DataMill: Rigorous Performance Evaluation Made Easy

Augusto Born de Oliveira

Jean-Christophe

Thomas Reidemeister

Electrical gnd Qomputer Petkovich Electrical gnd C_)omputer
~ Engineering Electrical and Computer ~ Engineering
University of Waterloo Engineering University of Waterloo

Waterloo, ON, Canada
a3oliveira@uwaterloo.ca

University of Waterloo
Waterloo, ON, Canada

Waterloo, ON, Canada
treideme@uwaterloo.ca

j2petkov@uwaterloo.ca

Sebastian Fischmeister
Electrical and Computer
Engineering
University of Waterloo
.Waterloo, ON, Canada
sfischme@uwaterloo.ca

Abstract

Empirical systems research is facing a dilemma. Minor as-
pects of an experimental setup can have a significant impact
on its associated performance measurements and potentially
invalidate conclusions drawn from them. Examples of such
influences, often called hidden factors, include binary link or-
der, process environment size, compiler generated random-
ized symbol names, or group scheduler assignments. The
growth in complexity and size of modern systems will fur-
ther aggravate this dilemma, especially with the given time
pressure of producing results. So how can one trust any
reported empirical analysis of a new idea or concept in com-
puter science?

This paper introduces DataMill, a community-based easy-
to-use services-oriented open benchmarking infrastructure
for performance evaluation. DataMill facilitates producing
robust, reliable, and reproducible results. The infrastruc-
ture incorporates the latest results on hidden factors and
automates the variation of these factors. Multiple research
groups already participate in DataMill.

DataMill is also of interest for research on performance
evaluation. The infrastructure supports quantifying the ef-
fect of hidden factors, disseminating the research results be-
yond mere reporting. It provides a platform for investigating
interactions and composition of hidden factors.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance mea-
sures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

Keywords

DataMill; performance; experimentation; infrastructure; ro-
bustness; repeatability; reproducibility

1. INTRODUCTION

Empirical computer performance evaluation is essential
for computer science and industry alike. The empirical mea-
surement of performance sees widespread use to guide the
research of new ideas and the development new technologies.
A performance improvement of a few percentage points may
mean large savings in dollars, when applied to a large data
center with billions of clients. It is also essential, then, that
computer practitioners dominate the methodology necessary
to evaluate computer performance correctly.

However, the research community [10, 25, 31, 32] has
demonstrated that experimental evaluation in computer sci-
ence is difficult. As a consequence, experiment design, setup,
analysis, and data reporting are often neglected. Results
obtained from experimentation are sensitive to the exper-
iment design and setup. Conclusions drawn from perfor-
mance experiments may vary across a combination of hard-
ware and software factors. Sometimes subtle changes to an
experiment’s setup can have a significant impact on its out-
come [21]. The lack of rigorous performance evaluation is
often blamed on the fact that experimentation is difficult
and costly [31], but those obstacles are not insurmountable.

To improve the current state of experimentation, we pro-
pose DataMill. DataMill is a distributed infrastructure for
computer performance experimentation targeted at scien-
tists, researchers, and aspiring researchers. DataMill aims
to allow the user to easily produce robust, replicable, and
reproducible results at low cost. To do so, DataMill ex-
ecutes the experiments on real hardware and incorporates
the results from existing research on how to setup experi-
ments and hidden factors. For example, the infrastructure
automatically varies a selection of hardware and software
factors, and therefore reduces the effort required by the user
to setup the experiment while simultaneously increasing the
robustness and applicability of the experimental results to a
wide range of factors. The user need not know the details
of the underlying mechanisms required to vary these factors

and may simply take advantage of DataMill infrastructure.
DataMill is mainly developed by the University of Water-
loo, however, several universities (e.g., Purdue University,
the University of Pennsylvania, the University of Lugano,
and the Federal University of Santa Catarina) have already
joined the effort and have provided benchmarking nodes.

Besides making it easy and low cost to the user, DataMill

also aims to alleviate the problem of data availability and
the reproduction of experimental setups. Based on our own
experience, few researchers responded to inquiries for ex-
periment setup details and raw data used in their publica-
tions. In DataMill, all experiment setup parameters and
their experiment files remain stored in the infrastructure.
Users can choose to make their experiments public facili-
tating the replication and reproduction of the their exper-
imental setups and results. We believe DataMill has the
potential to watermark performance evaluation experiments
by making the data publicly and consistently available. Fi-
nally, DataMill and the public repository of repeatable ex-
periments can serve as a valuable tool for the education of
aspiring researchers.

The contributions of this paper are:

1. The design and implementation of a distributed infras-
tructure for computer performance evaluation;

2. The reproduction and expansion of a previously pub-
lished experiment, confirming the existence of signifi-
cant hidden factors;

3. A survey of current performance evaluation practices
in computer science publications, demonstrating the
need for more rigorous experimentation.

2. BACKGROUND

In traditional experimental design [2, 20], factors are prop-
erties of an experiment that affect the response wvariable;
i.e., the metric of interest of that particular experiment. It
is common knowledge in statistics that the one-factor-at-a-
time method (OFAT), which is a sequential exploration of a
design space (the space defined by the factor dimensions), is
a poor method of experimentation. Despite its weaknesses,
OFAT is the de facto standard in computer science. One
alternative to OFAT, factorial design, attempts to ascertain
the effect of all factors on the response variable at the same
time, avoiding OFAT’s “blind-spots”.

In order to illustrate the state of experimental methodol-
ogy in computer science, we conducted a survey of the re-
cent publications to SOSP 2011, ASPLOS 2012, OSDI 2012,
ATC 2012, EuroSys 2011, and PLDI 2012. The results are
shown in Table 1. The columns, in order, show the total
number of papers, the fraction that contains empirical per-
formance evaluation, the fraction that describes their hard-
ware platforms and software versions, the fraction that con-
tains a comparison (either with a baseline or a competi-
tor), the fraction of those that contain a formal statistical
test for that comparison, the fraction that performs the ex-
periment under different conditions as a sanity check, the
fraction that contains a dispersion metric (standard devia-
tions, confidence intervals, empirical CDFs, etc.), and the
fraction that published the software being evaluated, the
fraction that uses a publicly available workload (established
benchmarks, input files, etc.), and, finally, the fraction that
published their resulting data.

While many papers include an empirical performance eval-
uation, many papers do not list the versions of the software

used for these experiments. Worse, even more of these pub-
lications do not contain an empirical comparison to a base-
line or a competing approach. Out of those papers that
include such a comparison, only a small fraction formally
tests that their performance figures are different from the
baseline. Only a few submissions make their experiment
implementation and the results publicly available. Although
the benefits for using a dispersion metric have been reiter-
ated by many researchers [31, 10, 32] in the past, a number
of papers that do a performance evaluation do not use any
measure of dispersion in their performance evaluation.

