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Abstract—The goal of the sensor network localization problem
is to determine positions of all sensor nodes in a network given
certain pairwise noisy distance measurements and some anchor
node positions. This paper describes a distributed localization
algorithm based on second-order cone programming relaxation.
We show that the sensor nodes can estimate their positions
based on local information. Unlike previous approaches, we
also consider the effect of inaccurate anchor positions. In the
presence of anchor position errors, the localization is performed
in three steps. First, the sensor nodes estimate their positions
using information from their neighbors. In the second step, the
anchors refine their positions using relative distance information
exchanged with their neighbors and finally, the sensors refine
their position estimates. We demonstrate the convergence of the
algorithm numerically. Simulation study, for both uniform and
irregular network topologies, illustrates the robustness of the
algorithm to anchor position and distance estimation errors,
and the performance gains achievable in terms of localization
accuracy, problem size reduction and computational efficiency.

Index Terms—Distributed algorithms, convex optimization, re-
laxation methods, second-order cone programming, positioning,
localization, synchronous and asynchronous algorithms.

I. INTRODUCTION

RECENT advances in micro-electro-mechanical systems
(MEMS) and wireless communication technology has

made possible the large-scale deployment of wireless sensor
networks with thousands of nodes. Some of the application
areas for sensor networks are industrial automation (process
control), military (real-time monitoring of troop movements),
utilities (automated meter reading), building control and envi-
ronmental monitoring [1].

In most applications, the data reported by the sensors is
relevant only if tagged with the accurate location of the
sensor nodes. Thus knowledge of the node positions becomes
imperative. Using nodes equipped with Global Positioning
System (GPS) is a costly option. This research focusses
on developing cost-effective techniques to determine node
positions using distance measurements between neighboring
nodes. This distance information can be obtained via time of
arrival, received signal strength or other techniques [2], [3].
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The sensor network localization problem can be stated as
follows. Assuming knowledge of the positions of some nodes
(called anchors) and some pairwise distance measurements,
determine the position of all sensor nodes in the network.
We will refer to nodes whose positions are unknown as
the sensor nodes. In practice, due to resource constraints on
the sensor nodes, the distance measurements are inaccurate
or noisy. In addition, the anchor node positions may be
inaccurate even when determined with the use of GPS or other
techniques. Most approaches in the literature do not account
for inaccuracies in the anchor positions. A number of methods,
based on minimizing some global error function, have been
explored to account for the measurement uncertainties. It is
observed that the computational complexity varies based on
the optimization model chosen.

In this paper, we present a distributed algorithm based
on second-order cone programming (SOCP) for solving the
sensor network localization problem. In the presence of
distance estimation errors each sensor node determines its
position by executing the localization algorithm independently
using distance information to the anchor and sensor nodes
with which it is directly linked (i.e., which are within its
communication range). If in addition to the distance estimation
errors, the anchor positions also have errors then the algorithm
consists of three steps: using the local distance information
and inaccurate anchor positions each sensor node estimates its
position. Then, the anchors execute the localization algorithm
using position information from their neighboring nodes and
the associated distance information to refine their positions.
Finally, the sensor nodes execute the localization algorithm to
refine their position estimates [4].

One of the significant advantages of our approach is that it is
fully distributed and converges to an optimal (or near-optimal)
solution. As a result of the distributed nature of the solution,
the problem dimension at each node is a linear function of only
the number of neighbors of the node. There is no significant
increase in the computational effort per node even in large
networks (for a given node connectivity level), whereas most
existing methods result in an exponential increase in the
computation time with network size. Thus, the distributed
SOCP approach is suitable for large-scale networks with
thousands of nodes. As we will demonstrate, the performance
gains are achieved without sacrificing localization accuracy.
We demonstrate the convergence of our algorithm numerically.

The rest of the paper is organized as follows. Section II
provides an overview of existing approaches. Section III
presents the mathematical formulation and the SOCP relax-
ation of the localization problem. In section IV we present
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the distributed localization algorithm based on the SOCP
relaxation. The simulation study appears as sections V and VI.
Section VII explores the problem of tracking a mobile node in
indoor environments. Finally, in section VIII we discuss the
asynchronous version of the distributed algorithm.

II. RELATED WORK

Sensor network localization has been an area of active
research in recent years with a large number applications.
Some survey articles on this research area are [2], [3], [5], [1].
Most localization systems estimate the node positions using
some kind of range or distance information between nodes.
However, some systems such as [5] perform localization using
connectivity information. Such systems rely on high anchor
density and result in relatively low positioning accuracy.

