
Proceedings of the 2001 IEEEmsl 
International Conference on Intelligent Robots and Systems 
Maui, Haw- USA, Oct. 29 -NOV. 03,2001 

Learning Inverse Kinematics 
Aaron D'Souza, Sethu Vijayakumar and Stefan Schaal 

Computer Science and Neuroscience, "B-103, Univ. of Southern California, Los Angeles, CA 90089-2520 
Kawato Dynamic Brain Project (ERATO/JST), 2-2 Hikaridai, Seika-cho, Soraku-gun, 619-02 Kyoto, Japan 

{ adsouza,sethu,sschaal}Qusc.edu 

Abstract 

Real-time control of the endeffector of a humanoid 
robot in external coordinates requires computationally 
efficient solutions of the inverse kinematics problem. In 
this context, this paper investigates inverse kinemat- 
ics learning for resolved motion rate control (RMRC) 
employing an optimization criterion to resolve kine- 
matic redundancies. Our learning approach is based 
on the key observations that learning an inverse of a 
non uniquely invertible function can be accomplished 
by augmenting the input representation to the inverse 
model and by using a spatially localized learning a p  
proach. We apply this strategy to inverse kinemat- 
ics learning and demonstrate how a recently developed 
statistical learning algorithm, Locally Weighted Projec- 
tion Regression, allows efficient learning of inverse kine- 
matic mappings in an incremental fashion even when 
input spaces become rather high dimensional. The re- 
sulting performance of the inverse kinematics is com- 
parable to Liegeois' [9] analytical pseudo-inverse with 
optimization. Our results are illustrated with a 30 de- 
gree of freedom humanoid robot. 

1 Introduction 

Most movement tasks are defined in coordinate systems 
that are different from the actuator space in which mo- 
tor commands must be issued. Hence, movement plan- 
ning and learning in task space [l, 2,111 require appro- 
priate coordinate transformations from task to actua- 
tor space before motor commands can be computed. 
We will focus on the case where movement plans are 
given as external kinematic trajectories - as opposed 
to complete task-level control laws - on systems with 
many redundant degrees of freedom (DOFs), as typical 
in humanoid robotics (Figure 1). The transformation 
from kinematic plans in external coordinates to internal 
coordinates is the classic inverse kinematics problem, a 
problem that arises from the fact that inverse transfor- 
mations are often ill-posed. If we define the intrinsic co- 
ordinates of a manipulator as the n-dimensional vector 
of joint angles 8 E an, and the position and orientation 
of the manipulator's end effector as the m-dimensional 
vector x E W", the forward kinematic function can 
generally be written as: 

x = f (6)  (1) 

Figure 1: Hu- 
manoid robot in 
our laboratory. 

while what we need is the in- 
verse relationship: 

6 = f - 1  (x) (2) 
For redundant manipulators, 
i.e., n > m, solutions to 
Eq. (2) are usually non-unique 
(excluding the degenerate case 
where no solutions exist at  all), 
and even for n = m mul- 
tiple solutions can exist (e.g., 
[6]). Therefore, inverse kine- 
matics algorithms need to ad- 
dress how to determine a par- 
ticular solution to (2) in face 
of multiple solutions. Heuristic 
methods have been suggested, 
such as freezing DOFs to elim- 
inate redundancy. However, re- 
dundant DOFs are not neces- 
sarily disadvantageous as they 
can be used to optimize addi- 
tional constraints, e.g., manip 
ulability, force constraints, etc. 
Thus it is useful to solve the in- 

verse problem (2) by imposing an optimization crite- 
rion: 

9 = (3) 
where g is usually a convex function that has a unique 
global optimum. 
There are two generic approaches to solving inverse 
kinematics problems with optimization criteria ([4]). 
Global methods find an optimal path of 8 with respect 
to the entire trajectory, usually in computationally ex- 
pensive off-line calculations. In contrast, local meth- 
ods, which are feasible in real time, only compute an 
optimal change in 6,  AO, for a small change in x, Ax 
and then integrate A6 to generate the entire joint space 
path. Resolved Motion Rate Control (RMRC) ([E]) is 
one such local method. It uses the Jacobian J of the 
forward kinematics to describe a change of the endef- 
fector's position as 

jc = J (e) e (4) 

This equation can be solved for e by taking the inverse 
of J if it is square i.e. m = n, and non-singular. For a 

