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Abstract— In the recent past, several sampling-based al-
gorithms have been proposed to compute trajectories that
are collision-free and dynamically-feasible. However, the out-
puts of such algorithms are notoriously jagged. In this
paper, by focusing on robots with car-like dynamics, we
present a fast and simple heuristic algorithm, named
Convex Elastic Smoothing (CES) algorithm, for trajec-
tory smoothing and speed optimization. The CES algorithm is
inspired by earlier work on elastic band planning and iteratively
performs shape and speed optimization. The key feature of the
algorithm is that both optimization problems can be solved
via convex programming, making CES particularly fast. A
range of numerical experiments show that the CES algorithm
returns high-quality solutions in a matter of a few hundreds
of milliseconds and hence appears amenable to a real-time
implementation.

I. INTRODUCTION

The problem of planning a collision-free and dynamically-
feasible trajectory is fundamental in robotics, with appli-
cation to systems as diverse as ground, aerial, and space
vehicles, surgical robots, and robotic manipulators [1]. A
common strategy is to decompose the problem in steps of
computing a collision-free, but possibly highly-suboptimal or
not even dynamically-feasible trajectory, smoothing it, and
finally reparameterizing the trajectory so that the robot can
execute it [2]. In other words, the first step provides a strategy
that explores the configuration space efficiently and decides
“where to go,” while the subsequent steps provide a refined
solution that specifies “how to go.”

The first step is often accomplished by running a sampling-
based motion planning algorithm [1], such as PRM [3]
or RRT [4]. While these algorithms are very effective
for quickly finding collision-free trajectories in obstacle-
cluttered environments, they often return jerky, unnatural
paths [5]. Furthermore, sampling-based algorithms can only
handle rather simplified dynamic models, due to the com-
plexity of exploring the state space while retaining dynamic
feasibility of the trajectories. The end result is that the trajec-
tory returned by sampling-based algorithms are characterized
by jaggedness and are often dynamically-infeasible, which
requires the subsequent use of algorithms for trajectory
smoothing and reparametrization.

Accordingly, the objective of this paper is to design a fast
and simple heuristic algorithm for trajectory smoothing and
reparametrization that is amenable to a real-time implemen-
tation, with a focus on mobile robots, in particular robotic
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cars. Specifically, we seek an algorithm that within a few
hundreds of milliseconds can turn a jerky trajectory returned
by a sampling-based motion planner into a smooth, speed-
optimized trajectory that fulfills strict dynamical constraints
such as friction, bounded acceleration, or turning radius
limitations.

A. Literature Review

The problem of smoothing a trajectory returned by a
sampling-based planner is not new and has been studied
since the introduction of sampling-based algorithms [6]. For
planning problems that do not involve the fulfillment of
dynamic constraints (e.g., limited turning radius), efficient
smoothing algorithms are already available. In this case, the
most widely applied method is the Shortcut heuristic,
because of its effectiveness and simple implementation [7].
In a typical implementation, this algorithm considers two
random configurations along the trajectory. If these two con-
figurations can be connected with a new shorter trajectory (as
computed via a local planner), then the original connection
is replaced with the new one.

For planning problems with dynamic constraints, however,
the situation is more contentious. While several works have
studied sampling-based algorithms for kinodynamic planning
[4], [8], [9], [10], [11], [12], relatively few works have
addressed the issues of trajectory smoothing with dynamic
constraints. Broadly speaking, current techniques can be
classified into two categories [5], namely shortcut methods
and optimization-based methods. Shortcut methods strive to
emulate the Shortcut algorithm in a kinodynamic context.
Specifically, jerky portions of a path are replaced with curve
segments such as parabolic arcs [13], clothoids [14], Bézier
curves [15], Catmull-Rom splines [16], cubic B-splines [5],
or Dubins curves [17]. Such methods are rather fast (they
usually complete in a few seconds), but handle dynamic
constraints only implicitly, for example, by constraining the
curvature of the trajectories and/or ensuring C2 continuity.
Also, they usually do not involve speed optimization along
the computed trajectory. Notably, two of the main teams in
the DARPA Grand Challenge, namely team Stanford [18] and
team CMU [19], applied shortcut methods as their smoothing
procedure.

