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This report describes the attempt to recreate the results described in the paper
Intensity Gradient Based Registration and Fusion of Multi-modal Images by E. Haber
and J. Modersitzki (Methods of Information in Medicine, vol. 46(3), 2007).

1 Formulation of the problem

The paper formulates the registration problem between two images as an optimization
problem where one tries to maximize the inner-product of the normalized gradient fields
of the two images. The cost function D for a reference image R, and a transformed
image T , where R, T : Ω ⊂ R2 → R, is defined in the paper as follows

d =
∇T.∇R

‖∇T‖2‖∇R‖2

D = − 1

2n
dTd

(1)

where n is the total number of pixels within the image.

2 Problem formulation & Proposed solution

Given the cost function in equation (1), the authors indicate that the optimal transfor-
mation was found by using the Gauss-Newton method which requires one to compute
the derivative of the function with respect to the parameters used in the transformation.
However, the provided expressions for the derivative of the cost functions were found to
be incomplete. Therefore, the derivatives for the optimization problem were formulated
as follows:-

Given that R is an affine transformation of the image T , and x = (x1, x2), then the
ith entry of d in the above equation, corresponding to each pixel location of the images,
can be written as

di =
Rx1(xi)Tx1(xi − φ(x)θ) +Rx2(xi)Tx2(xi − φ(x)θ)

‖∇Tx(x− φ(x)θ)‖2‖Rx(xi)‖2
where
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φ(x) :=

(
x1 x2 0 0 1 0
0 0 x1 x2 0 1

)
,

and

θ :=
(
A11 A21 A12 A22 b1 b2

)
.

where the Affine transformation is given by

x′ :=

(
A11 A12

A21 A22

)(
x1
x2

)
+

(
b1
b2

)
.

Now the step direction for minimizing an objective function of the form

f0(x) =

N∑
i=1

fi(x)2

using the Gauss-Newton method is given by

∆x = (

N∑
i=1

∇fi(x)∇fi(x)T )−1(

N∑
i=1

fi(x)∇fi(x)T )−1

It can be seen that the cost function proposed by the authors of the paper is of a similar
form where fi(x) = di. Therefore, the derivatives of di with respect to the parameters
A and B (i.e. ∇d) are required to perform the Gauss-Newton method. The simplified
expressions for the gradient of d that were derived are given in equation (2) given below

∇θd =

N∑
i

diφ(xi)
TH(

di
‖∇T ((xi − φ(x))‖22

∇T (xi − φ(x)θ)− 1

Pi
∇R(xi)) (2)

where

Pi = ‖∇T (xi − φ(x)θ)‖2‖∇R(θ)‖2
and H is the Hessian of T (xi − phi(xi)θ) evaluated at pixel xi.

Using the above equations, the analytical gradient was coded using Matlab. To
verify its accuracy, the numerical gradient with respect to the parameters was also
estimated and compared with the analytical gradient given above. The tests showed
that the gradients only matched in regards to the derivatives with respect to translations
parameters (b1, b2). The reason for this discrepancy was not discovered and therefore
it was decided to proceed forward with a transformation model that was limited to
registering translations i.e.

φ(x) :=

(
1 0
0 1

)
,
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θ :=
(
b1 b2

)
.

and the transformation model is given by

x′ :=

(
x1
x2

)
+

(
b1
b2

)
.

Furthermore, due to time constraints, a simple gradient ascent method was used to
converge toward the correct solution.

3 Data sources and optimization tools used

The data sources for the cross modality and same modality tests were obtained from the
MRI and CT images provided for CS 673 assignments. The images were also slightly
blurred to aid with registration and a multi-grid scheme was used. For optimization,
a gradient ascent scheme was used. The steepest ascent direction (∆x) was computed
using equation (2). The step size t was initially fixed to 0.5. The solution at each
iteration was updated as

x = x+ t∆x

The scheme was terminated after 1000 iterations or when the norm of the gradient at
the solution was less than 10E − 5.