0-7803-66123/01/$10~~~2~1 IEEE 
298 

http://adsouza,sethu,sschaal}Qusc.edu


redundant manipulator n is greater than m, e.g., n = 26 
and m = 3 for our humanoid reaching for an object (ne- 
glecting the 4 DOFs for the eyes), which necessitates 
the use of additional constraints, e.g., the optimization 
criterion g in Eq. (3), to obtain a unique inverse. For in- 
stance, Liegeois 191 suggested a pseudo-inverse solution 
by minimizing g in the null space of J: 

89 e = ~ # x  - (I - J#J) - 
de (5) 

which, for certain cost functions 9, is a special case of 
Baillieul's extended Jacobian method [3, 131 which has 
the general form 

6 = JEIXoug 

where Lug is an augmented input vector [3]. 
The goal of our research is to accomplish solutions to 
RMRC inverse kinematics with statistical learning ap- 
proaches that approximate ( 5 )  and ( 6 ) .  In the next 
sections, we will first discuss the problems of inverse 
kinematics learning and how they can be overcome. Af- 
terwards, we briefly describe a learning algorithm that 
we developed that is ideally suited for the inverse kine- 
matics learning. In the last section will provide evalu- 
ations of inverse kinematics learning algorithm with a 
humanoid robot. 

2 Learning Inverse Kinematics 

Learning of inverse kinematics is useful when the kine- 
matic model of a robot is not accurately available, when 
Cartesian information is provided in uncalibrated cam- 
era coordinates, or when the computational complex- 
ity of analytical solutions becomes too high. Learn- 
ing methods are inherently self-calibrating, preventing 
an accumulation of errors from analytical inverse kine- 
matics computations due to sensor offsets or inaccurate 
knowledge of the robot kinematics. An additional ap- 
pealing feature of learning inverse kinematics is that it 
avoids problems due to kinematic singularities - learn- 
ing works out of experienced data, and such data is 
always physically correct and will not demand impossi- 
ble postures as can result from an ill-conditioned matrix 
inversion. 
The major obstacle in learning inverse kinematics lies in 
the problem that the inverse kinematics of a redundant 
kinematic chain has infinitely many solutions. Thus, 
the learning algorithm has to acquire a particular in- 
verse, and moreover, has to make sure that the inverse 
is actually a valid solution. This latter issue was char- 
acterized in Jordan and Rumelhart [8] as the problem 
of non-convex mappings. In the context of Eq. (4), the 
forward kinematics of a redundant system maps multi- 
ple bi t o  the same x. When learning an inverse mapping 
x 4 8, learning algorithms average over all the solu- 
tions bi, assuming that different 8i for the same x are 
due to noise. Thus, for x 4 6 to be a valid inverse, it 

is required that all bi encountered d_uring training form 
a convex set-otherwise the average bi could become an 
invalid solution to the inverse problem. Unfortunately, 
as shown in Jordan and Rumelhart [8], inverse kine- 
matics has the non-convexity property and therefore, 
does not permit direct learning of the inverse mapping. 
As noted by Bullock et al. [5], it is possible to transform 
the non-convex problem of inverse kinematics learning 
into a convex problem by spatially localizing the learn- 
ing task: within the vicinity of a particular 8, inverse 
kinematics is actually convex. This can be proven eas- 
ily by averaging equation (4) for multiple bi that map 
to the same x: 

Eq. (7) simply demonstrates that a local average bi 
over 8i within the vicinity of a particular 8 will still re- 
sult in a valid solution to the inverse kinematics prob- 
lem. Thus, inverse kinematics learning for a redundant 
system can theoretically be accomplished properly by 
learning a mapping (x,8) + b if a spatially localized 
learning algorithm is employed. 

3 Locally Weighted Projection Regres- 
sion 

Locally weighted projection regression (LWPR) [14] is 
a supervised learning algorithm that is well suited for 
learning the inverses kinematics mapping ( x , O )  + b. 
The key concept of LWPR is to approximate nonlinear 
functions by means of piecewise linear models. The 
region of validity, called a receptive field, of each linear 
model is computed from a Gaussian function: 

where Ck is the center of the ckth linear model, and 
D k  corresponds to a distance metric that determines 
the size and shape of region of validity of the linear 
model. Given an input vector x, each linear model 
calculates a prediction Y k .  The total output of the 
network is the weighted mean of all linear models 

In order to avoid numerical problems due to matrix in- 
versions and to minimize the computational complex- 
ity, the linear models in each receptive field are not 
computed by linear regression but rather by applying a 
sequence of one-dimensional regressions along selected 
projections U, in input space (note that we will drop 
the index k from now on unless it is necessary to dis- 
tinguish explicitly between different linear models) : 