In contrast, optimization-based methods handle dynamic
constraints explicitly, as needed, for example, for high-
performance mobile vehicles. Two common approaches are
gradient-based methods [20] and elastic bands or elastic
strip planning [21], [22], [23], which model a trajectory as
an elastic band. These works, however, are mostly geared
toward robotic manipulators [22], may still require several
seconds to find a solution [20], and generally do not address
speed optimization along the trajectory.
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B. Statement of Contributions

In this paper, leveraging recent strides in the field of
convex optimization [24], we design a novel algorithm,
named Convex Elastic Smoothing (CES) algorithm,
for trajectory smoothing and speed optimization. The focus
is on mobile robots with car-like dynamics. Our algorithm
is inspired by the elastic band approach [23], in that we
identify a collision-free “tube” around the trajectory returned
by a sampling-based planner, within which the trajectory is
“stretched” and speed is optimized. The stretching and speed
optimization steps rely on convex optimization. In particular,
the stretching step draws inspiration from [25], while the
speed optimization step is essentially an implementation of
the algorithm in [26]. In contrast with [23], our algorithm
uses convex optimization for the stretching process, performs
speed optimization, and handles a variety of constraints (e.g.,
friction) that were not considered in [23]. As compared to
[25], our algorithm handles more general workspaces and
removes the assumption of a constant speed.

Specifically, the CES algorithm divides the trajectory
smoothing process into two steps: (1) given a fixed velocity
profile along a reference trajectory, optimize the shape of
the trajectory, and (2) given a fixed shape for the trajectory,
optimize the speed profile along the trajectory. We show that
each of the two steps can be readily solved as a convex
optimization problem. The two steps are then repeated until
a termination criterion is met (e.g., timeout). In this paper,
the initial reference trajectory is computed by running the
differential FMT∗ algorithm [27], a kinodynamic variant
of the FMT∗ algorithm [28]. Numerical experiments on a
variety of scenarios show that in a few hundreds of millisec-
onds the CES algorithm outputs a “high-quality” trajectory,
where the jaggedness of the original trajectory is eliminated
and speed is optimized. Coupled with differential FMT∗,
the CES algorithm is able to find high-quality solutions to
rather complicated planning problems in well under a second,
which appears promising for a real-time implementation.

We mention that the reference trajectory used as an input
to the CES algorithm can be the output of any sampling-
based motion planner, and indeed of any motion planning
algorithm. In particular, the CES algorithm appears to per-
form well even when the reference trajectory is not collision-
free or does not fulfill some of the dynamic constraints (see
Section IV for more details). Also, while in this paper we
mostly focus on vehicles with second-order, car-like dynam-
ics, the CES algorithm can be generalized to a variety of
other mobile systems such as aerial vehicles and spacecraft.

C. Organization

This paper is structured as follows. In Section II we
formally state the problem we wish to solve. In Section III we
present the CES algorithm, a novel algorithm for trajectory
smoothing that relies on convex optimization and runs in
a few hundreds of milliseconds. In Section IV we present
results from numerical experiments highlighting the speed
of the the CES algorithm and the quality of the returned
solutions. Finally, in Section V, we draw some conclusions
and discuss directions for future work.

II. PROBLEM STATEMENT

LetW ⊂ R2 denote the two-dimensional work space for a
car-like vehicle. Let O = {O1, O2, . . . , Om}, with Oi ⊂ W ,
i = 1, . . . ,m, denote the set of obstacles. For simplicity,
we assume that the obstacles have polygonal shape. In this
paper we primarily focus on a unicycle dynamic model
for the vehicle. Extensions to more sophisticated car-like
models are discussed in Section IV. Specifically, following
[26], let q ∈ W represent the position of the vehicle,
and q̇ and q̈ its velocity and acceleration, respectively. We
consider a non-drifting and non-reversible car model so that
the heading of the vehicle is the same as the direction
of the instantaneous velocity vector, and we denote by
φ(q̇) the mapping from vehicle’s speed to its heading. The
control input u = [ulong, ulat] is two-dimensional, with the
first component, ulong, representing longitudinal force and
the second component, ulat, representing lateral force. The
dynamics of the vehicle are given by

m q̈ =

[
cosφ(q̇) − sinφ(q̇)

sinφ(q̇) cosφ(q̇)

]
u, (1)

where m is the vehicle’s mass, see Figure 1. We consider a
friction circle constraint for u, namely

‖u‖ ≤ µmg, (2)

where µ is the friction coefficient and g is the gravitational
acceleration (in this paper, norms should be interpreted as
2-norms). The longitudinal force is assumed to be upper
bounded as

ulong ≤ Ū long, (3)

where Ū long ∈ R>0 encodes the force limit from the wheel
drive. Finally, we assume a minimum turning radius Rmin

for the vehicle, which, in turn, induces a constraint on the
lateral force according to

ulat ≤ m ‖q̇‖
2

Rmin
. (4)

The minimum turning radius (Rmin) depends on specific
vehicle parameters such as wheelbase and maximum steering
angle for steering wheels.

