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Summary
Objectives: A particular problem in image registration
arises for multi-modal images taken from different
imaging devices and /or modalities. Starting in 1995,
mutual information has shown to be a very successful
distance measure for multi-modal image registration.
Therefore, mutual information is considered to be the
state-of-the-art approach to multi-modal image
registration. However, mutual information has also a
number of well-known drawbacks. Its main disadvan-
tage is that it is known to be highly non-convex and
has typically many local maxima.
Methods: This observation motivates us to seek a dif-
ferent image similarity measure which is better suited
for optimization but as well capable to handle multi-
modal images.
Results: In this work, we investigate an alternative
distance measure which is based on normalized
gradients.
Conclusions: As we show, the alternative approach is
deterministic, much simpler, easier to interpret, fast
and straightforward to implement, faster to compute,
and also much more suitable to numerical optimiza-
tion.
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1. Objectives

Image registration is one of today’s chal-
lenging medical image processing problems.
The objective is to find a geometrical trans-
formation that aligns points in one view of
an object with corresponding points in an-
other view of the same object or a similar
one. Particularly in medical imaging, there
are many situations that demand image reg-
istration. Typical examples include the treat-
ment verification of pre- and post-interven-
tion images, study of temporal series of im-
ages, and the monitoring of time evolution of
an agent injection subject to a patient-
motion. Another important area is the need
for combining information from multiple
images acquired using different modalities,
sometimes called image fusion. Typical
examples include the fusion of computer
tomography (CT) and magnetic resonance
(MRI) images or of CT and positron
emission tomography (PET). Image regis-
tration is inevitable whenever images ac-
quired from different subjects, at different
times, or from different scanners, need to be
combined or compared for analysis or visu-
alization. In the past two decades computer-
ized image registration has played an in-
creasingly important role in medical im-
aging (see, e.g., [2, 7, 12, 14, 15, 27] and ref-
erences therein).

One of the challenges in image regis-
tration arises for multimodal images taken
from different imaging devices and/or moda-
lities; see Figure 1 for an example. In many
applications, the relation between the gray
values of multi-modal images is complex and
a functional dependency is generally missing.
However, for the images under consideration,

the gray value patterns are typically not com-
pletely arbitrary or random. This observation
motivated the usage of mutual information
(MI) as a distance measure between two im-
ages; cf. [4, 23]. Starting in 1995, mutual in-
formation has shown to be a successful dis-
tance measure for multi-modal image regis-
tration. Therefore, it is considered to be the
state-of-the-art approach to multimodal
image registration.

However, mutual information has a
number of well-known drawbacks; cf. e.g.
[16-18, 22, 25]. Firstly, mutual information
is known to be highly non-convex and has
typically many local maxima; see for
example the discussion in ([15] §6.6), [25],
and Section 3. Therefore, the non-convexity
and hence non-linearity of the registration
problem is enhanced by the usage of mutual
information. Secondly, as it has its foun-
dation in information theory, mutual infor-
mation is typically considered for a discrete
number of random variables.

However, fast and efficient registration
schemes rely on powerful optimization
techniques and thus on smooth functions.
Thirdly, mutual information is defined via
the joint density of the gray value distribu-
tion, and therefore, approximations of the
density are required. These approximations
are nontrivial to compute and typically in-
volve some very sensitive smoothing pa-
rameters (e.g. a binning size or a Parzen
window width, see [20]). Fourthly, mutual
information completely decouples the gray
value from the location information. There-
fore, judging the output of the registration
process is difficult. Finally, because of the
previous difficulties, there is not a unique or
common implementation for mutual infor-
mation and its derivatives.
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These difficulties had stimulated a vast
amount of research into mutual information
registration, introducing many nuisance pa-
rameters to help and bypass at least some of
the difficulties; see, e.g. [18]. As a result, a
practical implementation of mutual infor-
mation is highly non-trivial.