Initialize: y = p0, z = x - xo 

9 = (cf='=, W k Y k )  / (E:='=, w k )  

Fori = 1 : T 

(9) s=u,Tz; y = y + p i s  

z t z - p .  i s  

299 



In order to determine the open parameters in Eq. (9), 
the technique of partial least squares (PLS) regression 
can be adapted from the statistics literature [16]. The 
important ingredient of PLS is to choose projections 
according to the correlation of the input data with 
the output data. The following algorithm, Locally 
Weighted Projection Regression (LWPR), uses an in- 
cremental locally weighted version of PLS to determine 
the linear model parameters: 

Given: A training point (x, y) 
Update means of inputs and outputs: 

x;+l = Awn$ + wx 
Wn+l 

where Wn+' = Awn + w 
Update the local model: 

Initialize: z = x, res = y - ,B,̂ +' 
For i = 1 : r ,  

a) 
b) s = zTu:+' 

c) 

(10) U:+' = XU; + wz . res 

ssi"+l = ASSF + ws2 
d) SR:" = XS&n + ws . res 

end; 
If no linear model is activated more than wgen; 

end; 
create a new RF with r = 2,  c = x, D = Ddef 

end; 

In this pseudo-code algorithm, wgen is a threshold that 
determines when to create a new receptive field, and 
Ddef is the initial (usually diagonal) distance metric 
in Eq. (8). The initial number of projections is set to 
T = 2. The algorithm has a simple mechanism of de- 
termining whether T should be increased by recursively 
keeping track of the mean-squared error (MSE) as a 
function of the number of projections included in a lo- 
cal model, i.e., Step j) in (10). If the MSE at the next 
projection does not decrease more than a certain per- 
centage of the previous MSE, i.e. MSEi+l/MSEi > 4, 
where 4 E [0,1], the algorithm will stop adding new 
projections to the local model. 
As shown in [12], it is even possible to learn the cor- 
rect parameters for the distance metric D in each local 
model based on an incremental cross validation tech- 
nique. This algorithm is directly applicable to LWPR, 
and is strongly simplified, as it only needs to be done 
in the context of univariate regressions. Due to space 
limitations, we will not provide the update rules in this 
paper as they can be derived from [12]. 

3.1 Inverse Kinematics Learning with LWPR 

By using spatially localized receptive fields, LWPR has 
all the prerequisites to learn inverse kinematics. The 
inputs to the learning system are z = (x,O), and the 
outputs are y = 8. x can be in Cartesian coordinates 
if a calibrated 3D tracking system for the endeffector 
exists, but it could also be in uncalibrated image co- 
ordinates of two or more cameras - since LWPR can 

w .  res2 

In the above equations, X E [0,1] is a forgetting factor 
that determines how much older data in the regression 
parameters will be forgotten, similar as in recursive sys- 
tem identification techniques [lo]. The variables SS, 
SR, and SZ are memory terms that enable us to do 
the univariate regression in step f )  in a recursive least 
squares fashion, i.e., a fast Newton-like method. Step g) 
regresses the projection pi from the current projected 
data s and the current input data z. This step guaran- 
tees that the next projection of the input data for the 
next univariate regression will result in a ui+l that is 
orthogonal to U*. 
The above update rules can be embedded in an in- 
cremental learning system that automatically allocates 
new locally linear models as needed [12]: 

Initialize the LWPR with no receptive field (RF); 
For every new training sample (x, y): 

calculate the activation from (8) 
update according to (10) 

For k=l to #RF: 

handle redundant inputs there is no restriction on the 
dimensionality of x. For our humanoid robot, the di- 
mensionality of the input z is 29 (26 DOFs neglecting 
the 4 DOFs for the eyes, plus 3 Cartesian inputs), while 
the dimensionality of the output y is 26. By moving 
the robot while reading values for z and y from the 
sensors, training data is generated that can be added 
incrementally to the learning system - this process is 
often termed self-supervised learning. 