Some comments are in order. First, the unicycle model
assumes that the heading of the vehicle is the same as the
direction of the instantaneous velocity vector. This is a rea-
sonable assumption in most practical situations, but becomes
a poor approximation at high speeds when significant under-
steering takes place, or at extremely low speeds when the
motion is determined by Ackermann steering geometry. We
will show, however, that the results presented in this paper
can be extended to more complex car models, e.g., half-car
models, by leveraging differential flatness of the dynamics.
Second, we assume that the actual control inputs such as
steering and throttle opening angles can be mapped to u
via a lower-level control algorithm. This is indeed true for
most ground vehicles, see, e.g., [29]. Third, the friction circle
model captures the dependency between lateral and longitu-
dinal forces in order to prevent sliding. Fourth, constraint (3)
might yield unbounded speeds. This issue could be addressed
by conservatively choosing a smaller value of Ū long that



guarantees an upper bound of the achievable speed within
the planning distance. An alternative formulation is to set a
limit on the total traction power ulong ‖q̇‖ ≤ W , where
W denotes the maximum power provided by the engine.
This form is closer to the real constraint on traction force,
but it makes the constraint non-convex – this is a topic left
for future research. Finally, the model (1)-(4), with minor
modifications, can be applied to a variety of other vehicles
and robotic systems, e.g., spacecraft, robotic manipulators,
and aerial vehicles [26]. Hence, the algorithm presented in
this paper may be applied to a rather large class of systems
– this is a topic left for future research.

We are now in a position to state the problem we wish
to solve in this paper. Consider a collision-free reference
trajectory computed, for example, by running a sampling-
based motion planner [1]. Let this trajectory be discretized
into a set of waypoints P := {P0, P1, . . . , Pn}, where,
by construction, Pi ∈ W \ O for i = 1, . . . , n. The
goal is to design a heuristic smoothing algorithm that uses
the information about the vehicle’s model (1)-(4), obstacle
set O, and (discretized) reference trajectory P to com-
pute a dynamically-feasible (with respect to model (1)-(4)),
collision-free, and smooth trajectory that goes from P0 to
Pn and has an optimized speed profile, see Figure 1. Our
proposed algorithm is named CES and is presented in the
next section.

Fig. 1: The goal of this paper is to design a fast algorithm to
locally optimize the output of a motion planner, with a focus
on car models. Specifically, the smoothing algorithm takes
as input a reference trajectory P and returns a smoothed
trajectory Q with an optimized speed profile.

III. THE CES ALGORITHM

At a high level, the CES algorithm performs the following
operations. First, a sequence of “bubbles” is placed along
the reference trajectory in order to identify a region of the
workspace that is collision free. Such a region can be thought
of as a collision-free “tube” within which the reference
trajectory, imagined as an elastic band, can be stretched so
as to obtain a smoother trajectory. Assuming that a speed
profile along the reference trajectory is given, such stretching
procedure can be cast as a convex optimization problem, as
it will be shown in Section III-B. Furthermore, optimizing
the speed profile along a stretched trajectory can also be
cast as a convex optimization problem. However, jointly
stretching a trajectory and optimizing the speed profile is

Algorithm 1 Bubble generation

Require: Reference trajectory P , obstacle set O, bubble
bounds rl and ru

1 for i = 2 : (n− 1) do
2 if ‖Pi −Ai−1‖ < 0.5 · ri−1 then
3 Bi ← Bi−1
4 Ai ← Ai−1
5 ri ← ri−1
6 continue
7 end if
8 Bi ← GenerateBubble(Pi)
9 ri ← Radius of Bi

10 Ai ← Pi
11 if ri < rl then
12 Bi ← TranslateBubble(Ai, ri)
13 ri ← Radius of Bi
14 Ai ← Center of Bi
15 end if
16 end for

a non-convex problem. Hence, the CES algorithm proceeds
by alternating trajectory stretching and speed optimization.
Simulation results, presented in Section IV, show that such
a procedure is amenable to a real-time implementation and
yields suboptimal, yet high-quality trajectories. Our CES
algorithm is inspired by the elastic band and bubble method
[23]. The work in [23], however, mostly focuses on geomet-
ric (i.e., without differential constraints) planning, and does
not consider speed optimization, as opposed to our problem
setup.

