
Improving Solutions to the Truss Topology Design

Problem with Alternating Convex Optimization

Hao Yi Ong Conrad Stansbury

June 4, 2014

1 Introduction

In the design of a mechanical structure, we’re interested in finding a general layout of the
structure’s supporting frame that best supports some anticipated design loads. Often, the
design of such supporting frames are addressed in ad-hoc ways, such as by complicated
domain-specific heuristics [TTG05, DG01]. Our project targets the problem of designing a
truss–a collection of bars rigidly attached together that represents the layout of a mechanical
structure–subject to constraints expressing limits on quantities like the total cost of materials.
Examples of a truss include a construction crane, a railroad bridge, and the Eiffel tower.

All other things being equal, it is desirable for a truss to be stiff in the sense that it
does not deflect much under loads placed on the joints of the truss deemed typical for the
truss’s operation. Because the truss’s deflection is not a scalar quantity, it is common in
truss optimization problems to use the elastic stored energy of the truss deflected under a
particular set of load forces as a proxy for the stiffness, as we do in this paper [Ric13].

Given a graph whose edges are bars in the truss and whose nodes correspond to fixed
bar attachment points in physical space, one optimization problem that can reasonably be
formed is to find bar cross-sectional areas so that under some set of loads the elastic stored
energy is minimized. In the literature this class of problems is referred to as truss topology
design (TTD), so called because it aims to optimize a truss with a certain basic graph
connectivity (topology) [Fre04].

One shortcoming with solving the TTD problem is that in this method the locations of
the nodes and thus those of the bars are fixed. Not only do these solutions look unnatural
compared to structures used in practice they are also poorer structures under the metric of
elastic stored energy when we compare them with arbtitrary trusses with similar topology.
In this paper we describe a method using alternating convex programming to locally solve
the TTD problem where in addition to solving for the bar cross-sectional areas, we solve for
displacements to the original node positions. This way, our algorithm iteratively improves
upon a original truss topology as an approximation to optimizing the mechanical structure.

1



2 Truss Topology Design

In a TTD problem, we are given a base truss topology consisting of an initial set of node
positions and the bars to which they are attached to. Our design variables are the bar cross-
sectional areas a ∈ Rm and the node positions x ∈ R2n, where ai ∈ R is the area of the ith

bar and xj ∈ R2 are the coordinates of the jth node.
We are also given a set of forces anticipating the loads of the actual mechanical structure

F ∈ R2n, where Fj ∈ R2 is the load on the jth node. For the bars constituting the truss,
we are given their Young’s moduli E1, . . . , Em ∈ R, which characterize the bars’ material
elasticities.

From the base truss’s node positions, we can calculate a force mapping matrix P ∈ Rm×2n

with columns p1, . . . , p2n, which relate the loading forces F to the internal stresses experienced
by the bars, f ∈ Rm; i.e., Pf +F = 0. We can also compute the bar lengths L ∈ Rm, where
Li = ‖xi1 − xi2‖2 is the length of the ith bar connecting nodes at positions xi1 and xi2 .

The truss’s deflections are described by u ∈ R2, where uj ∈ R2 is the deflection of the
jth node. The deflections are related to the internal stresses f1, . . . , fm ∈ R by Euler’s beam
equations

fi = −Eiai

L2
i

pTi u, i = 1, . . . ,m.

The truss deflections are also related to loads F by Hooke’s Law F = Ku, where

K =
m
∑

i=1

Eiai

L2
i

pip
T
i

is the stiffness matrix. We note here that the stiffness matrix is dependent on the bar cross
sections a and, through the bar lengths L, the node coordinates x. We highlight these
dependencies by using referring to the stiffness matrix as K (a, x) henceforth.

Finally, the stored elastic energy is related to the forces applied on the truss and the
node deflections Θ = 1

2
F Tu, which we minimize in order to maximize the truss stiffness.

The optimization problem can thus be stated as follows: Given a set of loading forces F
that the truss is designed to support, a set of fixed nodes X fixed indicating where the truss
is fixed to the ground, and the physical space D where the nodes can be placed, the goal is
to produce a set of sized bars (i.e., cross-section areas) a and node positions x to minimize
the stored elastic energy. Mathematically, we can express the problem as

minimize Θ =
1

2
F Tu

subject to F = K(a, x)u
a ∈ A
x ∈ X ,

(1)

where a ∈ A and a ∈ X encode additional design constraints such as truss symmetry and
weight limits, based on allowable (convex) cross section areas A and node coordinates X .