These observations motivated us to seek
a different image similarity measure which
is capable to handle multi-modal images but
better suited for optimization and inter-
pretation. In this paper, we investigate an al-
ternative distance measure which is based
on normalized gradients. As we show, this
approach is deterministic, much simpler,
easier to interpret, fast and straightforward
to implement, faster to compute, and also
much more suitable to optimization. The
idea of using derivatives to characterize
similarity between images is based on the
observation that image structure can be de-
fined by intensity changes. The idea is not
new. In inverse problems arising in geo-
physics, previous work on joint inversion [8,
10, 26] discussed the use of gradients in
order to solve/fuse inverse problems of dif-
ferent modalities. In image registration, a
more general framework similar to the one
previously suggested for joint inversion was
given in [6]. Further use of gradients in
image registration was suggested in [18].
Our approach, the Normalized Gradient
Field (NGF) is similar to [18], however,
there are some main differences. Unlike the
work in [18] we use only gradient informa-
tion and avoid using mutual information.
Furthermore, our computation of the gradi-
ent is less sensitive and allows us to deal
with noisy images.

The goal of this work is to provide a new
approach to multi-modal image registration
using properties from differential geometry
to characterize similarity between two im-
ages. The paper is organized as follows: In
Section 2 we shortly lay the mathematical
foundation of image registration, present an
illustrative example showing some of the
drawbacks of mutual information and pro-
posed alternative image distance measure.
We then discuss its numerical implemen-
tation and lay out a simple algorithm to
solve the multi-modal registration problem.
Finally, in Section 3 we demonstrate the ef-
fectiveness of our method. In particular, we

show that our approach is much more ef-
fective than mutual information. We also
demonstrate that the alternative approach
leads to a simple and stable measure for
image similarity.

2. Methods
2.1 The Mathematical Setting
Given a reference image, R, and a template
image, T, the goal of image registration is to
find a “reasonable” transformation such
that the “distance” between the reference
image and a deformed template image is
small.

Our overall goal is a fast and efficient op-
timization of a distance function. We are
therefore heading for a continuously differ-
entiable objective function and thus a con-
tinuous image model; for a detailed dis-
cussion see [11]. Since the images are typi-
cally noisy but derivatives are needed we
use a smoothing B-spline to approximate
the image where the smoothing parameter is
chosen using the Generalized Cross Vali-
dation method (GCV) [9]; for data inter-
polation using B-splines see [24]. For the
examples in this paper the interpolated
images are visually identical to the original
images. To minimize notational overhead,
the continuous smooth approximations are
also denoted by R and T, respectively.

As described in [14], there are basically
two registration approaches. One is the so-
called parametric and the other one the so-
called non-parametric registration tech-
nique. Since our interest is the discussion of
distance measures, we focus on parametric
image registration which is easier to explain.

In parametric registration, the de-
formation can be parameterized in terms of
some basis functions, ϕk

(1)

see [14] for details. A typical example is the
so-called linear registration, where for some
appropriate chosen basis functions and the
dimension, d = 2,

(2)

Given a distance measure D, the registration
problem is to find the minimizer of

(3)

Since the generalized optimization frame-
work is based on minimization rather than
optimization, we work with the negative MI
throughout this paper whenever we compare
it to our NGF approach.

Fig. 1 Original BrainWeb [3] and T1 (left) and T2 (right) weighted magnetic resonance images

a) b)
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2.2 An Illustrative Example
To emphasize the difficulty explained
above, we present an illustrative example.
Figure 1 shows a T1 and a T2 weighted
magnetic resonance image (MRI) of a brain.
Since the image modalities are different, a
direct comparison of gray values is not ad-
visable and we hence study a mutual infor-
mation-based approach.

Figure 2a displays our approximation to
the joint density which is based on a kernel
estimator, where the kernel is a compactly
supported smooth function; see [20] for de-
tails. Note that the joint density is com-
pletely unrelated to the spatial image con-
tent (though there is some interpretation
[15]). We now slide the template along the
horizontal axis. In the language of Equa-
tion 2, we fix γ 1, ...,5 and obtain the trans-
formed image by changing 6. Figure 2b
shows the negative mutual information ver-
sus the shift ranging from –2 to 2 pixels.