In the remainder of this section we present the different
steps of the CES algorithm, namely, bubble generation,
elastic stretching and speed optimization. Finally the overall
CES algorithm is presented.

A. Bubble Generation
The first step is to compute a sequence of bubbles, one

for each waypoint Pi, so as to identify a collision-free tube
along the reference trajectory for subsequent optimization.
Since the problem is two-dimensional, each bubble is indeed
a circle. As discussed, extensions to systems in higher
dimensions (e.g., airplanes or quadrotors) are possible, but
are left for future research. The bubble generation algorithm
is shown in Algorithm 1.

Let Bi denote the bubble associated with waypoint Pi,
i = 1, . . . , n, and Ai and ri denote, respectively, its center
and radius. According to this notation, Bi = {x ∈ W | ‖x−
Ai‖ ≤ ri}. For each waypoint Pi, Algorithm 1 attempts to
compute a bubble such that: (1) its radius is upper bounded
by ru ∈ R>0, (2) whenever possible, its radius is no less
than rl ∈ R>0, and (3) its center is as close as possible to
Pi. The role of the upper bound ru is to limit the smoothing
procedure within a relatively small portion of the workspace,
say 10% (in other words, to make the optimization “local”).
In turn, the minimum bubble radius rl is set according to
the maximum distance between adjacent waypoints, so that
every bubble overlaps with its neighboring bubbles and the
placement of new waypoints for trajectory stretching (see
Section III-B) does not have any “gaps”.



First, in lines (2)-(7), the algorithm checks whether Pi
is “too close” to the center of bubble Bi−1. If this is the
case, bubble Bi is made equal to bubble Bi−1. Otherwise,
the algorithm considers as candidate center for bubble Bi
the waypoint Pi (that is collision-free) and computes, via
function GenerateBubble(Pi), the largest bubble cen-
tered at Pi that is collision-free (with maximum radius ru),
see lines (8)-(10). For rectangular-shaped obstacles, this is
a straightforward geometrical procedure. If the obstacles
have more general polygonal shapes, a bisection search is
performed with respect to the bubble radius. Should the
resulting radius be lower than the threshold rl, an attempt
is made to translate Ai so that a larger (collision-free)
bubble can be placed, lines (11)-(15). Specifically, func-
tion TranslateBubble(Ai, ri) first identifies the edge
of the obstacle closest to Ai (recall that the obstacles are
assumed of polygonal shape). Then, the outward normal
direction to the edge is computed and the center of the
bubble is moved along such direction until a ball of ra-
dius rl can be placed. Should this not be possible, then
TranslateBubble(Ai, ri) returns the ball of largest ra-
dius among the balls whose centers lie on the aforementioned
normal direction.

Figure 2 shows an example application of the bubble gen-
eration algorithm. The centers A1, A2 and A4 coincide with
their corresponding waypoints, while center A3 is translated
away from waypoint P3 to allow for a larger bubble radius.
Figure 3 shows a typical output of Algorithm 1.

By construction, the bubble regions are collision-free
and represent the feasible space for the placement of new
optimized waypoints during the elastic stretching process.
Note that in some cases trajectories connecting points in
adjacent bubbles may be in collision with obstacles, as shown
in Figure 2. This issue is mitigated in practice by considering
a “large enough” number of reference waypoints (possibly
adding them iteratively) and/or inflating the obstacles. A
principled way to select the number of waypoints would
rely on a reachability analysis for the unicycle model (1)-
(4). However, to minimize computation time, we rely on a
heuristic choice for the waypoint number. Specifically, the
spacing between the waypoints is roughly equal to a quarter
of the car length.

Fig. 2: Example application of the bubble generation proce-
dure, Algorithm 1.

B. Elastic Stretching (aka Shape Optimization)
The key insight of the elastic stretching procedure is

to view a trajectory as an elastic band, with n nodal
points whose positions can be adjusted within the respective
(collision-free) bubbles. Such nodal points represent the new
waypoints for the smoothed trajectory, which replace the
original waypoints in P . Within this perspective, the dynamic

Fig. 3: Typical output of Algorithm 1 for an environment
with rectangular-shaped obstacles.