3.1.1 Creating a cost function. 

In the introduction we mentioned that the resolution of 
redundancy requires creating an optimization criterion 
that allows the system to choose a particular solution to 
the inverse kinematics problem. Given that our robot is 
a humanoid robot, we would like the system to assume 
a posture that is as natural as possible. Our definition 
of "natural" corresponds to the posture being as close 
as possible to some default posture Oopt, as advocated 
by behavioral studies [7]. Additionally, each DOF is 

300 



given a weight, which determines the extent of its con- 
tribution to the cost function. Hence the total cost 
function for training LWPR can be written as follows: 

T Q = 5 ( b - 6 )  1 @ - e ) +  d ,,.I . .  

l a  2 (“ - g>’W ( e  - g) (11) 

where A8 = eopt - 8 represents the distance of the 
current posture from the optimal posture Oopt,  W is a 
diagonal weight matrix, and 8, is the current prediction 
of LWPR for z = (x, e). Minimizing Q can be achieved 
by presenting LWPR with the target values: 

8,target = 8, - aW (? 8 - A8 1 (12) 

These targets are composed of the self-supervised tar- 
get 9, slightly modified by a component to  enforce the 
null space optimization criterion. Note that the null 
space optimization will sacrifice some performance in 
tracking accuracy to accomplish the desired null space 
motion towards the optimal posture OOpt.  

3.1.2 Learning o n  the task. 

Our emphasis in this paper is towards learning the in- 
verse kinematics “on the fly”, i.e., while attempting 
to perform the task itself. The problem however, is 
that initially, LWPR has very little (or no) data upon 
which to base its regression. We still however, require 
a command to be sent to  create an output motion of 
the robot. As an exploration strategy, we initially bias 
the output of LWPR with a term that creates a motion 
towards 8,t: 

The strength of the bias decays with the number of 
data points n, seen by the largest contributing local 
model of LWPR. This additional term allows creating 
meaningful (and importantly, data-generating) motion 
even in regions of the joint space that have not yet been 
explored. 
LWPR learns extremely quickly from even very sparse 
data. This can result in jerky and inaccurate move- 
ment during the initial stages of exploration and learn- 
ing. In order to ensure smoother trajectories during 
the learning process, we initialize the SS variable of 
each local model in Eq. (1O)c with a value of lolo. By 
inspecting (lO)c, it can be seen that this bias causes 
the regression coefficients to have very small values ini- 
tially, which results in very slow movement of the robot. 
While making these slow movements however, data is 
continuously added to the LWPR algorithm, and even- 
tually the initial bias is overcome due to the forgetting 
factor A, which effectively bases the statistics computed 

in Eq. (10) on the last (1 - A)-’ data points. As the 
system acquires more data, it gradually increases its 
“trust” in its own approximation to  the inverse kine 
matics, eventually allowing the full strength of the re- 
gression to command the output. 

3.1.3 

An important aspect of our formulation of the inverse 
kinematics problem is that although the inputs to the 
learning problem comprise x and 8, the locality of the 
local model is a function of only 8, while the linear 
projection directions (given this locality in 8)  are solely 
dependent on x. We encode this prior knowledge into 
LWPR’s learning process by setting the initial values of 
the diagonal terms of the distance metric D in Eq. (8) 
that correspond to the x variables to zero. This bias 
ensures that the locality of the receptive fields in the 
model is solely based on 8. 
LWPR has the ability to  determine and ignore inputs 
that are locally irrelevant to the regression, but we also 
provide this information by normalizing the input di- 
mensions such that the variance in the relevant dimen- 
sions (in this case the dimensions corresponding to  x) is 
large. We use this feature to  create larger correlations 
of the relevant inputs with the output variables and 
hence bias the projection directions within each local 
model towards the relevant subspace. 

Localization space vs. regression space. 

4 Experimental Evaluations 
In the following experiments, we use a simple Carte- 
sian controller to generate the desired accelerations in 
Cartesian space for tracking a target xt. Given the 
position, velocity and acceleration information of the 
target, the control law is: 

% = f t  + IC,, (xt - x) + I C p  (xt - x) (14) 
where I C p  = 1250, and ICv = 70. This desired accel- 
eration is numerically integrated to  obtain a desired 
Cartesian velocity: 

where At = 1/420 in our experiments. It is this value 
of k that we use as the Cartesian space input to our al- 
gorithm to generate 8, t f-l(k, e), which is then inte- 
grated and differentiated to obtain 8 and 8 respectively, 
as inputs to the inverse dynamics controller. Training 
data, on the other hand, is created from Eq. (12). 

4.1 Experiments 

The goal task in each of the experiments was to track 
a figure-eight trajectory in Cartesian space created by 
simulated visual input to  the robot. In each of the fig- 
ures in this section, the performance of the system is 
plotted along with that of an analytical pseudo-inverse 
(c.f. Eq. (5)) that was available for our robot from pre- 
vious work [13]. 