This figure clearly demonstrates that mutual
information is a highly non-convex function
with respect to the shift parameter. In par-
ticular, the curve suggests that there are
many pronounced local minima which are
closed in value to the global minimum
which is at 0.3 for MI and –0.2 for NGF (the
true shift should be 0.0). Therefore, any
gradient based method can run into difficul-
ties when used to solve this problem. Even
statistical techniques such as simulated an-
nealing or genetic algorithms can run into
problems when the size of a local minimum
is roughly equivalent to the size of the global
minimum. Furthermore, note that the dy-
namical range in Figure 2b is very small and
thus even a smoothed version of the curve
does not have a strong local minimum. Our
particular example is not by any means pa-
thologic. Similar, and even less convex
curves of MI appear also in ([25] p 293) who
used different interpolation.

Figure 2c displays a typical visualization
of our alternative distance between R and T
(discussed in the next section). Note that for
the alternative distance measure, image dif-
ferences are related to spatial positions. Fig-
ure 2d shows the alternative distance
measure versus the shift parameter. For this
particular example, it is obvious that the
alternative measure is capable for multi-
modal registration and it is much better
suited for optimization.

2.3 Mutual Information
In order to be able to compare our approach
and MI we aim for a continuously differenti-
able Mutual Information measure and there-
fore we use the algorithm suggested in [17].
Our computation of mutual information is
based on a Parzen-Window kernel estimator
for the unknown joint density function

where we used the approximation:

It is interesting to note that the above imple-
mentation is computationally expensive. It
requires more than 1000N floating point
operations to evaluate the MI function
(depending on the width of the Kernel
function), where N is the number of pixels in
the image. Although cheaper evaluations are
possible, they are generally not differentiable.

2.4 A Simple and Robust
Alternative
The alternative multi-modal distance
measure is based on the following simple
though general interpretation of similarity:
Two images are considered similar, if inten-
sity changes occur at the same locations.

An image intensity change can be de-
tected via the image gradient. Since the
magnitude of the gradient is dependent

Fig. 2 Distance measures versus shifts: a) the joint density approximation for R and T, b) negative mutual information
versus shift, c) the normalized gradient field d d (T, R ) (7) for R and T, d) normalized gradient field versus shift

a) c)

b) d)
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upon the modality of the image, it would be
unwise to base an image similarity measure
on gradient magnitude. We therefore con-
sider the normalized gradient field, i.e., the
local orientation, which is purely geometric
information.

(4)

As usual, we set

and

(5)

For two related points we look at the vectors
n(R, x) and n(T, x). These two vectors form
an angle. Since the gradient fields are nor-
malized, the inner product (dot-product) of
the vectors is related to the cosine of this
angle, while the norm of the outer product
(cross-product) is related to the sine. In
order to align the two images, we can either
minimize the square of the sine or, equival-
ently, maximize the square of the cosine.
The square is important in order to allow for
registration of opposing orientations which
is necessary for multimodal registration.

This observation motivates the distance
measures shown in Figure 3 (Eqs. 6-9). Note
that from an optimization point of view, the
two distance measures are equivalent.

The definition of the normalized gradient
field (4, 5) is not differentiable in areas where
the image is constant and highly sensitive to
small values of the gradient field. Suppose that
the images have some distinct edges that need
to be matched and some other edges, small in
their magnitude which may result from noise.
The normalized gradient map does not distin-
guish between the first and the second class.
As a result, there is no preference to match
wanted structures and to ignore the noisy part
of the image. To avoid this problem we define
the regularized normalized gradient fields
shown in Figure 3 (Eqs. 9a and 9b), where the

edge parameter, ε, is chosen such that the ef-
fect of noise is minimized. With this in mind
and similarly to [1], we propose the following
automatic choice:

(10)

where η is the estimated noise level in the
image and V is the volume of the domain.
The measures (6) and (8) are based on local
quantities and are easy to compute. Another
advantage of these measures is that they are
directly related to the resolution of the im-
ages. This property enables a straightfor-

Fig. 4 Computation of objective function and gradient

Fig. 3 Equations 6-9

(6)

(7)

(8)

(9a)

(9b)
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ward multi-resolution approach. In addi-
tion, we can also provide plots of the dis-
tance fields d c and d d, which enables a
further analysis of image similarity; (see,
e.g., Figure 2c). Note that in particular
dc = 0 everywhere if the images match per-
fectly. Therefore, if in some areas the func-
tion dc takes large values, we know that
these areas did not register well.