We will show in the next section that the localization
problem in its original form is a non-convex optimization
problem with many local minima. Doherty et al. [6] formulate
the localization problem as a feasibility problem with convex
radial constraints. However, this method requires centralized
computation which is not suitable for large networks. Shang
proposed a distributed localization method MDS-MAP(P, R)
based on multi-dimensional scaling (MDS) [7]. This method
builds for each node a local map of the small subnetwork in
the node’s vicinity and then merges these local maps to form a
global map followed by a refinement step. This method needs
only a few anchors (generates a relative map in the absence of
anchors) and partly overcomes the drawback associated with
centralized computation. However, the construction of local
maps for each node results in enormous amount of redundant
computation as most local maps are not used in building the
global map. It is not entirely suitable for large networks as
the cost of refining and merging the local maps grows faster
than linear due to the larger maps being manipulated. Also
the cost of refining the global map (optional), a single global
optimization step, becomes dominant for large networks.

Costa et al. [8] apply distributed weighted MDS (dwMDS)
to the localization problem and formulate the problem using
a general form of the cost function we use in this paper. They
solve the minimization problem using majorizing functions.

Biswas and Ye solve the problem using the semidefinite
programming (SDP) relaxation [9]. This approach can solve
small problems effectively. The authors report a few seconds
of PC execution time for a 50 node network. They have also
proposed two techniques to improve the accuracy of the SDP
solution [10]. The first technique adds a regularization term to
the objective function to force the SDP solution to lie close to
a low dimensional subspace of Rd and the second technique
improves the SDP estimated solution using a gradient-descent
method. However, the number of constraints in the SDP model
is O

(
n2
)
, where n is the number of nodes in the network

Most SDP solvers can handle problems with at most 100
variables, while sensor networks typically have 100’s of nodes
resulting in problem dimensions in the 10,000’s. To over-
come this difficulty, Biswas and Ye proposed a distributed
method for solving the SDP [11]. In this iterative distributed
scheme, the anchors are first partitioned into many clusters
according to their physical locations. A sensor is assigned

to a cluster if the sensor has a direct link to one of the
anchors. Then semidefinite programs are solved independently
for each cluster. The sensors whose position becomes known
are used to iteratively decide the remaining sensors with
unknown position. The authors report a few minutes of PC
execution time for a network with 4000 nodes. But, since
the clustering is done based on geographic locations [12],
each cluster may have only partial connection information for
the border sensors if these have connections with multiple
clusters. Thus sensors on the border of each cluster may not
get positioned accurately [13].

We consider the second-order cone programming (SOCP)
relaxation due to its simpler structure and the potential to be
solved faster. SOCP relaxation for the localization problem
was first studied by Tseng [14]. There it was shown that even
though the SOCP relaxation is weaker than the SDP relaxation,
it can accurately position a large percentage of the sensors.
The localization approach presented in this paper enables
the SOCP relaxation problem to be solved in a completely
distributed fashion. Each sensor node executes the localization
algorithm independently using distance information to the
anchors and sensors with which it is directly linked.

A number of existing approaches consider the distance
estimation errors [15], [16], however most do not consider
the inaccuracy in anchor positions which is also a significant
source of error. Anchors are typically positioned using GPS or
by means of surveying by humans. Civilian GPS accuracy is
limited to about 15m while surveying is prone to human obser-
vation errors. In section VI, we demonstrate that the distributed
SOCP approach provides good localization accuracy even in
the presence of significant error in the anchors positions.

III. SENSOR NETWORK LOCALIZATION: PROBLEM

FORMULATION

The localization problem is mathematically formulated as:
Consider n distinct nodes in Rd (d ≥ 1). Given the positions
of the last (n − m) nodes (anchors) xm+1, ..., xn and the
Euclidean distance dij between neighboring nodes i and j
where (i, j) ∈ A. A is the undirected neighbor set defined
as A := {(i, j) : ‖xi − xj‖ ≤ RadioRange}. We need to
estimate the positions of the first m nodes (sensors). This can
be formulated as the following non-convex minimization [17]:

min
x1,...,xm

∑
(i,j)∈A

| ‖xi − xj‖2 − d2
ij | (1)

where ‖ · ‖ denotes the Euclidean norm.
(1) can be reformulated in convex form using relaxation

techniques. As a first step, (1) can equivalently be written as:

min
x1,...,xm,yij

∑
(i,j)∈A

|yij−d2
ij | s.t. yij = ‖xi−xj‖2, ∀(i, j) ∈ A.