We performed an experiment to demonstrate the dangers
of using a single experimental setup like the majority we
found in our survey. Figure 1 shows the performance mea-
surements of Iperf [22], a network performance benchmark,
repeatedly running on a loopback interface (the machine was
disconnected from the network) in blocks of one hour. The
x-axis shows the blocks, and the y-axis shows the bandwidth
through the loopback interface. We use a standard boxplot
to characterize a block, adding a x symbol to mark the
mean. Each block contains 330 samples, and the machine
reboots between blocks. While performance is generally sta-
ble, in two out of 72 blocks the mean performance is approx-
imately 10% better, even though everything else remained
the same. A “lucky” developer could mistake the rare block
for the norm, and report results that are a full 10% away
from the average case.

Computer science experiments are susceptible to many
hidden factors such as the one seen above [34, 18, 21, 13,
19]. The systematic exploration of their effect on metrics of
interest is a difficult and time-consuming task. Automated
hidden factor exploration is necessary, and would best be
handled by an experiment infrastructure. Many published
results in computer science cannot be validated on newer
platforms. Reasons include loss of data, loss of source code,
loss of the original workload, and insufficiently described ex-
perimental conditions. Automated replication and publicly
accessible setups are necessary.

Access to a wide variety of experimental setups is difficult
to obtain, so experimental design spaces are generally small,
and are often comprised of just a single machine. Automated
exploration of a large design space is also necessary. Fur-
thermore, testing an innovation on various platforms forces
one to consider more corner cases. This will overall lead
to more robust innovation whose performance is not only
known on more platforms but also that works on more plat-
forms. Specific exploits of particular platform features only
provide limited value to the research community.

It follows, therefore, that a distributed benchmarking in-
frastructure with the capability of varying software and hard-
ware factors is in order. Based on these findings, we created
DataMill, an experimentation infrastructure that addresses
these shortcomings automatically. DataMill enables users to
make experiment packages, workloads, and results publicly
available. We collect several performance counters available
in the Linux environment and compute dispersion figures
automatically. We support experiments that contain multi-
ple software packages to enable a baseline comparison or a
comparison with a competing approach. We believe by pro-
viding a platform that automates the factor variation and
many tasks of the experiment set up, empirical performance
evaluations will become more popular among researchers.

Conference | No. of Perf. HW SW. A/B Formal Sanity Disp. Public Public Public
Papers Eval Desc. Desc. Test Test Check Metric SW Load Data
SOSP’11 27 93% 92% 60% 91% 0% 24% 44% 4% 68% 0%
ASPLOS’11 36 61% 100% 55% 54% 0% 5% 31% 4% 2% 4%
OSDI'10 30 93% 1% 61% 54% 0% 0% 32% 7% 39% 0%
ATC’12 40 95% 87% 58% 68% 0% 3% 32% 8% 26% 0%
EuroSys’11 22 86% 95% 74% 84% 12% 42% 47% 21% 58% 0%
PLDI'12 45 64% 90% 79% 93% 0% 37% 10% 24% 2% 0%
Table 1: Illustration of Experimental Rigor in Recent Scientific Publications
2.0+
1.9 . . .
; i r il
S u 0 OdrQ u = O u
2 oy i g Al el M b
5 i i HT i |] i
% x| X « L]
§1_37 - . . e . . .
1.7+

T i i
10 11 12 1314 151617 181920212223 2425262728293031323334353637 38394041424344454647484950515253 54555657585960616263646566 6768697071

Block

Figure 1: Iperf Performance in Blocks of 1 Hour

We now present DataMill, a world-wide open distributed
performance evaluation system that aims to address the
aforementioned points and implements the lower two levels
of an experiment infrastructure [10].

3. DATAMILL: THE USER EXPERIENCE

DataMill is a distributed computer-performance evalua-
tion infrastructure aimed at minimizing user effort required
to get robust, reliable, and reproducible results. DataMill
distributes arbitrary benchmarks and experiments to a large
number of heterogeneous worker nodes, located all over the
world, facilitating the creation of replicable results, and re-
ducing the necessary effort to produce robust results.

DataMill facilitates replicable results by storing details of
any particular experiment setup, allowing automated exper-
iment reproduction. DataMill achieves robustness through
replication across a wide range of experimental setups in-
cluding variation of state-of-the-art known hidden factors.
DataMill is a public-service infrastructure and available to
scientists around world as long as they donate equipment
for evaluations themselves.

In this section we describe DataMill as seen by a user, and
later describe the inner workings of DataMill in Section 4.
The user experience starts with packaging the experiment
for DataMill to execute, then defining an experiment space
from an array of hardware and software factors, and, finally,
collecting and analyzing the resulting data.

3.1 Packages

Each experiment contains one or more packages. A single
package experiment can quantify performance over a wide
range of setups, while experiments with more packages allow
performance comparisons over those setups.

Each package contains: (1) the source code and any input
data for the experiment, and (2) auxiliary DataMill-specific
scripts to set up, execute, and collect the results from the
experiment. All package components are encapsulated in a
compressed TAR file.

There is no restriction on experiment code, and users have
administrator-level access to workers during experimenta-
tion. Users can generate free-form results data in arbitrary
metrics, and then collect it via compressed packages. These
features allow evaluating the performance of a wide range

of software, ranging from user-space applications to kernel
modules. Security concerns are minimal at this point, be-
cause participating users must contribute to the infrastruc-
ture and, therefore, are well known and trusted.

There are only two scripts that every DataMill package
must contain: run.sh and collect.sh. These are the scripts
that execute and collect data from the experiment, respec-
tively. If the package requires a setup procedure (such as
decompression, compilation, dependency installation, etc.),
it may also contain a setup. sh script, which will be executed
before run.sh. Finally, if there is the need for environment
variables during execution, an env file may be included in
the package. The contents of this environment file will be
added to the experiment environment before each execution.

To exemplify the construction of a DataMill package, con-
sider the Dhrystone [36] benchmark. It consists of a single
source file, dry.c, which installs and runs the benchmark.
To execute it, one must first set its executable flag, which
is done in the setup script shown in Listing 1. Note that
Dhrystone is self-compiling, so we change the file to be exe-
cutable. The script assumes the source file is located in the
/dry/ directory.

1#!/bin/sh
2

3cd /dry/
4 chmod +x dry.c

Listing 1: Setup Script

Listing 2 shows the run.sh script that executes Dhrys-
tone, capturing its output (standard out and error) to the
/dry/results file. The output is appended to the end of
the file, allowing multiple executions before collection.

1#!/bin/sh
2

3cd /dry/
4./dry.c >> results 2>&l1

Listing 2: Run Script

Finally, Listing 3 shows the script that packages the re-
sults file for collection. It simply compresses the result file
using a unique name, and echoes the final archive’s file name.
This file will then be downloadable by the user once the ex-
periment finishes executing.