2



3 An Alternating Convex Optimization Approach

Unfortunately, the minimization of Θ in the space of bar cross-section areas a and node
positions x is a nonconvex problem. However, the problem can be made locally convex in a

and x separately. Thus, as a heuristic to approximately solve (1), we can alternately optimize
over the bar sizes a and the node coordinates x. We refer to each pair of bar sizing and node
coordinates optimization as an iteration.

3.1 Bar sizing optimization problem

In the bar sizing optimization problem, we optimize the bar cross section areas a (i.e.,
the design variable) given the vector of node positions x as a constant. To cast the problem
formulated as a second-order cone program (SOCP), we introduce a linear change of variables
w, v ∈ Rm:

wi + vi = −1

2

(

uTP
)

i
fi, i = 1, . . . ,m

wi − vi = ai, i = 1, . . . ,m.
(2)

Intuitively, the value of wi + vi is the stored elastic energy in the ith bar.
With (2) and the relations encoded by the problem data given in §2, we can cast (1) with

x and its corresponding substitutions held constant as an SOCP:

minimize Θ = 1T (w + v)
subject to Pf + F = 0

∥

∥

∥

∥

(

vi,
Li√
Ei

fi

)∥

∥

∥

∥

2

≤ wi, i = 1, . . . ,m

w ∈ W
v ∈ V ,

(3)

where w ∈ W and v ∈ V enforce the additional design constraints originally encoded by
a ∈ A and a ∈ X using convex sets W and V .

3.2 Node coordinates optimization problem

In the node coordinates optimization problem, we optimize the node positions x given the
vector of bar sizes a as a constant. Instead of directly optimizing over x, however, we optimize
over its displacement, y ∈ Rn, where yj is the displacement of the jth node; i.e., we have the
update x+ = x+ y. As it stands, the problem is still not convex in y. This is due to the way
that x+ y is related through the internal stresses f1, . . . , fm to the node deflections variable
u. Under the assumption that y is small, however, it is reasonable to Taylor expand around
y = 0 to obtain

fi = −Eiai

L2
j

(

1 +
2pTi y

Lj

pip
T
i

)

, (4)

which allows us to formulate the node coordinates optimization problem as a convex one.

3



Analogous to the bar sizing optimization problem, we introduce an affine change of
variables w, v ∈ Rm (different from (2)) to cast the optimization problem as an SOCP:

wi + vi = −1

2

(

uTP
)

i
fi, i = 1, . . . ,m

wi − vi =
2piyi
Li

+ 1, i = 1, . . . ,m.
(5)

With (4), (5), and the relations encoded by the problem data given in §2, we can formulate
(1) with a and its corresponding substitutions held constant as an SOCP:

minimize Θ = 1T (w + v)
subject to Pf + F = 0

1

2
((wi − vi)− 1) =

pTi yi

Li

, i = 1, . . . ,m
∥

∥

∥

∥

(

vi,
Li√
Eiai

fi

)∥

∥

∥

∥

2

≤ wi, i = 1, . . . ,m

w ∈ W
v ∈ V
y ∈ Y ,

(6)

where, again, w ∈ W and v ∈ V enforce the additional design constraints originally encoded
by a ∈ A and a ∈ X using convex sets W and V . Additionally, we include y ∈ Y , which
enforces a set of convex constraints such as truss symmetry and node displacement magnitude
bounds (node migration rate ǫ) to ensure the validity of our Taylor expansion.

3.3 Alternating convex optimization algorithm

With our problem data and two optimization subproblems defined, we can thus describe our
algorithm as follows:

Algorithm 1: Alternating convex optimization method for TTD

given a set of fixed nodes X fixed, a set of force loadings F , and an
allowable physical space D.

Generate initial set of discretized node coordinates x0 from D, set x := x0.

repeat

1. Given x, obtain a and Θ1–the solution to and objective of (3).
2. Given a, obtain y and Θ2–the solution to and objective of (6).
3. Update x := x+ y.
4. break if Θ1 and Θ2 converge.

return a, x.

4



4 Example: Bridge Design

To test and demonstrate our method, we applied it to the problem of designing a 2-D bridge
with two fixed nodes and a design force evenly distributed between them. To generate a
topology to optimize, we placed the fixed nodes in the left and right bottom corners of a
uniform unit lattice with nx × ny nodes.

As a constraint on the lengths of bars, we limit our edge set to edges that only connect
pairs of nodes a distance no more than 3 units apart. This constraint is subsumed in a ∈ A
such that the cross sections of longer bars are constrained to 0. We also placed a total volume
constraint and a maximum area constraint on the bars

LTa ≤ V max

a � amax1,

as well as a limit on the total node migration distance from the original truss topology
ρ = 0.4 units on each node’s displacement to prevent nodes from passing each other and
invalidating our Taylor expansion (4). In our example we used a node migration rate limit
ǫ = 0.015 units that limits the magnitudes of node displacement y in each iteration. These
values were determined experimentally to provide a good tradeoff between the validity of
our approximations and the number of iterations required for adequate convergence.