The drawback of the gradient ascent scheme is that the solution at each iteration
may zig-zag and therefore the convergence rate maybe slower compared to using Gauss-
Newton. However, it was considered acceptable since the focus was on accuracy as
opposed to speed. In future, the solution can surely be enhanced by using a line search
method (back-tracking or Amijo) for faster performance.

4 Results and Observations

The following table contains a summary of the results for a sample of test cases using
images of the same modality. No results were recorded for multi-modal image registration
since the proposed algorithm of this paper does not yield any accurate results.

Actual NGF MI

x1 x2 Estimated x1 Estimated x2 ‖∇at estimated point‖2 x1 x2
1 1 0.9994 0.9986 9.67E-05 1.0096 1.0258

1 5 0.9995 4.9994 7.28E-05 1.007 5.0219

0 5 -7.2275 -3.5022 9.51E-05 0.031731 5.0185

-4 5 -4.0001 4.9995 7.52E-05 -4.0023 -5.0187

-4 -3 -3.9999 -3.0002 8.66E-05 -3.9999 -3.0213

-4 7 -3.8489 1.2342 9.78E-05 -4.0039 7.0259

-2 6 -2.0004 5.9987 8.31E-05 -2.0035 6.0288
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As can be seen from the sample of results indicated in the above table, the NGF
based estimations are in some cases inaccurate. But even these inaccurate estimate do
seem to be at a local optimal given that the gradient is almost zero. On the other hand,
the mutual information based estimates are more accurate throughout. It must also be
noted that the mutual information based registration obtained results with high accuracy
during cross modality image registration tests performed using the above sample test
cases as well.

5 Analysis and conclusions

1. The proposed algorithm can be unpredictable in its performance of registering even
small translations (+/− 7 pixels) within the images of the same modality.

2. The iterative algorithm tends to have problems with converging to the correct
solution due to local optima when registering images of the same modality.

3. The algorithm does not give good results for cross modality image registration.

4. In contrast, mutual information either outperformed or did as well as the proposed
algorithm in almost all the cases that were tested.

5. Mutual information performs just as well for cross modality image registration.

6. The claim of the authors that the normalized gradient field based registration is a
better option to mutual information cannot be accepted given the observed results.

Appendix

Main registration function

function [ estimated params ] = NGF registration(x disp,y disp )

%% Read the test images
f = imread('rire t2.jpg');
fs = double( f(:,:,1) );

g = imread('rire pd.jpg');
gs = double( g(:,:,1) );
%%

%% Deform the image for testing
% Note: Only translations are considered for reasons explained in report
% x disp = −3;
% y disp = −5;

fprintf('Actual parameters = [%d, %d]\n',x disp, y disp);

4



actual params = [ x disp; y disp]';

g = push forward(fs, actual params, [1, 1]);

%%

%% Scaling for multi−grid & Initial guess
scales = [0.125 0.25 0.5 1];
% scales = [1];

initial guess = [0 0];

figure(1);
%%

%% Bluring the image for better registation
h=[0.05; 0.25; 0.4; 0.25; 0.05]';

f=conv2(h,h,f,'same');
g=conv2(h,h,g,'same');
%%

%% Iterate through each grid level to find optimal solution
for scale = scales

% Scale the images for each grid
fs = imresize(f, scale);
gs = imresize(g, scale);

new params = initial guess * scale;

fs = double(fs);
gs = double(gs);

% Estimate new parameters using gradient descent
new params = gradient ascent(fs,gs,new params,[1, 1]*scale);

initial guess = new params'/ scale;
end
%%

fprintf('Estimated parameters = [%d, %d]',initial guess(1), initial guess(2));

%% Output the estimated parameters
estimated params = initial guess;

end

Gradient Ascent function

function [ params ] = gradient ascent(fs,gs,initial guess,resolutions)
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%% Set up variables
newf = fs;
[rows, cols] = size(gs);
counter = 1;
t = 0.5*resolutions(1); % Introduces an adapative aspect to t
new params = initial guess';
newf = push forward(fs,new params,resolutions);
df = Derivatives NGF v(fs, gs, resolutions);
old params = initial guess';
old cost = 0;