1#!/bin/sh
2

3results=/dhrystone —‘date +%Y%m%d_%H%M ‘. tar.gz
4tar czf $results /dry/results > /dev/null 2>&l1
5 echo $results

Listing 3: Collect Script

The user must package the experiment source code and
DataMill scripts in a GZipped TAR file. All DataMill scripts
should be in the root directory of this archive. For the Dhry-
stone package, the file structure of the package would be as
shown in Figure 2.

Archive Root

setup.sh
run.sh

collect.sh

Figure 2: Dhrystone Package Directory Structure

To facilitate package creation, we provide users with a vir-
tual machine image that mimics a DataMill worker. Users
can develop, test, and debug their packages in a local en-
vironment until they are sure their packages are ready for
production, at which point they can submit it for execution
via our experiment creation interface.

3.2 Experiment Creation

Once the packages are ready, the user submits them for
execution through a file upload interface. Users must then
define an experiment for DataMill to execute. Experiment
definition has three steps:

1. Package selection

2. Constraint definition

3. Experiment space definition
Package selection consists of choosing which packages will
be executed; one or more packages may be selected. In the
constraint definition step, users inform DataMill of any lim-
itations to their benchmark. For example, if the experiment
can only execute on the ARM9 architecture and requires
at least 2GB of RAM, the user expresses these constraints
through an intuitive web interface.

Finally, in the experiment space definition step, users se-
lect how many experimental setups they wish to explore.
The interface presents each dimension of the experiment
space, divided in hardware and software categories, in a uni-
fied percentage-scale. This percentage represents what frac-
tion of all available options should be covered. For example,
users can define that their experiment must contain 100%
of CPU available architectures and that 75% of GCC opti-
mization flags be tested. This will cause DataMill to select
machines such that every architecture in the infrastructure
is represented, and to re-execute the benchmarks in a ran-
domly selected subset of optimization flags that covers at
least 75% of the total number optimization flags. Setting
any dimension to 0% results in the random selection of a
single level for that dimension.

After machines are selected according to the hardware di-
mension settings, the software dimensions are combined to
generate each individual job. For example, if the user chose
to explore all five GCC optimization flags on a single ma-
chine, there would be one job generated per optimization
flag, all attributed to that machine. If, in conjunction with
the optimization flags, both settings of the address random-
ization feature of Linux (on or off) should be tested, then
the number of jobs grows to 10 (5 flags times 2 address ran-
domization settings). Therefore, the number of jobs for each
experiment scales with the experiment space defined by the
user, and care must be taken to avoid combinatorial explo-
sion and an experiment with an excessive number of jobs.

3.3 Experiment Results

After the user defines the experiment space and DataMill
creates jobs, it will distribute the experiment’s packages
for execution, then collect the individual result files. The
web interface dynamically updates experiment information
as data arrives, allowing users to monitor their experiment’s
progress. In addition to the data collected by the collect
script, DataMill collects additional metrics with minimal
overhead [33], such as total execution time, and the num-
ber page faults and cache misses. This data is also made
available to the user.

Finally, once all jobs associated with an experiment are
finished, users can download the full experiment results file,
which contains the result file from every job. Examples of
how to analyse large datasets generated by DataMill are
provided in Section 5.

4. DATAMILL: THE INFRASTRUCTURE

Making the user experience described in Section 3 a re-
ality requires considerable engineering effort. The DataMill
infrastructure is composed of a master node, responsible for
the distribution of experiment trials and the collection of
results, and several worker nodes, which execute the experi-
ment packages provided by the users. This section describes
how DataMill was implemented and how its different parts
interact.

4.1 Master Node

The responsibilities of the master node are split up be-
tween four different daemons: the web front-end, the back-
end, the dispatcher, and the collector. The user interacts
with DataMill through a web front-end. Creation of exper-
iment configurations is based on the users’ choices (e.g., ex-

periment factors, experiment package, and desired platforms).

The backend, which can consist of one or more instances,
processes these experiment configurations and schedules in-
dividual instances of an experiment, which we refer to as
jobs, on the workers. The dispatcher submits scheduled
jobs to the workers. The collector accumulates results from
individual jobs once they are completed on the associated
worker. The web-interface provides access to these results
as they arrive. In the following sections, we describe the indi-
vidual components of the management layer in detail. Each
of these daemons acts as a simple state-machine as shown in
Figure 3. To maintain and ensure consistency of the state
of the infrastructure, we have chosen to use a database for
central configuration management tasks.

The Web Front-End.

The web front-end is the primary window through which
the user interacts with DataMill. User submission of experi-
ments triggers the backend daemon process, which processes
package information and configurations and subsequently
schedules jobs for worker nodes.

The web front-end also houses an XML-RPC [6] service.
The service provides an API which workers call to inform
the master node about state changes of the individual jobs.
Workers use the same API to register with the infrastruc-
ture. To separate control and data flows, this XML-RPC
interface is only used to notify the master node of state
changes. The dispatcher and collector handle transferal of
experiment data such as packages and results.

Backend.

The backend daemon, shown in Figure 3, is responsible for
transforming the user-supplied specifications for a particular
experiment into a set of specific trial configurations to run
on the worker nodes. The creation of these configurations
and the selection of the appropriate worker node to execute
them is handled by an optimization solver.

The problem is then to select the minimum number of
workers necessary to provide the desired factor coverage.
For this, we specified an optimization problem, which the
backend solves with GLPK [11] for each submitted experi-
ment. The optimization problem is of the form:

we=min 3 o (1a)

x; EW

s. to: Z x; > 1, lyjel (1b)
z; €P;

lj > xi, ljel,x; €Pj (1c)

> 1> By, k=1.f (1d)
lj€F

x; € {0,1}, x; €W (Le)

l; € {0,1}, ljel (1f)

Where W is the set of workers, £ is the set of factor levels,
and P, is the set of machines that provide level m. Fy is
the set of factor levels for factor k (a subset of L), By is
the user-requested minimum coverage for factor k. Equa-
tion (1b) ensures picking a factor level means at least one
machine with that factor level is added to the solution, while,
conversely, Equation (1c) ensures that selecting a machine
adds all factor levels it provides to the tally, which is checked
in Equation (1d) for every factor. This last equation guar-
antees that all user-provided constraints are met. After a
solution is found, each worker is individually selected by
their respective x; variable.

Dispatcher.

The dispatcher daemon in Figure 3 is responsible for trans-
mission and triggering of the execution of the packages and
configurations on the appropriate worker as defined by the
solution generated by the backend daemon. The dispatcher
finds jobs whose associated worker is idle and transmits and
calls for the execution of the associated package via secure
shell.

Collector.

The collector daemon in Figure 3 is responsible for the
collecting of the experiment results from the worker nodes
which have completed their current job. Once the results
have been collected from any particular worker the worker
is marked as idle so that it may receive further jobs.