2.5 Numerical Implementation
2.5.1 Evaluating Image Distance

While the mathematical framework is clear
there are a few obstacles when trying to nu-
merically implement it. Firstly the distance
measures d c and d d are based on image
gradients and therefore their derivatives in-
volve second order image derivatives. This
can be a problem since many medical im-
ages are noisy. The problems of working
with noisy images and calculating their
gradients are overcome by using smoothing
B-splines approximations of the images. To
smooth the image we use Tikhonov regular-
ization where the regularization parameter
is computed using the Generalized Cross
Validation (GCV) criteria; cf. e.g. [24]. The
GCV criteria also help to assess the noise
level in the data and therefore for the choice
of the edge parameter ε in (10). For clean
images (for images with very low noise), we

pick the edge parameter to h, where h is the
discretization size.

Given the spline-smoothed image and
the edge parameter, we are able to approxi-
mate the gradient of the image as

where δk
h is a difference operator in the k-th

direction. Here, similar to other numerical
calculations of the absolute value of the
gradient [19] we use the forward differences
for the approximation. The regularized ab-
solute value of the gradient is defined in a
straightforward manner:

It is interesting to note that a simple calcu-
lation of the number of floating point oper-
ations required to compute the NGF is
roughly 40N where N is the number of
pixels /voxels in the image. Observe that this
is substantially less than the number of
FLOPS needed for the implementation of MI.

2.5.2 Numerical Optimization

To find the image deformation we need to
minimize the distance function f (cf. (3)) for
the distances Dc or Dd. Since this function
is twice differentiable, we are able to use a
Newton type method. The algorithm to

compute the NGF and its derivatives is sum-
marized in the pseudo-code of Algorithm 1.
Note that the distance measure has a least-
squares from

Therefore a natural optimization algorithm
is the Gauss- Newton method [5]. To use the
Gauss-Newton approach, we need to find
the Jacobian of dc or dd with respect toT. Ex-
plicit formulae are given in Algorithm 1.

2.5.3 Grid Continuation

Like many other nonlinear problems, sub-
stantial computational advantage can be
gained by using a multilevel continuation
strategy. The idea of multilevel continuation
is not new to image registration but most of
the work on this topic assumes the sum of
square differences as a distance measure. In
general, a grid continuation method solves
the optimization problem on a sequence of
grids starting from the coarse grid. The sol-
ution on a finer grid is obtained by inter-
polating the coarse grid solution and using
the interpolated result as a starting guess for
the fine grid solution. Care must be taken
such that the solution on the coarse grid rep-
resents a coarser version of the fine grid.

3. Results
In our numerical experience, we have used
various examples using T1-T2 MRI images
and MRI-CT images with results along the
same lines. Since it is impossible to show
every result we restrict ourselves to three
illustrative and representative examples. For
all our examples, we have used the multi-
level algorithm. The coarsest grid was
chosen to be 8 × 8. For parametric regis-
tration there is no need to prolong γ but for
nonparametric registration we use linear in-
terpolation (see [11]). When coarsening,
every grid is a factor of two coarser than the
previous grid. As common in many multi-
grid methods, images on coarser grids are

γ1

True Recovered 2
1.95

True Recovered 1
1.01

True Recovered 1
1.01

True Recovered 1
1.02

True Recovered 1
1.01

True Recovered 1
1.01

True Recovered 0.5
0.48

γ2

0
0.01

2
2.03

0
0.01

0
0.01

0
0.04

0
0.03

0.5
0.49

γ3

0
0.05

0
0.02

2
2.02

0
0.01

0
0.04

0
0.02

0.6
0.62

γ4

1
1.01

1
1.05

1
1.02

2
1.99

1
1.02

1
1.02

1.5
1.52

γ5

0
0.03

0
0.01

0
0.02

0
0.02

5
4.89

0
0.01

3
3.02

γ6

0
0.01

0
0.04

0
0.00

0
0.01

0
0.02

5
4.78

3
3.10

Table 1 Experiments with image 1: chosen vs recovered γ
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generated by full weight interpolation [21].
In the first example we use the images in

Figure 1. We take the T1 image and generate
transformed versions of the image by using
the affine linear transformation (2). We then
use the transformed images to recover the
original image. The advantage of this syn-
thetic experiment is that it is controlled, i.e.,
we know the exact answer to the registration
problem and therefore we are able to test our
algorithm under a perfectly controlled en-
vironment. Running our code we obtain the
results summarized in Table I. We see that
overall we are able to accurately recover the
shift parameters to the level of less than one
pixel. On average we had errors of 0.34 of a
pixel.