Fig. 4: Artificial tensile forces and balance force for a
sequence of points placed in bubbles k − 1, k, k + 1.

constraints on the shape of a trajectory are mimicked by the
bending stiffness of the band.

Specifically, consider Figure 4. Let Qk and Qk+1 be
points, respectively, in bubbles k and k + 1, with k =
1, . . . , n − 1. We consider an artificial tensile force Fk
between Qk and Qk+1 given by

Fk := Qk+1 −Qk.
Accordingly, the balancing force at point Qk, k = 1, . . . , n is

Nk := Fk−1 − Fk. (5)
As in [23], the physical interpretation is a series of

springs between the bubbles. From a geometric standpoint,
the balancing force Nk captures curvature information along
a trajectory. Note that if all balance forces are equal to zero,
the trajectory is a straight line, which, clearly, has “ideal
smoothness.” To smooth a trajectory, the goal is then to
place new waypoints Q1, . . . , Qn within the bubbles so as to
minimize the sum of the norms of the balance forces subject
to constraints due to the vehicle’s dynamics. In this way,
the trajectory is “bent” as little as possible in order to avoid
collisions with obstacles.

The constraints for the placement of the new waypoints
rely on a number of approximations to ensure convexity of
the optimization problem. Specifically, assume the longitudi-
nal force ulongk and velocity vk are given at each waypoint in
P (their optimization will be discussed in the next section).
We define Rk as the instantaneous turning radius for the
car at the kth waypoint. The lateral acceleration alat for
waypoints Qk, k = 2, . . . , n− 1 can be upper bounded as

alat =
‖vk‖2

Rk
≤

√√√√(µ g)
2 −

(
ulongk

m

)2

:= αk, (6)



where the inequality follows from the friction circle con-
straint (2). Hence, 1/Rk ≤ αk/‖vk‖2. To relate Rk with
‖Nk‖, we make use of the following approximations, valid
when the waypoints are uniformly spread over a trajectory
and dense “enough”: (1) ‖Fk‖ ∼= ‖Fk−1‖, (2) θk is small,
and (3) θk ∼= ‖Qk+1 −Qk‖/Rk. Then one can write

‖Nk‖ = ‖Fk−1 − Fk‖ ∼= 2 · ‖Fk‖ · sin(θk/2)
∼= ‖Qk+1 −Qk‖ θk ∼= ‖Qk+1 −Qk‖2/Rk
≤ ‖Qk+1 −Qk‖2 αk/‖vk‖2.

(7)

Lastly, to make the above inequality a quadratic constraint
in the Qk’s variables, we approximate the length of each
band Qk+1−Qk as the average length d along the reference
trajectory, i.e.,

d :=

∑n−1
k=1 ‖Pk+1 − Pk‖

n− 1
.

Note that the minimization of ‖Nk‖ as the optimization ob-
jective inherently reduces the non-uniformity of the lengths
of each band, which justifies the above approximation.

In summary, we obtain the friction constraint

‖Nk‖ ≤ αk
(

d

||vk||

)2

. (8)

Also, again leveraging equation (7), we obtain the turning
radius constraint

‖Nk‖ ≤
d2

Rmin
. (9)

To constrain the initial and final endpoints of the trajectory,
one simply imposes Q1 = P1 and Qn = Pn. In turn, to
constrain the initial and final heading angles, one can use the
constraints Q2 = P1 +d · v1

‖v1‖ and Qn−1 = Pn−d · vn−1

‖vn−1‖ .
Noting that Nk = 2Qk−Qk−1−Qk+1, the elastic stretching
optimization problem is:

min
Q3,...,Qn−2

n−1∑
k=2

‖2Qk −Qk−1 −Qk+1‖2

s.t. Q1 = P1, Q2 = P1 + d · v1

‖v1‖
Qn = Pn, Qn−1 = Pn − d ·

vn−1
‖vn−1‖

Qk ∈ Bk, k = 3, . . . , n− 1

‖2Qk −Qk−1 −Qk+1‖ ≤ min

{
d2

Rmin
, αk

(
d

vk

)2
}

for k = 2, . . . , n− 1.