4.2 Worker Node

Each worker node is a separate machine running Gentoo
Linux [29] with kernel version 3.3.8, and GCC 4.5.3. Gentoo
Linux was chosen since it is a source-based distribution and
thus supports a wide variety of architectures. Having the
same distribution and tool-chain on all the machines keeps
their software homogeneous.

The partition structure of a worker node is shown in Fig-
ure 4. The worker comprises two partitions, one with a
minimal Gentoo installation, referred to as the controller

Results

‘Web Front-End Dispatcher Collector
Efff{i_nie_n_t____, Ccreate_spec find_worker
store_spec
Backend ‘Worker
Figure 3: The DataMill Infrastructure

reboot to run Due to the size of DataMill, worker nodes are expected
. to fail. The master node detects such occurrences through
- communication timeouts, incorrect state machine progres-
3 Controller Benchmark sion, and faulty result files. The master node purposefully
A inserts redundancies in the job scheduling minimize the im-

SN~

reboot to report

Figure 4: The Worker Node Disk Partitions

partition, which is responsible for communication with the
master, and one with a more complete software environment,
referred to as the benchmark partition on which experiments
will run. The state machines for each worker partition are
shown in Figure 3, left of the dotted line is the controller
partition’s state diagram and to the right is the benchmark
partition’s state diagram.

The master node communicates with workers through se-
cure shell. Communication is kept to a one-way push archi-
tecture, from master node to worker node, where possible.
The workers do not have the ability to run code on the mas-
ter barring the limited XML-RPC calls that are provided to
them. In this way, the communication between the master
node and the worker nodes is strictly limited.

When a worker has been setup for the first time, it must
notify the master of its existence. Upon its first boot, the
worker collects information about itself and sends it, along
with a registration request, to the master node. Once it is
registered, it is marked as idle in the database and awaits
further instruction.

When a worker receives a job from the dispatcher, the
dispatcher executes a script on the worker via secure shell.
The script transfers the received package to the benchmark
partition and prepares it for execution. The machine subse-
quently reboots into the benchmark partition. The bench-
mark partition’s init process has three tasks to perform:
changing the default boot partition, executing the received
package, and finally rebooting to the controller partition.

pact of worker failures.

The DataMill infrastructure supports remote worker nodes.
Already included in the DataMill cluster are several ma-
chines from the Purdue University, the University of Penn-
sylvania, the University of Lugano, and the Federal Univer-
sity of Santa Catarina.

4.3 Factor Variation

DataMill facilitates execution of user supplied benchmarks
using a wide variety of experimental setups. Knowledge of
the factors affecting performance and the details of the me-
chanics required to vary them are not necessary to leverage
the infrastructure. Nevertheless it is important to discuss
some details of DataMill’s factor manipulation.

To apply software-controlled factors — compilation flags,
library versions, link orders, etc. — the worker node un-
packs the configuration file sent by the dispatcher, apply-
ing each configuration individually before the setup or ex-
ecution. Current supported factors include various GCC
flags, C and C++ object link orders, the use of address
space randomization in the Linux kernel, the addition of
padding bytes to the POSIX environment, reboot behavior,
and dropping caches before benchmark execution.

While most factors can be easily applied (i.e., interact-
ing with the proc filesystem to affect kernel options) some
factors require more effort. For example, to support modifi-
cations to benchmark link order, we implemented a custom
wrapper that intercepts calls to GCC. This wrapper calcu-
lates the new order of objects according to the configuration
received from the master (i.e., alphabetical, or reverse alpha-
betical according to object file names), and then forwards
the call to GCC, using the new object file order.

This method of applying software factors enables mak-
ing extensive modifications to benchmarks without requir-
ing users to implement these modifications themselves or to

Algo. | Size (kB) Reduction (kB) %

None 51,900 0 100.000
bzip2 13,232 38,668 25.496
XZ 12,120 39,780 23.353

Table 2: Compression Rates for Each Algorithm.

upload a series of different packages with pre-applied modi-
fications. The list of supported factors is currently growing
quickly, and we aim to support user-contributed factors in
the future.

S. CASE STUDIES

This section presents two case studies: we first perform a
compression algorithm performance comparison to demon-
strate how easy it is to conduct a performance experiment
on DataMill, then we replicate a previously published ex-
periment that revealed performance artifacts related to the
link order of a binary, demonstrating the utility of DataMill
for the scientific investigation of computer performance.

5.1 XZ vs. bzip2: Best Bang for Your Buck?

XZ [30] and bzip2 [17] are widely-used compression util-
ities for UNIX-like operating systems. While XZ uses the
LZMA2 compression algorithm, bzip2 uses the Burrows-
Wheeler algorithm. These two compressors will serve as
stand-ins for a “baseline-vs.-proposed-approach” performance
comparison, found in the majority of computer science pa-
pers that contain empirical performance evaluations. As
bzip2 is the older of the two compressors, we will treat it
as the baseline.

As described in Section 3, the only preparation step re-
quired for this experiment is the creation of two DataMill
packages, one for X7 5.0.4 and another for bzip2 1.0.6. The
scripts themselves are omitted for brevity, but their contents
are very similar to the ones for Dhrystone and comprise a
total of 32 lines. We use the system-wide emerge command
to install both XZ and bzip2 in order to simplify installa-
tion, precluding the need to include their source code in each
package.

In addition to the DataMill scripts, the packages contain
the data to be compressed. For this experiment, we used
the Maximum Compression [35] testset. This testset in-
cludes various kinds of files (text, executable, graphics, etc.)
and has been used to compare compression algorithms since
2003.

The metrics, which the collect.sh script collects, were
execution time and compressed file size. Since each compres-
sion algorithm leads to a different archive size, the metric
used for the comparison is the byte-per-second compression
rate, calculated as bytes reduced/execution time. Table 2
shows the uncompressed data size, the resulting archive size
under each compressor, the absolute reduction in size, and
the resulting archive size as a percentage of the original file
size. Note the both compression algorithms use determinis-
tic algorithms, so the resulting compressed files are identical
between runs and machines. Machine C, an ARMv7 which
uses the ext3 filesystem, reports file sizes 20kB larger than
the ones reported by all other machines, which use ext4.
This small 0.1% discrepancy was ignored.

If absolute compression is the only metric of interest, the
XZ is clearly the winner; however, if execution time or the

rate of compression are of interest, then experimentation is
necessary. By using DataMill, we can easily compare the
two compressors, and measure their susceptibility to differ-
ent factors. The DataMill experiment space was configured
to include all machines, all link orders, all optimization flags,
and address randomization on and off. The number of repli-
cations was set to 15 to allow the measurement of dispersion.
This led to the generation of 6300 jobs, distributed between
seven machines.! This experiment took approximately five
days to complete on the slowest machine, a 600MHz ARMv7
Beagleboard xM. All other machines completed it in less
time, and were free to continue with other experiments.