In the second example we use the images
from Viola’s Ph.D thesis [24]. In the original
work a few thousands of iterations of
stochastic optimization algorithm where
needed to achieve registration using MI as a
distance measure. Here, we have used a
more efficient implementation of mutual in-
formation similar to the one presented in
[16] in order to obtain competitive results.
We then compared the results of both regis-
trations. The difference between the MI reg-
istration and the NGF registration was less
than 0.25 of a pixel, thus we conclude that
the methods give virtually identical minima.
However, to obtain the minima using MI we
needed to use a random search technique to
probe the space. This technique requires the
estimation of many joint-density distribu-
tions and therefore it is rather slow.

When probing the space we have found
many local minima. Furthermore, the local
minima and the global minimum tend to have
roughly the same magnitude.Thus, the “land-
scape” of the MI function for this example is
similar to the one plotted in Figure 2. In com-
parison, our NGF algorithm used 15 itera-
tions on the coarsest grid and 5 iterations on
each finer grid.The registration was achieved
in a 7.3 seconds and no special space probing
was needed to obtain the minimum. In com-
parison, registration using MI needed rough-
ly 23 seconds. The results of our experiments
are also presented in Figure 5.

Another advantage of our method is the
ability to quickly evaluate the registration
result by looking at the absolute value of the
cross-product |nT × nR|. This product has

Fig. 5 Experiments with Viola’s example; a) reference R, b) template T , c) registeredT , d) overlay of T and R (202 pixels
checkerboard presentation), e) cross product nT × nR, f) joint density at the minimum

a) b)

c) d)

e) f)
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In comparison, the final result in MI
registration is a joint density map. This map
does not have the same dimensions of the
image but rather it has the dimensions of the
discretization of the gray value spaces. It
does not provide direct information on spa-
tial locations. Therefore, it is hard to evalu-
ate the success of the registration based on
this map. The log of the joint density map
for the same example is shown in Figure 5f.
It is evident that it is not intuitive and hard to
interpret.

The previous two examples demonstrate
the ability of our new algorithm to success-
fully perform parametric registration.
Nevertheless, when the number of parame-
ters is very large, stochastic optimization
techniques stall, and differentiable smooth
distance measure functions are much more
important. We therefore tested our algo-
rithm on a PET/CT registration, see Fig-
ure 6. We performed an elastic registration
of CT and transmission PET images of a
human thorax. The CT image is in Figure 6a
and the PET image is presented in Figure 6b.
The transformed PET image is presented in
Figure 6c and it is visually similar to the CT
image. As mentioned earlier, we do not in-
tent to discuss the results from a medical
point of view. However, the displayed de-
formed grid indicates that, for this example,
the differences between the MI and NGF ap-
proach are very small; cf. Figure 6 (e and f).
For the NGF no special effort was needed in
order to register the images. For MI we
needed a good starting guess to converge to
a local minimum.

4. Conclusion
Mutual information is to be considered as
state-of-the-art distance measure for multi-
modal image registration. The measure has
proven to be successful although it has a
number of well-known disadvantages: it is
highly non-convex, with typically many
pronounced local maxima, it is naturally
discrete, based on a nontrivial density,
requires some critical smoothing parame-
ters, and a common implementation does
not exist.

We therefore presented an alternative
distance measure which is better suited for

Fig. 6 PET-CT registration

the same dimensions as the images and
therefore can be viewed in the same scale. If
the match is perfect then the cross product
should vanish and therefore any deviation
from zero implies an imperfect fit. Such
deviations are expected to be present due to
two different imaging processes, the noise

in the images and possible additional non-
linear features. Figure 5e shows the cross
product for the image matched above. It is
evident that the matching is very good be-
sides a small number of locations where we
believe the image to be noisy.
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