Relaxing the equality constraints to “greater than or equal to”
inequality constraints yields the following convex problem:

min
x1,...,xm,yij

∑
(i,j)∈A

|yij−d2
ij | s.t. yij ≥ ‖xi−xj‖2, ∀(i, j) ∈ A

(2)
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which is an SOCP. (2) can equivalently be written as:

min
x1,...,xm,yij,tij

∑
(i,j)∈A

tij (3)

s.t.yij ≥ ‖xi − xj‖2 ∀(i, j) ∈ A

tij ≥|yij − d2
ij | ∀(i, j) ∈ A.

One approach would be to solve the SOCP problem as a
global minimization over the entire network. However, due to
the problem sizes encountered in sensor networks solving the
SOCP relaxation globally might be computationally demand-
ing. In addition, a parallel or distributed algorithm is always
preferred in sensor networks, which we propose next.

IV. DISTRIBUTED SOCP LOCALIZATION ALGORITHM

In a distributed algorithm, implemented over multiple pro-
cessors, the algorithm is divided into “phases”. During each
phase, every processor must execute a number of computations
that depend on the results of the computations of other proces-
sors in previous phases. However, the timing of computations
at any one processor during a phase can be independent of
the timing of the computations at other processors within the
same phase. All interactions between processors take place
at the end of the phases. Such distributed algorithms are also
called synchronous. Here we show how the SOCP relaxation
for the sensor network localization problem can be formulated
as a synchronous distributed algorithm [18].

We can approximately reformulate (2) as:

min
x1,...,xm,yij

∑
(i,j)∈A

{|yij − d2
ij | +I−(fij(x, y))}

where fij(x, y) = ‖xi − xj‖2 − yij and

I−(u) =
{

0 u ≤ 0,
∞ u ≥ 0.

I− is the indicator function which can be approximated by the
logarithmic barrier function and the problem reduces to:

min
x1,...,xm,yij

∑
(i,j)∈A

{|yij − d2
ij | −(1/t)log(yij − ‖xi − xj‖2)}.

(4)
It is seen that the objective function in (4) is separable. For
each i ∈ {1, ..., m}, the objective function depends only on
the positions of the neighboring nodes and the pairwise dis-
tance measurements between them. This enables the objective
function to be decomposed and the minimization can then be
carried out at each sensor node xi using local information.
Each sensor can independently solve this minimization using
information from its neighboring sensor nodes and anchors.

Let NA(i) = {j : (i, j) ∈ A} be the neighbor set for
node xi. Using the separability observation, (3) can be solved
independently over the m sensor nodes xi, where each node
uses information (xj , dij ) from its neighboring nodes xj , j ∈
NA(i). The information exchange between nodes occurs at the
end of each iteration (or phase). Thus (3) decomposes to the
following distributed formulation:

min
xi,yij,tij

∑
j∈NA(i)

tij

s.t.yij ≥ ‖xi − xj‖2 ∀j ∈ NA(i)

tij ≥|yij − d2
ij | ∀j ∈ NA(i).

This can be written in standard SOCP form as:

min
xi,yij ,tij

∑
j∈NA(i)

tij (5)

s.t.

(
yij + t

′
i

2

)2

≥
(

yij − t
′
i

2

)2

+ ‖xi − xj‖2

tij ≥|yij − d2
ij | ∀j ∈ NA(i)

t
′
i = 1.

The distributed SOCP algorithm consists of a phase where
each sensor node estimates its position using local information
and solving the SOCP (5). In an iterative distributed scheme,
this would be followed by a communication phase wherein
each node exchanges its position estimate with its neighbors.
These iterations are repeated after fixed intervals of time or
when any new information becomes available at a node. It
should be noted that the algorithm uses information from
neighboring anchors as well as sensors to position a given
node. Thus to obtain a non-trivial position estimate each node
needs at least 3 neighbors (for 2-D localization) with position
estimates, as opposed to the more stringent requirement of
having 3 anchors in the neighborhood that many triangula-
tion/trilateration schemes impose.

If the anchor positions are inaccurate, the distributed SOCP
approach will consist of three steps: after the sensor nodes es-
timate their positions based on the inaccurate anchor positions
and distance information, the anchors solve the local SOCP (5)
using position information from their neighboring nodes and
the associated distance information to refine their positions.
As we will show, this second step results in a significant
improvement in the positioning accuracy of the inner anchors.
Finally, another iteration of the local SOCP (5) over the sensor
nodes further refines their position estimates.

Let ni(=|NA(i)|) represent the number of neighbors of the
node xi. SOCP (5) has 2ni+3 variables, 2ni conic constraints
and 1 equality constraint. In sensor networks, due to the short
radio range of the sensors, the number of neighbors of a
given node is a small fraction of the total number of nodes
in the network (i.e., ni � n). Thus, the distributed SOCP
approach results in significantly smaller problem sizes than
approaches proposed in the literature. The SOCP problem (5)
can be efficiently solved by interior point methods. Here we
use SeDuMi [19] to solve this problem. The details on how
to rewrite SOCP (5) in SeDuMi form are given in Appendix.