This is a convex optimization problem with quadratic objec-
tive and quadratic constraints (QCQP), where the decision
variables are the intermediate waypoints Qk, k = 3, . . . , n−
2, which can be placed anywhere within the collision-free
regions {B3, . . . ,Bn−2},

Note that any feasible solution to the above QCQP, output
as a sequence of discrete waypoints, represents a continuous-
time trajectory satisfying the unicycle model (1)-(4). This
full trajectory may be recovered by interpolating between
adjacent waypoints Qk,Qk+1 using circular arcs centered

at the intersection of v⊥k ,v
⊥
k+1, or a straight line if the

two velocity vectors are parallel. The speed profile along
this continuous trajectory may be taken as piecewise linear,
and the discrete constraints (8) and (9) ensure that the
continuous constraints (2)-(4) are satisfied. The quality of
such trajectories will be investigated in Section IV.

C. Speed Optimization
The speed optimization over a fixed trajectory relies on

the convex optimization algorithm presented in [26]. The
inputs to this algorithm are (1) a sequence of waypoints
{Q1, . . . , Qn} (representing the trajectory to be followed),
(2) the friction coefficient µ for the friction circle constraint
in equation (2), and (3) the maximum traction force Ū long

defined in equation (3). The outputs are (1) the sequence
of velocity vectors {v1, . . . ,vn} and (2) the sequence of
longitudinal control forces {ulong1 , . . . , ulongn }, one for each
waypoint Qk, k = 1, . . . , n. We refer the reader to [26] for
details about the algorithm.

D. Overall Algorithm
The CES algorithm alternates between elastic stretching

(Section III-B) and speed optimization (Section III-C), until a
given tolerance on length reduction, traversal time reduction,
or a timeout condition are met. Note that at iteration i ≥ 2,
the elastic stretching algorithm should use as estimate for the
average band length the quantity

d[i] :=

∑n−1
k=1

∥∥∥Q[i−1]
k+1 −Q

[i−1]
k

∥∥∥
n− 1

,

where the Q[i−1]
k ’s are the waypoints computed at iteration

i−1. According to our discussion in Section III-B, at iteration
i = 1 one should set Q[0]

k = Pk, for k = 1, . . . , n.

IV. NUMERICAL EXPERIMENTS

In this section we investigate the effectiveness of the CES
algorithm along two main dimensions: (1) quality of the
smoothed trajectory, measured in terms of traversal time
reduction with respect to the reference trajectory, and (2)
computation time. We consider three sets of experiments. In
the first set, we consider 24 random mazes with rectangular-
shaped obstacles, similar to the example in Figure 3. The
reference trajectory is computed by running the differential
FMT∗ algorithm [27]. In the second set, to test the robustness
of the algorithm, we consider a scenario where the reference
trajectory is computed disregarding the vehicle’s dynamics.
This could be the case when, to minimize computation time
as much as possible, the use of a motion planner is avoided.
Finally, we consider a scenario where a robotic car is mod-
eled according to a more sophisticated bicycle (equivalently,
half-car) model. The reference trajectory is computed by
running differential FMT∗ on the unicycle model (1)-(4).
By leveraging the differential flatness of the bicycle model,
the CES algorithm is then applied to the trajectory returned
by differential FMT∗ (computed on a different model). This
scenario represents the typical case whereby one seeks to run
a motion planner on a simpler model of a vehicle, and then a
smoothing algorithm on a more refined model. Furthermore,
this scenario shows how to apply the CES algorithms to



vehicle models more general than (1)-(4). For all scenarios,
the algorithm is stopped whenever the traversal time at the
current iteration is no longer reduced with respect to the
previous iteration. For the bubble generation method, we
chose ru = 10 m and rl = 1 m, consistent with the
workspace dimensions discussed below.

All numerical experiments were performed on a computer
with an Intel(R) Core(TM) i7-3632QM, 2.20GHz processor
and 12GB RAM. The CES algorithm was implemented in
Matlab with an interface to FORCES Pro [30] for elastic
stretching and MTSOS [26] for speed optimization.