301 



4.1.1 Learning from ‘Lmotor babbling”. 

We first trained the sys- 
tem on data collected from 

01 L‘motor babbling”. We 
created small sinusoidal 

“ 0  motions of each DOF 
about a randomly chosen 
mean in 8 space. Every 

41 few seconds, this mean 
is repositioned within 
the workspace. After 

formace after being manner for approximately 
trained on data collected 10 minutes, we tested its 
from motor babbling. performance on the figure- 
eight task. The trajectory followed by the system 
is shown in Fig. 2. The tracking inaccuracies seen 
in the figure are not surprising, since given the high 
dimensionality of the joint space, the data obtained 
from motor babbling is sparse in the region required 
by the figure-eight task. Thus, LWPR’s predictions 
are based on too few points to  achieve high accuracy. 

02 

0 1  0 ,  0, 0 3  0 1  

Figure 2: System Per- training the system in this 

0.1- 

N 0- 

-0.1- 

-.- I I 

4.1.2 Impmving performance on the task. 

In order to demonstrate 
that more task-specific 
training data leads to 
better inverse kinemat- 
ics learning, our second 
experiment trained the 
inverse kinematics on the 
task. The robot executed 
the figure-eight again, 
using the trained LWPR 

FiWe 3: System Perfor- from the first experiment. 
~ L J X ~  after 1 minute Of In this case however, the 
executing the figureeight system was allowed to im- 
task, with learning on the prove itself with the data 
task enabled. collected while performing 
the task. As shown in Fig. 3, after merely 1 minute of 
additional learning, the system performs as accurately 
as the analytical solution. 

02  OS 0 4  0 8  O #  

4.1.3 

The final experiment started with an untrained system, 
and learned the inverse kinematics from scratch, while 
performing the figure-eight task itself. Fig. 4 shows the 
progression of the system’s performance from the be- 
ginning of the task to about 3 minutes into the learning. 
One can see that the system initially starts out mak- 
ing slow inaccurate movements. As it collects data, 
however, it rapidly converges towards the desired tra- 
jectory. Within a few more minutes of training on the 
task, the performance approached that seen in Figure 3. 

Learning from scratch on the task. 

012 013 014 0:5 0:6 
X 

Figure 4: Trajectory followed in the first 3 minutes when 
learning the inverse kinematics from scratch while attempt- 
ing to perform the figureeight task. 

4.2 Consistency of the learned inverse kine- 
matics 

For redundant manipulators, following a periodic tra- 
jectory in operational space does not imply consistency 
in joint space, i.e., the trajectory followed in joint space 
may not be cyclic since there could be aperiodic null 
space motion that does not affect the accuracy of the 
tracked trajectory in operational space. Figures 5(a), 
5(b), and 5(c) show phase plots of three DOFs - 
shoulder flexion and extension (SFE), humeral rotation 
(HR), and elbow (EB) flexion and extension respec- 
tively - plotted over about 30 cycles of the figure-eight 
trajectory after learning had converged. The presence 
of a single loop for the phase plot over all cycles in each 
case shows that the inverse kinematics solution found 
by our algorithm is indeed consistent. 
Comparing the analytical solution with LWPR’s solu- 
tion in the above figures, it is clear that we learn an 
inverse kinematics solution that is qualitatively similar 
to  that obtained by an analytical pseudo-inverse. The 
quantitative discrepancies in the two solutions are due 
to an imperfect approximation of the null space, which 
is a result of enforcing the null space optimization only 
implicitly in the cost function (Eq. (11)). 

5 Discussion 

This paper presented how inverse kinematics for redun- 
dant manipulators can be learned with modern statis 
tical learning algorithms. The key element of our ap- 
proach was to  augment the input space to the learning 
system such that averaging over redundant solutions 
of the inverse mapping could be done safely without 
creating physically impossible results. Using a specific 
optimization criterion for training the learning system, 
performance comparable to  Liegeois’ analytical pseudo- 
inverse could be accomplished [9]. We demonstrated 
the functionality of our learning methods on a full 
body humanoid robot learning t o  trace a figure-eight 

302 



- 
lan- 

(a) Shoulder flexion and (b) Humeral rotation 
extension (SFE). (HR). 

(c) Elbow (EB) flexion 
and extension. 