Figure 5 shows an overview of the data set resulting from
this experiment. This facet plot is divided by optimization
flag (top header) and machine (right-hand header). Ma-
chines are indexed with a capital letter, followed by their
clock speed and CPU model. Each subplot contains box-
plots for each of the compressors, bzip2 and XZ, where the
box denotes the median, the lower quartile, and the upper
quartile, and the whisker extends to the most extreme data
point that is within 150% of the interquartile range of the
data set.

The first conclusion is that bzip2 has a better compression
rate for all machines under all link orders and all optimiza-
tion flags tested. This would suggest that, for users inter-
ested in compression speed, bzip2 is the better alternative.
Also of interest is the fact that bzip2 is unaffected by the
optimization flag, which suggests it is entirely I/O-bound.
XZ, on the other hand, has a marked performance increase
from -O0 to -O1, but negligible differences in performance
after that. The omitted experimental dimensions — link or-
der and address randomization — did not significantly affect
performance, which is demonstrated by the narrow group-
ing of all samples in the boxplots of Figure 5 (which contain
data from multiple levels in the omitted dimensions).

We use ANOVA [16] to more formally analyze the data.
Table 3 shows the ANOVA table for this experiment, fitting
a model with up to two-factor interactions on the execu-
tion time data for machine F, a 3.4GHz Core i7. The mean
square column quantifies the change in execution time at-
tributable to each factor, and the p-value column shows the
statistical significance of each factor in respect to execution
time. The model was a good fit, with R? > 0.99 (i.e., the
model explains more than 99% of the variability in the data),
meaning the model can be confidently used to analyze the
data. The table shows that the compressor and optimiza-
tion flags are significant in isolation (P < 0.01), but link
order and address randomization are not (P > 0.05). Most
interestingly, we can prove the interaction between the com-
pressor and optimization flag through their interaction term,
which is also significant (P < 0.01).

Figure 6 shows the effect of GCC optimization flags on
XZ’s execution time, with the x-axis ordering the different
optimization flags. While optimization flags are not a con-
tinuous dimension, this ordering facilitates the visualization
of the data and represents the activation of various individ-
ual GCC optimization options going from one optimization
level to the next. According to GCC’s manual, the -Os flag is
located between -O1 and -O2 because it activates all options
from -O2 that do not increase binary size, being, therefore,
a middle point between the two. Data from each worker is

!Data for the “alphabetical” link order in the XZ was not
generated, as that object order did not link successfully.

-00 -01 -02 -03 -Os
1000 2
Y
800 — —_— 9
— N
z
600]
o
400+ —_—]
290 -
== == == == == |
(=3
250 E
230 E
210 E
= = == — =51
190 -
—— —— —— ——— ——
1000+ o
—_— — — —_— @
—_—
800 I
o
»
600
5000 | e— — — —_— —_—
Q)
q
<4000 i
@ ¢
- B
S 4 [4)
& 3000 ¢
gzooo e 5
O 1000- m—
4000 ®
@
3000 4 8
—_— —_— —_— — B
2000 5
1000 - —
500 —— — — pr— pr—
P J— —_— —_E
400 2
I
N
3004 2
—— —— | e— | e——
400 — X
=
350 5}
I
N
300 2
250 T T T T T T T T T T
bzip2 Xz bzip2 Xz bzip2 Xz bzip2 Xz bzip2 Xz
Compressor

Figure 5: XZ vs. bzip2, Compression Rate

plotted along an individual line, with 95% confidence inter-
vals shown in light gray behind each curve. The plot shows
a marked and general improvement in performance going
from -O0 to -O1 (as shown in Figure 5), but also reveals a
more interesting point: in two of the machines, there is a
decrease in performance going from -O1 to -O2. Despite be-
ing a small decrease, this may merit more investigation, as
-02 is the default optimization flag of several distributions.
This performance comparison demonstrates the utility of
DataMill for users interested in evaluating performance: with
just 32 lines of code, 6300 jobs were executed in under a
week, exercising several dimensions that would normally be
ignored, and leading to insight that would be unattainable
through manual, one-factor-at-a-time experimentation.

5.2 Perlbench: Link Order Effect

We now demonstrate the use of DataMill for users in-
terested in the study of computer performance evaluation.
Mytkowitz et al. [21] report that the link order of a binary is
correlated with runtime performance, and that the optimal
link order varies from host to host. This is generally under-
stood to be a consequence of different memory and cache
layouts leading to different cache and page miss ratios. The
authors showed that the performance of Perlbench — part
of SPEC CPU2006 [27] — can vary by more than 8% by
simply modifying the link order.

300000

Host

\ — A 1.6GHz Nano X2
\ --- C 600MHz ARM

\ -~ E3.2GHz P4

- - F3.4GHz 7

\ «+++ G 3.3GHz i5
) <=+ 1 1.6GHz P4
N —- K 1.6GHz P4

250000 A

200000

Task Clock (ms)

150000

100000

T
-00 -01

Figure 6: Effect of GCC Optimization Flags on XZ,
by Host

Factor | Mean Sq. p-value

Compressor | 1.617e+12 <2e-16

Opt. Flag | 1.258e+11 <2e-16

Link Order | 7.397e4+05 0.5807

Addr. Rand. | 2.572e+04 0.8907

Compressor:Opt. Flag | 1.883e+11 <2e-16

Compressor:Link Order | 1.924e4+06 0.2347

Compressor:Addr. Rand. | 1.511e4+06 0.2922

Opt. Flag:Link Order | 1.312e4+06 0.4624

Opt. Flag:Addr. Rand. | 3.791e4+06 0.0257

Link Order:Addr. Rand. | 2.738e+05 0.8177
Residuals | 1.360e+06

Table 3: Reduced ANOVA Table for XZ Execution
Time on Machine F

Trying to reproduce their results, we created an experi-
ment on DataMill to explore the effect of link order and ad-
dress randomization on Perlbench performance. We encap-
sulated Perlbench and SPEC’s “train” data set in a DataMill
package, with scripts and environment file totaling 33 lines.
Three link orders were explored (default, alphabetical and
reverse alphabetical), with Linux address randomization on
and off. If address randomization is on, one would expect
that the affect of link order would be neutralized, since the
memory layout will be randomized. In other words, the
link order and the address randomization factors should be
highly correlated. We chose a number of 15 replications
of each configuration to calculate dispersion, generating a
total of 630 jobs over 7 machines. The DataMill took ap-
proximately 27 hours to finish the full experiment.

