the gains (from th transmitter toth receiver)
to be one and we generate the cross gains, as in-
dependent random variables uniformly distributed between be-
tween zero and 0.001. We only assume that the signal path is

“stronger” than the interference path, since it is only the ratios
of that matter in the absence of white-noise power.

We varied from three to ten and, for each value,
computed and using the CEM maximizing method
and the iterative method, respectively. For each value of ,
we also computed , the outage probability achieved
by , as well as (which is ) and the lower
bound . , and
are plotted in Fig. 3 for different values of . Since each
instance of link gains corresponds to a maximum achievable

as the keep increasing, the CEM [see (5)] keeps
decreasing and the outage probability increases (see Fig. 1)
as shown. The results were found to be similar for different
instances of link gains.

We observe that , the power allocation that maximizes
CEM, also minimizes outage probability for any practical pur-
pose. The differences in outage probabilities obtained by the
power allocation that maximizes CEM and those obtained by
the power allocation that exactly minimize outage probability
were insignificantly small.

VI. CONCLUSION

We have considered the problem of allocating power in a
wireless system, taking into account the statistical fluctuation in
SIR induced by Rayleigh fading. In the general case, we estab-
lish that this problem can be cast as a geometric programming
problem. We show that the problem of minimizing probability
of outage is for all practical purposes solved by maximizing the
CEM, which can be done using Perron–Frobenius eigenvalue
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methods or other iterative distributed methods developed for this
problem. While maximizing this margin is certainly a natural
heuristic for minimizing outage probability, we prove a rigorous
bound on how suboptimal this heuristic can be.

The benefit of the outage-probability minimizing method of
allocating power is that it allows power allocation to be done
on the far longer time scale of log-normal shadowing instead of
the time scale of Rayleigh fading. The disadvantage is a positive
probability of fading-induced outage. (Of course, this disadvan-
tage is also present in a power-allocation method that attempts
to track fading state: for some fading states, allocating power to
guarantee reception for all transmitter/receiver pairs is impos-
sible.)

The important conclusion of the paper is that the SIR max-
imizing method has an outage probability that is almost same
as the optimal outage probability. This means that the current
power-control algorithm forad hocwireless networks [7], [14],
[25] can be implemented at the log-normal shadowing time scale
rather than the Rayleigh fading time scale as outlined in Sec-
tion IV-A.

APPENDIX I
DERIVATION OF PROBABILITY EXPRESSION

In this section, we give a self-contained derivation of the
following result. Suppose are independent exponen-
tially distributed random variables with means .
Then, we have

(15)

To prove this, we note that

(16)

Subtracting this expression from one yields (15).

APPENDIX II
DERIVATION OF BOUNDS ON

In this section, we derive the following inequalities. If
, then

To establish the left-hand inequality, we expand the middle ex-
pression as

The first and second terms are the left-hand side of the inequality
we wish to establish; the third and other remaining terms are
nonnegative, since they consist of sums of products of, which
are nonnegative.

To establish the right-hand inequality, we will derive the
equivalent inequality

This follows from the simple inequality for
.

APPENDIX III
GEOMETRIC PROGRAMMING

Let be real positive variables anddenote the
vector of these variables. A function is called a
posynomialfunction if it has the form

where and . Note that the coefficients must
be nonnegative, but the exponents can be any negative (or
fractional) number. The function is called amonomialfunc-
tion if and , i.e., it consists of one nonzero term.
Posynomials are closed under addition and multiplication.

A GP is an optimization problem of the form

minimize

subject to

(17)

where are posynomial functions and are
monomial functions. Geometric programs were introduced by
Duffin [26]; recent applications include wire and transistor
sizing for digital circuits [27] and op-amp design [28]; see [29].
Using interior-point methods for nonlinear convex program-
ming, originally developed by Nesterov and Nemirovsky [30],
GPs can be solved with great efficiency. Indeed, very large GPs
can be solved using primal-dual interior-point methods; see
[31]–[33].

A GP can be reformulated as aconvex optimization problem,
i.e., the problem of minimizing a convex function subject to
convex inequality constraints and linear equality constraints, by
a change of variables. Suppose thatis a posynomial and define

so that (which automatically enforces the
positivity constraint on ). We define the function
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where and . It can be shown
that is aconvexfunction of the new variable; if the original
function were a monomial, then the functionis affine (i.e.,
linear plus a constant). Applying this change of variable to the
GP (17), we obtain

minimize

subject to

(18)

This is called theconvex formof the GP. It is a (nonlinear)
convex optimization problem, since the objective and inequality
constraint functions are all convex and the equality constraint
functions are affine.

One important consequence is that we can solve GPs glob-
ally with great efficiency using recently developed interior-point
methods (see, e.g., [29] and [30]).
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