Figure 5:  Phase plots 

in Cartesian space after only a few minutes of training. 
Despite these encouraging results, we need to  address a 
variety of issues in future work. Most importantly, our 
suggested algorithm only finds an approximate solution 
to optimizing the null space motion of the robot due to 
a cost function that causes a slight amount of interfer- 
ence between task goals and null space optimization. 
We noted that under unfortunate training data distri- 
butions, this interference can cause a slight amount of 
unwanted movement in unconstrained endeffectors of 
our humanoid, e.g., the left hand moved while only the 
right hand was supposed to track a target. Addition- 
ally, it is not favorable to “hard code” the optimization 
criterion for the null space motion in the learning sys- 
tem, as is currently the case in our approach. Different 
tasks may favor different optimization criteria for for 
the resolution of redundancy, and the learning system 
should be flexible enough to accommodate this require- 
ment. Our future work will address learning algorithms 
that learn the null space and range space of the local 
inverse kinematics mapping explicitly in order to allow 
for such flexibility. 

6 Acknowledgements 

This work was made possible by Award #9710312 of 
the National Science Foundation, the ERATO Kawato 
Dynamic Brain Project funded by the Japanese Science 
and Technology Cooperation, and the ATR Human In- 
formation Processing Research Laboratories. 

References 
E. W. Aboaf, C. G. Atkeson, and D. J. Reinkensmeyer. 
Task-level robot learning. In Proceedings of the IEEE 
International Conference on Robotics and Automation, 
Philadelphia, PA, 1988. 
E. W. Aboaf, S. M. Drucker, and C. G. Atkeson. Task- 
level robot learning: Juggling a tennis ball more accu- 
rately. In Proceedings of the IEEE International Con- 
ference on Robotics and Automation, Scottsdale, AZ, 
1989. 
J. Baillieul. Kinematic programming alternatives for 
redundant manipulators. In Proceedings of the IEEE 
International Conference on Robotics and Automation, 
pages 722-728, 1985. 
J. Baillieul and D. P. Martin. Resolution of kinematic 
redundancy. In Proceedings of Symposia in Applied 
Mathematics, volume 41, pages 49-89. American Math- 
ematical Society, 1990. 
D. Bullock, S. Grossberg, and F. H. Guenther. A self- 
organizing neural model of motor equivalent reaching 
and tool use by a multijoint arm. Journal of Cognitive 
Neuroscience, 5(4):408-435, 1993. 
J. J. Craig. Introduction to Robotics. Addison-Wesley, 
Reading, MA, 1986. 
H. Cruse and M. Briiwer. The human arm as a re- 
dundant manipulator: The control of path and joint 
angles. Biological Cybernetics, 57137-144, 1987. 
M. I. Jordan and Rumelhart. Supervised learning with 
a distal teacher. Cognitive Science, 16:307-354, 1992. 
A. Liegeois. Automatic supervisory control of the 
configuration and behavior of multibody mechnisms. 
IEEE 13amaction.s on Systems, Man, and Cybernet- 

L. Ljung and T. Soderstrom. Theory and practice of 
recursive identification. Cambridge MIT Press, 1986. 
E. Saltzman and S. J. A. Kelso. Skilled actions: A task- 
dynamic approach. Psychological Review, 94( 1):84- 
106, 1987. 
S. Schaal and C. G. Atkeson. Constructive incremental 
learning from only local information. Neuml Compu- 
tation, 10(8):2047-2084, 1998. 

i c ~ ,  7( 12):868-871, 1977. 

[13] G. Tevatia and S. Schaal. Inverse kinematics for hu- 
manoid robots. In Proceedings of the International 
Conference on Robotics and Automation (ICRA2000), 
San Francisco, CA, Apr. 2000. 

[14] S. Vijayakumar and S. Schaal. Locally weighted projec- 
tion regression: An O(n) algorithm for incremental real 
time learning in high dimensional spaces. In Proceed- 
ings of the Seventeenth International Conference on 
Machine Learning (ICML 2000), Stanford, CA, 2000. 

[15] D. E. Whitney. Resolved motion rate control of ma- 
nipulators and human prostheses. IEEE Tmnsactions 
on Man-Machine Systems, 10(2):47-53, 1969. 

[16] H. Wold. Soft modeling by latent variables: The 
nonlinear iterative partial least squares approach. In 
J. Gani, editor, Perspectives in Probability and Statis- 
tics, Papers in Honour of M. S. Bartlett, pages 520- 
540. Academic Press, London, 1975. 

303 