Figures 7 and 8 show results for the different metrics for
this experiment. These facet plots are divided by address
randomization (top header) and host (right header). Each
subplot contains three boxplots, one for each link order ex-

Mach. | Factor | Mean Sq. p-value

Link Order 135.77 <2e-16

A Addr. Rand. 0.07 0.0301

Link Order:Addr. Rand. 0.04 0.0687
Residuals 0.01

Link Order 1856.5 <2e-16

K Addr. Rand. 1234.6 <2e-16

Link Order:Addr. Rand. 1864.9 <2e-16
Residuals 3.3

Table 4: Reduced ANOVA Table for Perlbench Ex-
ecution Time on Machines A and K

plored. Figure 7(a) shows execution time, and makes it clear
that there is indeed a change in execution time between the
different link orders on most cases. An exception to this rule
is machine I, a 1.6GHz Pentium 4, where this effect is minor.

It is also clear that the link order effect does not depend
on the address randomization feature of Linux being turned
off; most machines show different execution times between
link orders even when address randomization is turned on.
However, machine K (shown in the bottom of Figure 7(a))
shows a link order effect only when address randomization
is turned off, contrary to the other machines.

To help understand this effect, Figure 7(b) shows the
cache misses for the experiment®?. This plot shows that
there appears to be a correlation between link order and
cache misses for most machines, but they do not necessarily
mirror the execution time effect seen in Figure 7(a).

Finally, Figure 8 shows that there is no apparent correla-
tion between page faults and link order; even in the case of
the Nano X2 and the Xeon machines (top two subplots), the
difference in mean page fault counts between link orders is
of less than 1%. A possible explanation for this is that the
sum of code and data for the benchmark is small enough to
fit within a page, no matter the order the object files are
linked in.

Table 4 shows the reduced ANOVA table for machines A
(R? = 0.977) and K (R? = 0.855). This table shows that the
link order effect is significant for both of these machines (P
< 0.01), but only in machine K do the address randomiza-
tion factor (P < 0.01) and the interaction between address
randomization and link order factors (P < 0.01) play a part.
In machine A, both of these are not statistically significant
at the 99% confidence level (P > 0.01 in both cases). This
suggests that the effect of address randomization, which is
present in machine K but not in others, is highly dependent
on the machine.

Therefore, while the presence of a cache effect and the
lack of a page effect would seem to explain the variations in
execution time between link orders, the correlation between
link order and execution time still merits more investigation.
DataMill is a powerful tool for researchers in performance
evaluation, since it allows the systematic variation of corre-
lated factors, such as link order and address randomization,
and the simultaneous collection of multiple relevant metrics,
such as cache misses and page faults.

2Data is missing for the Nano X2 due to the lack of hardware
performance counter support.

Addr. Rand. On Addr. Rand. Off L
280800 - =tms —— z
280600 - —— [———NFY
(a2}
280400 T
=
280200 g
280000 — — %
280900
w
2808004 $ —— it
280700 8
280600 - 5
280500 E — =
2804001 et — s
287000
286000 — | | | [
285000 — 9
284000 ~ =
283000 2
282000 ~
352000 - | | | I
] -
> 351000 - w
© '
1= 350000 o]
3349000 N
& S
348000
352000 - | | | | |
(2]
351000 ~ w
350000 - 8
T
349000 N
Gi
348000
286000 B
285000 ! -
3
284000 2
283000 - o
2
282000 — I
290000
] =
289000 + | | —
288000 - 3
287000 — 5
286000 - IS
285000 ! : : ; - :
Alpha Default Reverse Alpha Default Reverse

Link Order

Figure 8: Effect of Link Order on Perlbench Page
Faults

6. LESSONS LEARNED

The implementation of the infrastructure and the execu-
tion of the experiments detailed in Section 5 raised several
interesting questions.

Debugging packages took considerably longer than ex-
pected, especially in the case of Perlbench. This was mainly
due to the non-standard build system distributed by SPEC,
which requires manual configuration of target architecture
parameters. Our experience with it led us to create a virtual
worker image on which users can debug their packages. We
are currently also investigating a special “debug” experiment
type which would execute packages once on each available
architecture to ensure it behaves as expected.

The addition of remote nodes (located in remote univer-
sities) was a challenge, mainly because of firewalls. Our
current implementation uses two-way communication, which
requires special treatment for firewalls that reject all incom-
ing connections. In the near future we plan to move to a
one-way communication design where the master node is
entirely passive, sidestepping this issue and minimizing the
effort needed to integrate new workers.

We also realized that even though small embedded tar-
gets can run Gentoo, their performance, particularly in com-
pile phases, is prohibitively low for large experiment design

Addr. Rand. On Addr. Rand. Off
88.0 - e—— —— >
87.5 | o]
I
N
87.0 - =
E
86.5 |)
—— — 3
162 - @
=
160 - i
I
158 -] 2
é 3
156 - =
72.0
_—
71.8 - =
I
71.6 |
$ =h =
71.4- i
30.2
©£30.0- —— .
@29.8- ——— ‘:
=29.6- ———— D
= =
= 29.4-] N
S
=29.2- =
29.0
31.2 - ——
310+ é o
30.8- —— 8
30.6- —— 2
30.4 - Gi
30.2
162 -] B
160 =
158 -] 2
156 - &
1244 | | "
152 I T T = |_'_| T
170
=
165 &
@
160 - =
,—|—| ,_|_| | == &
155 T I —_T $ B
1 1 1 1 1 1
Alpha Default Reverse Alpha Default Reverse
Link Order

(a) Execution Time

Cache Misses

Addr. Rand. On Addr. Rand. Off
>
=
o
(2]
[N g
-
5
2
o
>
bS]
1.70e+10 @
1.65+10 =
1.60e+10 $ a
1.55e+10 5
1.50e+10— — &
1.45e+10 El
E—— —
1 L —_—
1.66e+10 ‘:’ bl
e
1.64e+10— o)
&
1.62e+10 =
——
8e+07
-
7e407 | 1 L
60407~ T &
e
50407
1le+08-
(9]
s —L — "
"
80407 9
5
7e+07 | Gi
1.60e+10— ——
I
1.55e+10 2
L)
1.50e+10 — $ >
—— 2
Lase410 === S
i =
155e410 e ~
1.50e+10— 3
L)
1.45e+10 i)
2
La0e+10-4 —3 N

1 1 1 1
Reverse Alpha Default Reverse

Link Order

(b) Cache Misses

1 1
Alpha Default

Figure 7: Effect of Link Order on Perlbench Execution Time and Cache Misses

spaces. In some instances of the compression experiment,
we noticed that the compile time exceeded the execution
time of the experiment by several orders of magnitude. In
the future, we plan to investigate providing cross-compiler
support for experiments.