V. LOCALIZATION WITH ACCURATE ANCHOR POSITION

INFORMATION

The experiments in this section assume that accurate anchor
position information is available. In this setting, the local-
ization problem is solved by executing the distributed SOCP
algorithm at each of the sensor nodes. We assess the average-
case performance on networks with uniform topology as well
as irregular topology. For each parameter setting, the algorithm
is run on 5 randomly generated examples.

We randomly generate the true positions of the sensors and
anchors xt

1, . . . , x
t
n according to a uniform distribution on the

unit square [−0.5, 0.5]2 and noisy distance measurements dij
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Fig. 1. Distributed SOCP results for Uniform topology: n = 500,
RadioRange = 0.15, p = 0.15 and nfd = 0.05. err = 0.032 and
errmax = 0.232.

are generated by adding normally distributed measurement
noise to the true distance. Specifically:

dij = ‖xt
i − xt

j‖ · max{0, 1 + εij · nfd} ∀(i, j) ∈ A

A = {(i, j) : ‖xt
i − xt

j‖ ≤ RadioRange}
where εij is a normal random variable N (0, 1) representing
measurement noise, RadioRange ∈ (0, 1) represents the radio
range of the nodes and nfd ∈ [0, 1] is the noise factor
(standard deviation of the distance error in percentage) for
the distance measurements. For a standard deviation of 10%
in the distance estimation error we set nfd = 0.10.

We wrote the code in Matlab to solve the SOCP relaxation.
Our code calls SeDuMi (Version 1.1) [19], a C implementation
of a predictor-corrector primal-dual interior point method for
solving SDP/SOCP. The simulations were carried out on a PC
with 2.53 GHz Pentium 4 processor and 1 GB RAM running
Matlab 7.0.1 (R14).

To check the positioning accuracy of our algorithm, we
compute the average (sensor) positioning error (err). First
we consider the uniform topology. Fig. 1 shows the results
for a randomly generated 500 node network with nfd = 0.05.
True positions of the sensors and anchors are depicted using ◦
and 
, respectively. The estimated node positions are depicted
with +. Solid lines indicate the error between the estimated
and true sensor positions. A close match is observed between
the estimated and true positions for sensors which lie in the
convex hull of their neighbors. The average positioning error
is 0.032 (21.3% of RadioRange). The estimated positions
become less accurate as we move towards the boundary.

Fig. 2 shows the effect of the percentage of anchors (p)
on the average positioning error for different network sizes
with similar node connectivity levels. Increasing p from 12%
to 15% lowers the average error. The variation in the average
error across network sizes (for a given p) is most likely due
to the small differences in the node connectivity level.

The positioning accuracy improves significantly with in-
crease in the node connectivity. Fig. 3 shows that the average
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Fig. 2. Average positioning error as a function of the network size (n) for
two different percentages of anchors. (RadioRange = 0.10, nfd = 0.05
and average node connectivity ≈ 30)
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Fig. 3. Average positioning error as a function of RadioRange. (n = 1000,
p = 0.15 and nfd = 0.05)

error decreases steadily as RadioRange is increased from
0.08 to 0.20. For larger radio ranges the error tends to reach
a lower bound determined by the distance estimation errors.

Irregular topologies are more difficult than uniform topolo-
gies. The results for an irregular topology, namely a C-shaped
network, with 300 nodes is shown in Fig. 4. The average
positioning error is 0.048 (32% of the RadioRange).

Table I lists the test cases used to understand the com-
putational complexity of the distributed SOCP algorithm.
RadioRange is chosen such that the average node connec-
tivity is about the same across all test cases. Table I lists
the various parameter settings, the average node connectivity,
the typical SOCP (5) dimension and the computation time
per sensor node (excluding the time needed for computing
the relative distances dij and communication or message
exchanges). Comparison with the SOCP dimensions reported
by Tseng [14] for similar network sizes reveals that the
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TABLE I
DISTRIBUTED SOCP: INPUT PARAMETERS FOR THE TEST CASES, CORRESPONDING SOCP (5) DIMENSIONS AND CPU TIMES. (p GIVES THE

PERCENTAGE OF ANCHOR NODES, AND NOISE FIGURE nfd = 0.05 FOR ALL TEST CASES).