We present the results of applying our method to a problem with nx = 8, ny = 4 in
Figures 1 and 2.

TDD Solution/Iteration 0.5 Iteration 7.5

Iteration 14.5 Iteration 27.5

Figure 1: Line thickness indicates bar cross-
sections. Red arrows are the loading forces for
the problem.

0 5 10 15 20 25 30
15.6

15.8

16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

 

 

Iterations

E
la
st
ic

S
to
re
d
E
n
er
gy

:
Θ

Θ1

Θ2

Figure 2: Objective values throughout run
for the model in Figure 1. Optimal structure
obtained at iteration 24.

The upper left inset in Figure 1 shows the result after one “half-iteration” (finding the
cross-sectional areas), which is the solution to the standard TTD problem. The lower right

5



inset shows the result at convergence. Because the problem is nonconvex, the solution at
practical convergence was not the best structure, as seen in Figure 2.

Our solution has a reduced number of bars without our objective containing any regu-
larization terms, which is another positive characteristic of a truss with all else being equal.
We also note that our solution has a single arch with a classic inverted catenary shape. For
this model the elastic stored energy was reduced by 8.9%. We also note that for this model,
the constraints we impose seem to imply convergence in a finite number of iterations.

5 Implementation and Analysis

Because both of the convex subproblems (3) and (6) are SOCPs it was possible to test
our method on trusses of substantial size using the interior point solvers distributed with
CVX, the Matlab convex modeling framework. Using CVX, we were also able to submit our
problem to SCS, a convex cone solver which uses operator splitting [OCPB13].

We found that SCS solved our problems significantly faster than SeDuMi, even without
providing warm starts to the solver. A summary of these results for a few different problem
sizes with the bridge topology can be seen in Table 1 in Appendix A. While we encountered
a few issues in using SCS relating to numerical stability, these were avoided by choosing a
tolerance of 10−9. This made the duality gap parameter comparably small to those of the
interior point solvers.

6 Conclusions and Future Work

We present a promising approach to improve upon solutions to the truss design problem.
More work should be done to investigate convergence over a variety of models. From an
engineering standpoint, it might be interesting if real structures were used as the original
truss topology upon which our algorithm improves. With regards to the optimization pro-
cedure, we are interested in seeing how to apply techniques from distributed optimization to
the problem, though in the time being the results from SCS are satisfying on this front.

Acknowledgments

We thank Professor Stephen Boyd and the course instructors for their motivating this project
and giving feedback. We are also grateful to the peer review teams who gave input on our
proposal and midterm report. Finally, we thank Brendan O’Donoghue for promptly patching
the convex cone solver SCS, which enabled our numerical experiments with this solver.

6



References

[DG01] K. Deb and S. Gulati. Design of truss-structures for minimum weight using
genetic algorithms. Finite Elements in Analysis and Design, 37:447–465, 2001.

[Fre04] R. M. Freund. Truss design and convex optimization. 2004.

[OCPB13] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Operating splitting for conic
optimization via homogeneous self-dual embedding. 2013.

[Ric13] J. N. Richardson. Topology Optimization of Truss-like Structures: from Theory

to Practice. PhD thesis, Brussels School of Engineering, 2013.

[TTG05] W. Tang, L. Tong, and Y. Gu. Improved genetic algorithm for design optimiza-
tion of truss structures with sizing, shape and topology variables. International

Journal for Numerical Methods in Engineering, 62:1737–1762, 2005.

7



A Simulation results for bridge design examples

small: 8× 4 medium: 20× 10 large: 30× 15
std. form variables (CSP) 791 6701 16026
std. form constraints 219 1737 4102

SeDuMi solve time 0.712 sec 11.40 sec 112.8 sec

SCS solve time 0.310 sec 2.496 sec 7.368 sec

SCS iterations per solve 8080 14220 10080
std. form variables (NMP) 1114 8530 19990
std. form constraints 464 3338 7713

SeDuMi solve time 1.287 sec 25.82 sec 259.4 sec

SCS solve time 0.280 sec 1.320 sec 5.240 sec

SCS iterations per solve 1120 1580 1540

Table 1: SCS and SeDuMi results on the bridge model. CSP refers to the cross-sections subproblem
(3), and NMP the node migrations subproblem (6). Times are per iteration on an i7 2720QM.

8