A. Random Mazes

In this scenario the workspace is a 100m× 100m square
with rectangular-shaped obstacles randomly placed within
(the obstacle coverage was roughly 50%). The parameters
for the model in equations (1)-(4) are m = 833 kg, µ =
0.8, and Ū long = 0.5 µmg. The reference trajectories,
computed via differential FMT∗ by using 1,000 samples,
were discretized into 257 waypoints with an average segment
length equal to 0.56 m. On average, each iteration (con-
sisting of bubble generation, shape optimization, and speed
optimization) required 119 ms, with a standard deviation of
14 ms. Specifically, the bubble generation algorithm required,
on average, 26ms. The shape optimization algorithm required
74 ms. Finally, the speed optimization required 19 ms. A
typical smoothed trajectory is portrayed in Figure 5. The
traversal time reduction, which is computed according to
the formula tinitial−tfinal

tinitial
· 100%, ranges from a minimum of

0.2% to a maximum of 18%, with the average value being
3.54%. Figure 5 shows the smoothed trajectory for one of
the 24 random mazes. We note that, apart from the benefit
of reduction of traversal time, a smoothed trajectory may be
easier to track for a lower-level controller.

Fig. 5: A typical smoothed trajectory for the random maze
scenario. In this case, the traversal time reduction is 9.12%.

B. Lane Changing

For this scenario, we consider a road lane 50 m long with
rectangular-shaped obstacles in it. The parameters for the
model in equations (1)-(4) are m = 1, 725 kg, µ = 0.5,
and Ū long = 0.3 µmg. The reference trajectory is generated
by simply computing the center line of the collision-free
“tube” along the road. This corresponds to the case where,
to minimize computation time as much as possible, a refer-
ence trajectory is computed disregarding vehicle’s dynamics.
Figure 6 shows the smoothed trajectory and speed profile.

The computation time was 100 ms. This scenario illustrates
that algorithm CES can also smooth reference trajectories
that are not dynamically-feasible. Of course, in this case the
traversal time for the smoothed trajectory is longer, due to
the dynamic constraints.

Fig. 6: Smoothed trajectory for the lane changing scenario.

C. Smoothing with Bicycle Model
In this scenario, we assume a more sophisticated model

for the vehicle, namely a half-car (or bicycle) model, see
Figure 7. This model is widely used when local vehicle states
such as sideslip angle and yaw rate are of primary interest
[29]. In Figure 7, pcg denotes the center of gravity (CG)
of the car, ψ denotes vehicle’s orientation, and vx and vy
denote components of speed v in a body-fixed axis system.
Also, lf and lr denote the distances from the CG to the
front and rear wheels, respectively. Finally, Fαβ , with α ∈
{f, r}, β ∈ {x, y} denotes the frictional forces of front and
rear wheels. The control input is represented by the triple
ζ = [δ, sfx, srx], where δ denotes the steering angle of the
front wheel, and sfx and srx denote the longitudinal slip
angles of the front and rear tires, respectively. See [31] for
more details. Referring to Figure 7, the position pco can be
used as a differentially flat output [32]. Specifically, let m
be the mass of the vehicle, Iz the yaw moment of inertia,
and lco := Iz/mlr. One can show that

m p̈co = m R(ψ)

[
v̇x − vyψ̇ − lcoψ̇2

v̇y + vxψ̇ + lcoψ̈

]
:= R(ψ)u,

where R(·) is the 2D rotation matrix and u = [ulong, ulat]
is the flat input comprising longitudinal force ulong and
latitudinal force ulat. Note that the flat dynamics are for-
mally identical to those of the unicycle model (1)-(4). By
leveraging differential flatness, the idea is then to smooth a
trajectory in the flat output space and then map the flat input
u to the input ζ = [δ, sfx, srx]. Constraints for the flat input
u take the same form as in equations (2)-(4) – the details
can be found in [31]. When mapping u into [δ, sfx, srx],
under a no-drift assumption, only two real inputs can be
uniquely determined, while the third is effectively a “degree
of freedom,” see [31, Section II]. In this paper, we consider
as degree of freedom the real input srx. Its value is set
equal to the solution of an optimization problem aimed at
minimizing the tracking error with respect to the trajectory
obtained with the flat input u (the tracking error is due to
the no-drift assumption).