Test n RadioRange p |A| Avg. node Typical SOCP CPU time per node
case connectivity dimension (in sec)
1 500 0.15 0.12 15104 30.2 123 × 181 1.24
2 500 0.15 0.15 15054 30.2 181 × 124 1.19
3 1000 0.10 0.12 28368 28.4 115 × 169 1.20
4 1000 0.10 0.15 28158 28.2 115 × 169 1.18
5 2000 0.08 0.12 73566 36.8 151 × 223 1.30
6 2000 0.08 0.15 76706 38.4 155 × 229 1.29
7 4000 0.05 0.15 119082 29.8 123 × 181 1.03
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Fig. 4. Distributed SOCP results for irregular (C-shaped) topology: n = 300,
RadioRange = 0.15, p = 0.15 and nfd = 0.05. err = 0.048 and
errmax = 0.448.

dimensions in Table I are smaller by at least two orders of
magnitude and are still in the realm of problem sizes which
can be handled efficiently, even for a network with 4000
nodes. The SOCP dimension, which depends on the number of
neighboring nodes, does not increase with the network size for
a given node connectivity. Thus, the per node computational
burden is significantly reduced.

Table II presents test cases for the MDS-MAP(P, R) algo-
rithm [7]. The cost of refining and merging the local maps,
and the optional global refinement step in the MDS-based
algorithm becomes dominant for large networks (n > 300).
Hence, network sizes for these tests are smaller than those for
the SOCP algorithm. However, RadioRange is chosen such
that the node connectivity is approximately the same as for
the test cases in Table I.

From Tables I and II, it is seen that the MDS-MAP(P, R)
algorithm requires slightly more than three times the computa-
tional effort needed for the distributed SOCP algorithm, even
for relatively small network sizes. Thus the distributed SOCP
approach significantly improves the computational efficiency
without sacrificing localization accuracy.

VI. LOCALIZATION WITH ANCHOR POSITION ERRORS

The experiments in this section consider the inaccuracy in
the anchor positions in addition to the distance estimation

TABLE II
MDS-MAP(P, R): INPUT PARAMETERS AND CPU TIMES. (p GIVES THE

PERCENTAGE OF ANCHOR NODES, AND nfd = 0.05 FOR ALL TEST
CASES).

Test p Avg. node CPU time
case n RadioRange connectivity per node

(in sec)
1 100 0.35 0.050 29.6 4.03
2 200 0.25 0.025 32.9 4.57
3 300 0.20 0.017 30.9 4.35
4 500 0.15 0.010 30.8 4.07

errors. The goal is to localize the sensors while reducing
the impact of the anchor position errors on the positioning
accuracy. One way to achieve this is to solve SOCP (5)
simultaneously at each of the sensors and anchors. We ran a
few simulation test cases using this approach, but the results
did not converge in each of those cases. Hence we propose a
three-step distributed approach. In the first step, each sensor
node estimates its position using distance information from
its neighbors. In the second step, the anchors use information
from their neighbors to refine their positions. We also observed
that this second step aids in refining only those anchor
positions which are within the convex hull of their neighbors.
Thus the anchor refinement step is applied only for anchors
in the interior of the network. Finally, we repeat one more
iteration of the distributed SOCP algorithm over the sensors
using the refined anchor positions. It is seen that the refined
anchor positions improve the sensor positioning significantly.

The simulation setting is similar to that in section V except
for the following differences. The noisy distance measure-
ments and inaccurate anchor positions are generated as:

dij = ‖xt
i − xt

j‖ · max{0, 1 + εij · nfd} ∀(i, j) ∈ A

xi = xt
i · max{0, 1 + εij · nfa} ∀i = (m + 1), . . . , n.

where nfa and nfd ∈ [0, 1] are the noise factors for anchor po-
sitions and distance measurements, respectively. Simulations
in this section were carried out on a PC with 3 GHz Pentium
4 processor and 2 GB RAM running Matlab 7.2.0 (R2006a).

We experimented with the noise factors (nfd and nfa) to
understand their effect on the positioning accuracy. Fig. 5
shows variation of the average error with increasing nfd. The
distributed SOCP algorithm handles distance errors as large
as 20% gracefully with a small degradation in positioning
accuracy. MDS-MAP(P, R) algorithm gives better accuracy
using the O(n3) global refinement step and shows similar
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Fig. 5. Average positioning error as a function of the Noise Factor nfd.
(n = 500, RadioRange = 0.15, p = 0.15 and nfa = 0.10)

degradation. It should be noted that MDS-MAP(P), the MDS-
MAP algorithm without global refinement, shows loss in
performance compared to MDS-MAP(P, R). MDS-MAP(P)
also uses more computations than the distributed SOCP due to
the refinement and merging of local maps. It is observed that
the singular value decomposition (SVD) step of the MDS-
MAP algorithms takes progressively longer to converge as
the distance errors increase. Localization systems based on
received signal strength (RSS) measurements regularly en-
counter distance estimation errors of 15−20%. The distributed
SOCP approach is thus robust to large distance errors while
being computationally efficient.