%% Iterate through using Gradient ascent
while(norm(sum(df,2)) > 0.0001)

d = ngf D(newf,gs,resolutions);
d = d(:);

new params = new params + t*sum(df,2);

newf = push forward(fs,new params,resolutions);

if mod(counter,5)==0 %Display the both images every 5 iterations.
C = imfuse(newf,gs,'falsecolor','Scaling','joint','ColorChannels',[1 2 0]);
imshow(C)

end

df = Derivatives NGF v(newf, gs, resolutions);

counter = counter + 1;

if(mod(counter,1000) == 0)
if((resolutions(1) == 1) && (counter < 2000))

%Increase t to speedup convergence
t = 1;

else
break;

end
end

old params = new params;
end

fprintf('Norm of gradient at grid scale %d was %d \n', resolutions(1), norm(sum(df,2)));

params = new params;

end

Cost function d

function [ d ] = ngf D( f, g, resolutions )
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[row, column] = size(f);
n = row*column;

eps = 0.005;

[fx, fy] = gradient(f,resolutions(1), resolutions(2));
[gx, gy] = gradient(g,resolutions(1), resolutions(2));

norm g f = sqrt(fx.ˆ2 + fy.ˆ2 + eps.ˆ2);
ngf fx = fx./norm g f;
ngf fy = fy./norm g f;

norm g g = sqrt(gx.ˆ2 + gy.ˆ2 + eps.ˆ2);
ngf gx = gx./norm g g;
ngf gy = gy./norm g g;

d = ngf fx.*ngf gx + ngf fy.*ngf gy;

D = (1/(2*n))*d(:)'*d(:);

end

Analytical gradient

function [ df ] = Derivatives NGF v( f,g, resolutions )

eps = 0.005;

[rows,columns] = size(f);
t y = −(rows−1)/2:(rows−1)/2; %defining vectors for mesh grid
t x = −(columns−1)/2:(columns−1)/2; %defining vectors for mesh grid
MN = columns*rows;
[x 1,x 2] = meshgrid(t x*resolutions(1),t y*resolutions(2));

[Rx1, Rx2] = gradient(g, resolutions(1), resolutions(2));
[Tx1, Tx2] = gradient(f, resolutions(1), resolutions(2));
[Tx11, Tx12] = gradient(Tx1, resolutions(1), resolutions(2));
[Tx21, Tx22] = gradient(Tx2, resolutions(1), resolutions(2));

Tx1 = Tx1(:);
Tx2 = Tx2(:);
Rx1 = Rx1(:);
Rx2 = Rx2(:);

Tx11 = Tx11(:);
Tx12 = Tx12(:);
Tx21 = Tx21(:);
Tx22 = Tx22(:);

x 1 = x 1(:);
x 2 = x 2(:);
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N0 = (Tx1.*Rx1 + Tx2.*Rx2);
N0 = [N0,N0]';

N1 = [−Rx1.*Tx11, −Rx1.*Tx12]';
N2 = [−Rx2.*Tx21, −Rx2.*Tx22]';

Di = sqrt(Tx1.ˆ2 + Tx2.ˆ2 + epsˆ2).*sqrt(Rx1.ˆ2 + Rx2.ˆ2 + epsˆ2);
Di = [Di,Di]';

C1 = [Tx11.*Tx1, Tx12.*Tx1]';
C2 = [Tx21.*Tx2, Tx22.*Tx2]';

C = C1 + C2;

norm grad T = sqrt(Tx1.ˆ2 + Tx2.ˆ2 + epsˆ2);
norm grad T = [norm grad T,norm grad T]';
norm grad R = sqrt(Rx1.ˆ2 + Rx2.ˆ2 + epsˆ2);
norm grad R = [norm grad R,norm grad R]';

A = (N1 + N2)./Di;

B = C.*N0./(norm grad T.ˆ3.*norm grad R);

d = ngf D(f,g,resolutions);

d = [d(:),d(:)]';
% d = 1;
df = (1/(rows*columns))*d.*(A+B);

% df =(A+B);
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