7. RELATED WORK

Various researchers [31, 25, 7, 8, 5, 9] argue for more
statistical rigor in computer science. The paper survey by
Tichy et al. [32] concludes that numerous publications in the
field of computer performance evaluation show substantial
flaws in experiment design and execution. Vitek and Kalib-
era [34] report that in PLDI’11, a selective conference where
experimental results are commonly published, 39 of the 42
papers that published experimental results did not report
a measure of uncertainty in their data, obviating the need
for more rigorous statistical analysis in computer science. A
survey conducted by Desprez et al. [10] draws similar con-
clusions from a paper survey they conducted. Kalibera and
Jones [18] raise a similar point, presenting a random effects
model tailored to computer experiments, while also noting
that current textbook approaches may be insufficient in the
field. Georges et al. [12] argue for the use of statistically

rigorous analysis methods, however, their approach is only
limited to narrow field of statistical analysis methods.

Mytkowicz et al. [21] demonstrate that seemingly innocu-
ous experimental setup details, such as the UNIX environ-
ment size or the benchmark link order, can have a signifi-
cant impact on performance. Harji et al. [13] show that the
Linux kernel has had a series of performance affecting is-
sues, and that papers that present data measured on Linux
could contain incorrect results. Kalibera et al. [19] show
that random symbol names generated by a compiler leads
to different memory layouts at run time, and, consequently,
random variations in performance.

Desprez et al. [10] surveys numerous large-scale comput-
ing installations that follow a similar objective to our cause;
to create reproducible, extensible, applicable, and revisable
experiments. The authors provide a survey of experimen-
tal methodologies and survey a selection of experimental
testbeds. In contrast to our design the testbeds surveyed are
often comprised of homogeneous nodes and do not exhibit a
lot of variation in the hardware used. While the computing
resources are vastly available and the installations provide
support for complex experiments (i.e. including distributed
systems), the experiment setup is described as a manual ar-
duous process despite exposing high level interfaces.

The infrastructures have been used to implement demon-
strators for federated clouds and projects in the field dis-
tributed systems. Most notably among the surveyed com-
puting installations is OpenCirrus [4]. In addition to virtu-
alized environments they also provide access to the physical
machines. The lowest level service consists of a physical re-
source set (PRS). A PRS comprises a set of VLAN-isolated
compute, storage and network resources. The PRSs are dy-
namically allocated and managed through a PRS service.
Using the PRS paradigm different levels of abstractions can
be configured that suit research applications reaching from
low level systems research (e.g., the evaluation of OS kernel
parameters) to complex distributed systems (e.g., several
virtual machines that run a distributed middleware). The
reader should note, while the objective of creating create
reproducible, extensible, applicable, and revisable experi-
ments are aligned with our cause, the focus of the systems
surveyed by Desprez et al. [10] is on distributed systems.
As a result the hardware infrastructure is decidedly homo-
geneous, which simplifies the experiment setup and config-
uration. While testbeds like OpenCirrus [4] support access
to low-level hardware features, those features expose little
variability compared to the applications we are targeting.

PlanetLab [24, 23] provides planetary-scale data services
and is used by the research community to deploy, evalu-
ate and access planetary-scale network services. Planetlab
provides so called slivers to its users that consists of dis-
tributed networked virtual machines (VMs). The VMs are
hosted on physical machines that are maintained in a com-
munal fashion. In order to become a user of PlanetLab,
one has to dedicate some servers to PlanetLab. PlanetLab
exposes the application interface for provisioning the slivers
and has facilities to isolate the network of the individual sliv-
ers. PlanetLab is used predominantly to evaluate and deploy
distributed system [26], including content-distribution net-
works, name services, location services, file-streaming ser-
vices, fault-tolerant scalable services, peer-to-peer networks,
distributed anomaly detection, distributed research alloca-
tion, routing overlays, and resource discovery.

Because the experiment environment exposed to the user
is a virtualized machine, PlanetLab is not an optimal choice
for computer performance experiments that seek to evaluate
the impact of varying hardware environment factors. This
conclusion is consistent with papers listed [26]; none of the
publications include computer performance experiments.

Various other experimentation infrastructures have been
proposed with similar properties to PlanetLab. Jaffe et
al. [15] describe a production platform with similar features
to PlanetLab. The project links various large data centres
in an effort to provide an experimentation platform for dis-
tributed systems. Unfortunately, the hardware chosen for
the data centres is very homogeneous and does not aid in
the exploration of large factor space.

HTCondor [28] is a distributed job scheduler designed
for computation-intensive distributed workloads. HTCon-
dor shares some of DataMill’s characteristics — such as hav-
ing users prepare packages and submit them for execution
— but since it it geared toward maximizing a cluster’s com-
puting throughput, it is not well suited for clean-room per-
formance evaluation.

8. FUTURE WORK

As part of our future work we consider various improve-
ments to the existing system architecture. Huang et al. [14]
have shown that maintaining security and accountability in
a distributed experiment execution framework is challeng-
ing. Our current architecture was geared towards providing
a proof-of-concept prototype. As part of our future work we
want to implement a centrally managed security policy. This
would add accountability for individual job executions and
transparency to maintainers of remote workers such that the
impact of malicious attacks on the infrastructure is minimal.

While our current prototype monitors the performance
counters that are exposed by the Linux kernel, it is still
up to the submitters of the experiment to analyze their
experiment-specific results. In the medium-term we want to
provide an application interface for distributed data-analysis
tools (i.e., Hadoop [3]), and services (i.e., Amazon Web Ser-
vices [1]) to facilitate the analysis of experiment data. Our
plan is to provide a template engine for various standard
benchmarks that can be easily customized by users.

In our current prototype, the factor variation is achieved
by a loose collection of shell scripts that are distributed
as part of the worker installation. In the future, we want
to provide a centrally managed repository of factor varia-
tion scripts that can be distributed independently from the
worker code, and provide an interface through which users
can add custom factors.

9. CONCLUSION

In this paper we introduced DataMill. DataMill provides
services to set up and execute robust, replicable, and re-
producible experiments. DataMill enables researchers to
publish their experiment software, setup, and results. That
way experimental results can be reproduced easily. Many
aspects of complex performance experimentation are auto-
mated by DataMill enabling users to set up performance ex-
periments easily. Due to its support for many different hard-
ware platforms and automated factor variation, DataMill
can cover a larger experiment space than typically consid-
ered by most researchers. For example, we have shown that
a complex performance experiment consisting of 6300 jobs
that span various factors can be set up by configuring a
package with just 32 lines of shell code. We believe that
DataMill can serve as a watermark for experiments con-
ducted for performance-oriented conferences.

10. ACKNOWLEDGMENTS

This research was supported in part by NSERC DG 357121-
2008, ORF-RE03-045, ORF-RE04-036, ORF-RE04-039,
APCPJ 386797-09, CFI 20314 and CMC, ISOP 1S09-06-037,
and the industrial partners associated with these projects.
The authors would like to thank Andrew Yeung for his work
on the ARM platform.

11. REFERENCES

[1] Amazon Web Services LLC. Amazon Web Services.
http://aws.amazon.com/. Accessed Sep. 17th, 2012.