Fig. 6 shows the effect of the noise factor nfa on the
average error. The SOCP algorithm is robust to anchor position
errors. The degradation in the positioning accuracy is not
significant even in the presence of 30% error in the anchor
positions. MDS-MAP(P, R) algorithm which typically works
with very few anchors, needs more anchors to compensate for
the errors introduced by the inaccurate anchor positions.

In section V we showed that the positioning accuracy can
be improved by increasing the radio range of all nodes.
Since increasing the radio range of the sensors is typically
not feasible due to the resource constraints, increasing the
radio range for the anchors is more reasonable. Also, in
practice anchors tend to have more transmit power. Fig. 7
illustrates the effect of increasing the radio range of the
anchors while keeping the range of the sensor nodes fixed.
Increasing the radio range of anchors from 0.10 to 0.15 results
in a very significant improvement in the positioning accuracy,
but further increase in the anchor radio range does not improve
the positioning. This behavior can be explained as follows.
During position estimation for a node, we use information
from only those sensors and anchors which are within its
radio range. We do not account for the fact that some anchors
are able to transmit to a sensor node even though the sensor
cannot transmit to them (due to asymmetric radio ranges). In
effect, we use information from only those nodes which have
a bidirectional link with the sensor. So the increased range of
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Fig. 6. Average positioning error as a function of nfa and p. (n = 500,
RadioRange = 0.10 and nfd = 0.01)
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Fig. 7. Average sensor positioning error as a function of the radio range
of the anchors (RadioRangeAnchor). (n = 1000, p = 0.15, nfd =
0.05, nfa = 0.10, RadioRangeSensor = 0.10)

the anchors only aids in refining the position estimates of the
anchors when they communicate with other anchors, which
improves the sensor positioning but with diminishing return.
Further improvement in positioning accuracy can be expected
by using information from all anchors which can transmit to
a sensor node.

We now revisit the irregular C-shaped network and use
longer ranges for the anchors than the sensors. Fig. 8 shows
the positioning result when the radio range for the sensors is
0.15 and 0.20 for the anchors. The average positioning error is
0.031 (20.6% of the sensor range), a 10% improvement over
the accuracy achieved with the radio range set to 0.15 for both
sensors and anchors. Fig. 9 shows the results with the anchor
range increased to 0.25 resulting in an average positioning
error of 0.025 (16.7% of the sensor range).
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Fig. 8. Distributed SOCP results for irregular (C-shaped) topology: n = 300,
RadioRangeSensor = 0.15, RadioRangeAnchor = 0.20, p = 0.15
and nfd = 0.05. err = 0.031 and errmax = 0.444.
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Fig. 9. Distributed SOCP results for irregular (C-shaped) topology: n = 300,
RadioRangeSensor = 0.15, RadioRangeAnchor = 0.25, p = 0.15
and nfd = 0.05. err = 0.025 and errmax = 0.429.

VII. TRACKING A MOBILE SENSOR NODE

In this section we consider the problem of tracking a mobile
node in an indoor environment using a few high-power and
long range anchors. This arises in situations such as tracking
fire-fighters who are on a rescue mission inside a building on
fire. The fire-fighters can be tracked using wearable sensors
and high-power transmitters placed outside the building.

For these experiments, we include a fading coefficient (f )
which represents the percentage of total anchors that cannot
be heard by the sensor at any given time. This models the
obstructions encountered in indoor environments which limit
the number of anchors that can be heard at any point.

We use 8 anchor nodes, placed equidistantly at the boundary
of a [−0.5, 0.5]2 square grid, for the experiments. The tracking
results using the distributed SOCP algorithm are shown in
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(a) Test runs 1 and 2
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(b) Test runs 3 and 4

Fig. 10. Tracking Results: Circles (◦) on the [−0.5, 0.5]2 square grid
represent the true anchor positions, the diamonds (�) represent the inaccurate
anchor positions used for the experiments. ⊕ indicates sensor node positions
along the actual path. Solid lines indicate the actual path followed by the
sensor node. Estimated paths are indicated by dash-dot lines for test runs 1,
3 and dotted lines for test runs 2, 4.

TABLE III
SIMULATION PARAMETERS FOR THE TRACKING RESULTS. f IS THE

FADING COEFFICIENT, TOTAL NUMBER OF ANCHORS = 8 AND nfa = 0.10.