Figure 9 shows the application of the CES algorithm to
a 100m × 100m rocky terrain portrayed in Figure 8. The
parameters of the bicycle model are m = 1, 725 kg, Iz =
1, 300 kg ·m2, lf = 1.35 m, lr = 1.15 m, and h = 0.3 m.
In this case, the reference trajectory is computed by running



Fig. 7: Definition of variables for bicycle model (adapted
from [31]).

differential FMT∗ with 1,000 samples on a unicycle model,
as defined in equations (1)-(4). The reference trajectory
is discretized into 257 waypoints. The CES algorithm is
then applied by using the aforementioned bicycle model
and differential flatness transformation. Interestingly, in this
example the smoothing algorithm is applied to a reference
trajectory generated with a different (simpler) model –
this, again, shows the robustness of the proposed approach.
The length reduction was 4.19%, while the traversal time
reduction was 39.74%. Computation times are reported in
Table I. Considering two iterations, the total smoothing
time is 798 ms. Specifically, about 30% of the time is
taken by differential FMT∗, 20% by the shape optimization
algorithm, and the remaining time by the bubble generation,
the speed optimization, and the mapping via differential
flatness to a bicycle model. Remarkably, this result appears
compatible with the real-time requirements of autonomous
driving. Indeed, we note that the example in Figure 9 is
rather extreme in that a very long trajectory is planned amid
several obstacles. In practical scenarios (e.g., urban driving),
the planning problem may be simpler, implying that the
computation times would be even lower.

D. Elastic Stretching Moose Test

In order to study in isolation the behavior of the Elastic
Stretching algorithm, which is one of the main contributions
of this paper, we compare our result with a trajectory
consisting of clothoid splines. We note that the objective in
the shape optimization step is not simply minimum length
(which, for a unicycle model, produces paths consisting
only of segments with maximum or zero curvature [33]),
but instead encodes a notion of minimum overall curvature
more compatible with dynamic considerations and speed
optimization. To simplify the problem for finding a optimal
solution with clothoid splines, we assume a constant vehicle
speed along the trajectory. Fig. 10a illustrates a scenario
of a simple Moose test (S shape turn). Here we consider
a turning radius lower bound of 5m, and an upper bound
on the path curvature rate of change of 1m−1s−1. Fig. 10b
shows the piecewise linear curvature profile for the clothoid
trajectory. The results of the Elastic Stretching approach
and the clothoid trajectory are very close in this illustrative
example, with an error of 0.17% on the total path length.

Time [ms]
Global Planner 357

Bubble Generation 93 (2 iterations)
Shape Optimization 203 (2 iterations)
Speed Optimization 31 (2 iterations)

Mapping to Half-Car Model 114
Total 798

TABLE I: Computation times for planning and smoothing
with a bicycle model.

E. Discussion
Overall, the above numerical experiments show three

major trends. First, the smoothed trajectory often results
in a noticeable length and traversal time reduction and, in
general, a sequence of waypoints that may be easier to
track for a lower-level controller. Second, the CES algorithm
appears robust with respect to the model used to generate the
initial reference trajectory. This is a fundamental property,
as in practice one would use a motion planner on a simpler
model (e.g., unicycle), and then run a smoothing algorithm
with a more sophisticated model. Third, computation times
are consistently below one second and in general appear
compatible with a real-time implementation.

Fig. 8: Smoothed trajectory in a rocky terrain with bicycle
model (obstacles in work space)

Fig. 9: Smoothed trajectory in a rocky terrain with bicycle
model (obstacles inflated in configuration space)

V. CONCLUSIONS

In this paper we presented a novel algorithm, Convex
Elastic Smoothing, for trajectory smoothing which
alternates between shape and speed optimization. We showed



(a) Moose test simulation
(b) Curvature profile of the
clothoid trajectory

Fig. 10: Comparison of CES output and a clothoid trajectory.

that both optimization problems can be solved via con-
vex programming, which makes CES particularly fast and
amenable to a real-time implementation.

This paper leaves numerous important extensions open
for further research. First, it is of interest to extend the
CES algorithm to other dynamic systems, such as aerial
vehicles or spacecraft. Second, we plan to investigate more
thoroughly (1) the robustness of the algorithm when the ref-
erence trajectory is not collision-free or dynamically-feasible
and (2) the “typical” factor of suboptimality for a number
of representative scenarios. Third, for shape optimization,
this paper considered smoothness as the objective function.
It is of interest to consider alternative objectives, which,
for example, could reproduce the trajectories performed by
race car drivers (such trajectories may involve significant
curvature variations). Fourth, in an effort to make the pro-
posed algorithm “trustworthy,” we plan to characterize upper
bounds for computation times under suitable assumptions
on the obstacle space. Finally, we plan to deploy the CES
algorithm on real self-driving cars.
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