Test nfd f Number of Avg. Error std. Max.
run anchors heard error dev. error
1 0.15 0.50 4 0.094 0.043 0.182
2 0.15 0.40 5 0.075 0.026 0.152
3 0.10 0.50 4 0.061 0.038 0.169
4 0.10 0.40 5 0.044 0.029 0.117

Fig. 10. In Fig. 10(a), the distance estimates have ±15% error
standard deviation (nfd = 0.15) whereas in Fig. 10(b), nfd =
0.10. There is no significant degradation in the results as the
anchor position error standard deviation is increased from 5%
to 15% (nfa = 0.05 to 0.15). Thus, nfa is fixed at 0.10
for the tracking results shown here. The estimated tracks are
fairly accurate with up to 15% error standard deviation in the
distance estimates. Distance estimates with more than 20%
error standard deviation begin to degrade the results. The error
metrics for these experiments are shown in Table III.

VIII. ASYNCHRONOUS DISTRIBUTED ALGORITHM

In this section we consider asynchronous execution of
the distributed SOCP algorithm. The motivation for this is



SRIRANGARAJAN et al.: DISTRIBUTED SENSOR NETWORK LOCALIZATION USING SOCP RELAXATION 4893

TABLE IV
COMPARISON OF SYNCHRONOUS AND ASYNCHRONOUS ALGORITHM

EXECUTION. n = 1000, nfd = 0.05, nfa = 0.10, p = 0.15,
RadioRangeAnchor = 0.15, RadioRangeSensor = 0.10.

Total number CPU time Avg. sensor position error
of iterations per node Before anchor After anchor

(in sec) refinement refinement
Sync. 20 1.91 0.0436 0.0232
Async. 60 2.67 0.0447 0.0213

to understand the convergence properties of the algorithm
under asynchronous execution and to compare the time to
convergence and communication penalty with its synchronous
counterpart. We also demonstrate a variation of the asyn-
chronous algorithm that allows the distributed SOCP approach
to be used with fewer anchors.

A. Synchronous vs. Asynchronous

Asynchronous algorithms lack the notion of phases and
coordination between the different processors is less strict. For
asynchronous execution of the distributed SOCP algorithm,
we randomly pick the nodes which will update their positions
during any given iteration. Each node localizes itself based
on whatever information happens to be available from its
neighbors at that time; including some information which may
not have been updated for the last few iterations.

Table IV presents a representative comparison between the
synchronous and asynchronous executions of the algorithm.
The asynchronous algorithm needs about three times as many
iterations to achieve the same positioning accuracy as the syn-
chronous version. Despite this fact, the computational time per
node (excluding the time for communication) increases by a
much smaller factor. The communication requirements for the
asynchronous version might exceed those for the synchronous
execution due to the larger number of iterations resulting in
more message exchanges between nodes. This assumes there
are no queuing delays affecting the computation. Considering
the results in Table IV it can be said that the asynchronous
algorithm converges at about the same rate as the synchronous
algorithm. This agrees with the analysis of other well-known
algorithms such as the Bellman-Ford algorithm.

B. Asynchronous distributed localization with fewer anchors

A distributed localization algorithm offers the possibility
of using sensor nodes positioned in one iteration as pseudo
anchors in the following iterations. The SOCP algorithm
makes use of this implicitly. Here we outline a procedure
to make explicit use of this, thus allowing the algorithm to
localize the nodes using fewer anchors. In a variation of the
asynchronous algorithm, instead of randomly choosing nodes
which will update their positions, the position update will be
based on the availability of at least three neighboring nodes
which have obtained an estimate of their position.

Fig. 11 shows the positioning results for a network with
n = 500 nodes and 5% anchors (or 25 anchors). The anchors
are placed on a uniform grid to ensure good coverage. It is
seen that the results converge giving an average positioning
error of 0.0346 (or 21.6% of the sensor range). This illustrates
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Fig. 11. Asynchronous distributed SOCP using low percentage of
anchors: n = 500, p = 0.05, RadioRangeAnchor = 0.16,
RadioRangeSensor = 0.16, nfd = 0.10 and nfa = 0. err = 0.0346.

the ability of the SOCP approach to localize nodes with fewer
anchors, without loss of positioning accuracy.

Finally, in Table V we provide a comparison of the dis-
tributed SOCP, dwMDS [8] and MDS-MAP algorithms [7],
on networks with a low percentage of anchors, in terms of
performance and complexity. Some of the parameter values
are estimated based on the data presented in [7], [8]. dwMDS
and distributed SOCP are similar in computational complexity
with the SOCP method providing better accuracy. The results
using MDS-MAP algorithms, despite using O(n3) operations,
do not differ significantly from the distributed SOCP.

IX. CONCLUSION

The proposed distributed algorithm based on SOCP re-
laxation solves the localization problem, in the presence of
inaccuracies in anchor positions and distance measurements,
with significant computational savings and without sacrificing
positioning accuracy. An extensive numerical study of the
algorithm under different scenarios has been presented. This
method is also able to improve positioning of the anchors
which are in the convex hull of their neighbors. The asyn-
chronous version of the algorithm also shows good conver-
gence properties and allows localization with fewer anchors.

APPENDIX

SOCP PROBLEM FORMULATION IN SEDUMI FORM

SeDuMi solves problems of the form:

max bT y s.t. c − AT y ∈ K∗ (6)

where K∗ is the dual cone. We now express (5) in this form.
Assuming 2-D localization (d = 2), we define:

Li :=
[

1 01×(4ni+2)
]

rj :=
[

0 d2
ij

]T
, tj :=

[
0 0 xj1 xj2

]T
Sj :=

[
01×(2ni+3) 1ij 01×ni

01×(2ni+3) 01×ni 1ij

]
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TABLE V
COMPARISON OF DIFFERENT LOCALIZATION ALGORITHMS ON RANDOM UNIFORM NETWORKS. L IS THE NUMBER OF ITERATIONS NEEDED FOR THE

ALGORITHMS TO CONVERGE (TYPICALLY A SMALL NUMBER). † EXPERIMENTAL DATA AND RESULTS FROM [8]. ‡ SIMULATION RESULTS FROM [7].

n nfd p RadioRange Avg. node Position error (% RadioRange) Computational
connectivity (nc) Mean Median RMS complexity

MDS-MAP(C)† 44 0.30 0.09 0.43 – – – 71.7% O
(
n3
)

dwMDS † 44 0.30 0.09 0.43 – – – 41.3%
O (nncL)

44 0.30 0.09 0.61 – – – 26.7%

Dist. SOCP
44 0.30 0.09 0.43 13.0 27.6% 29.2% 30.7%

O (nncL)
44 0.30 0.09 0.61 24.6 24.1% 23.2% 26.4%

MDS-MAP(C)‡ 200 0.05 0.05 0.15 12.2 – 17% – O
(
n3
)

MDS-MAP(P, R)‡ 200 0.05 0.05 0.15 12.2 – 6% – O
(
nn3

c

)
+ O

(
n3
)

Dist. SOCP 200 0.05 0.08 0.22 21.4 11.6% 10.5% 12.7% O (nncL)

Uj :=

⎡
⎢⎢⎣

0.5 01×(2ni+2) 01×ni 0.5(1ij)
−0.5 01×(2ni+2) 01×ni 0.5(1ij)

0 1i1 01×ni 01×ni

0 1i2 01×ni 01×ni

⎤
⎥⎥⎦ , j ∈ NA(i)

where 1ij is a row vector of length ni with a 1 corresponding
to the variable tij and 0’s elsewhere. Similarly, 1i1, 1i2 are
row vectors of length (2ni +2) with a 1 corresponding to the
coordinates of xi = (xi1, xi2) and 0’s elsewhere.

Define:

S :=

⎡
⎢⎣

S1

...
Sni

⎤
⎥⎦ , r :=

⎡
⎢⎣

r1

...
rni

⎤
⎥⎦ , U :=

⎡
⎢⎣

U1

...
Uni

⎤
⎥⎦

t :=

⎡
⎢⎣

t1
...

tni

⎤
⎥⎦ , y :=

⎡
⎢⎢⎣

t
′
i

x
tij
yij

⎤
⎥⎥⎦

where x =
[

xi1 xi2

]T
(2ni+2)×1

, tij =
[

tij
]
ni×1

and

yij =
[

yij

]
ni×1

. Then the conic constraints can be ex-
pressed as r−ST y ∈ Qcone2 × . . .× Qcone2, and t−UT y ∈
Qcone4 × . . .× Qcone4, where the Cartesian product is taken
over ni cones. (Qconek = {(x, y) ∈ R × Rk−1 : x ≥ ‖y‖}).

Defining:

b̃ := −

⎡
⎢⎢⎣

0
02(ni+1)×1

1ni×1

0ni×1

⎤
⎥⎥⎦ , Ã :=

⎡
⎣ Li

S
U

⎤
⎦

T

, c̃ := −
⎡
⎣ 1

r
t

⎤
⎦ ,

problem (5) can be written in the form (6) with b = b̃, A = Ã,
c = c̃ and K being the Cartesian product of all the cones.
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