[2] J. Antony. Design of Experiments for Engineers and
Scientists. Butterworth-Heinemann, 2003.

[3] Apache Software Foundation. Hadoop.
http://hadoop.apache.org/. Accessed Sep. 17th,
2012.

http://aws.amazon.com/
http://hadoop.apache.org/

[4]

[13]

[14]

[15]

[16]
[17]

18]

[19]

R. Campbell, I. Gupta, M. Heath, S. Y. Ko,

M. Kozuch, M. Kunze, T. Kwan, K. Lai, H. Y. Lee,
M. Lyons, D. Milojicic, D. O’Hallaron, and Y. C. Soh.
Open CirrusTMcloud Computing Testbed: Federated
Data Centers for Open Source Systems and Services
Research. In Proceedings of The 2009 Conference on
Hot Topics in Cloud Computing, HotCloud’09,
Berkeley, CA, USA, 2009. USENIX Association.

D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J.
Turner, and P. R. Young. Computing as a Discipline.
ACM Communications, 32(1):9-23, Jan. 1989.

D. Winer. XML-RPC Specification.
http://wuw.xmlrpc.org/spec. Nov. 1999.

P. J. Denning. ACM President’s Letter: What is
Experimental Computer Science? ACM
Communications, 23(10):543-544, Oct. 1980.

P. J. Denning. ACM President’s Letter: Performance
Analysis: Experimental Computer Science as its Best.
ACM Communications, 24(11):725-727, Nov. 1981.
P. J. Denning. Is Computer Science Science? ACM
Communications, 48(4):27-31, Apr. 2005.

F. Desprez, G. Fox, E. Jeannot, K. Keahey,

M. Kozuch, D. Margery, P. Neyron, L. Nussbaum,

C. Perez, O. Richard, W. Smith, G. von Laszewski,
and J. Voeckler. Supporting Experimental Computer
Science. Technical report, Argonne National
Laboratory Technical Memo, 2012.

Free Software Foundation. GLPK (GNU Linear
Programming Kit).
http://www.gnu.org/software/glpk/. Accessed Sep.
17th, 2012.

A. Georges, D. Buytaert, and L. Eeckhout.
Statistically Rigorous Java Performance Evaluation.
In Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems
and Applications, OOPSLA ’07, pages 57-76, New
York, NY, USA, 2007. ACM.

A. S. Harji, P. A. Buhr, and T. Brecht. Our Troubles
With Linux and Why You Should Care. In Proceedings
of the Second Asia-Pacific Workshop on Systems,
APSys 11, pages 2:1-2:5, New York, NY, USA, 2011.
ACM.

M. Huang, A. Bavier, and L. Peterson. PlanetFlow:
Maintaining Accountability for Network Services.
SIGOPS Oper. Syst. Rev., 40(1):89-94, Jan. 2006.

E. Jaffe, D. Bickson, and S. Kirkpatrick. Everlab: A
Production Platform for Research in Network
Experimentation and Computation. In Proceedings of
the 21th Large Installation System Administration
Conference, pages 203-213, 2007.

R. Jain. The Art of Computer Systems Performance
Analysis. Wiley Professional Computing. Wiley, 1991.
Julian Seward. bzip2 and libbzip2.
http://www.bzip.org/. Accessed Sep. 17th, 2012.

T. Kalibera and R. Jones. Handles Revisited:
Optimising Performance and Memory Costs in a
Real-Time Collector. In Proceedings of The
International Symposium on Memory Management,
ISMM ’11, pages 89-98, New York, NY, USA, 2011.
ACM.

T. Kalibera and P. Tuma. Precise Regression
Benchmarking with Random Effects: Improving Mono

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

Benchmark Results. In Proceedings of the Third
FEuropean Conference on Formal Methods and
Stochastic Models for Performance Evaluation,
EPEW’06, pages 63—77, Berlin, Heidelberg, 2006.
Springer-Verlag.

D. Montgomery. Design and Analysis of Experiments.
John Wiley & Sons, 2008.

T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing Wrong Data Without Doing
Anything Obviously Wrong! SIGPLAN Notes,
44(3):265-276, Mar. 2009.

NLANR/DAST. Iperf.
http://iperf.sourceforge.net/. Accessed Sep.
17th, 2012.

L. Paterson and T. Roscoe. The Design Principles of
PlanetLab. Operating Systems Review, 40(1):11-16,
January 2006.

L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir.
Experiences Building PlanetLab. In Proceedings of
The 7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 351-366, Berkeley,
CA, USA, 2006. USENIX Association.

L. Peterson and V. S. Pai. Experience-Driven
Experimental Systems Research. ACM
Communications, 50(11):38-44, 2007.

PlanetLab. PlanetLab Bibliography.
http://wuw.planet-lab.org/biblio visited
2012-09-28.

Standard Performance Evaluation Corporation. SPEC
CPU2006. http://www.spec.org/cpu2006/. Accessed
Sep. 17th, 2012.

T. Tannenbaum, D. Wright, K. Miller, and M. Livny.
Condor — a distributed job scheduler. In T. Sterling,
editor, Beowulf Cluster Computing with Linuz. MIT
Press, October 2001.

The Gentoo Foundation. Gentoo Linux.
http://www.gentoo.org/. Accessed Oct. 5th, 2012.
The Tukaani Project. XZ Utils.
http://tukaani.org/xz/. Accessed Sep. 17th, 2012.
W. F. Tichy. Should Computer Scientists Experiment
More? IEEE Computer, 31(5):32-40, 1998.

W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A.
Heinz. Experimental Evaluation in Computer Science:
A Quantitative Study. Systems Software, 28:9-18,
1995.

Vince Weaver. Perf Event Overhead Measurements.
http://web.eecs.utk.edu/ "vweaverl/projects/
perf-events/benchmarks/rdtsc_overhead/. Accessed
Sep. 17th, 2012.

J. Vitek and T. Kalibera. Repeatability,
Reproducibility, and Rigor in Systems Research. In
Proceedings of The Ninth ACM International
Conference on Embedded Software, EMSOFT ’11,
pages 33-38, New York, NY, USA, 2011. ACM.

W. Bergmans. Maximum Compression. http://www.
maximumcompression.com/data/files/index.html.
Accessed Sep. 17th, 2012.

R. P. Weicker. Dhrystone: A Synthetic Systems
Programming Benchmark. ACM Communications,
27(10):1013-1030, Oct. 1984.

http://www.xmlrpc.org/spec
http://www.gnu.org/software/glpk/
http://www.bzip.org/
http://iperf.sourceforge.net/
http://www.planet-lab.org/biblio
http://www.spec.org/cpu2006/
http://www.gentoo.org/
http://tukaani.org/xz/
http://web.eecs.utk.edu/~vweaver1/projects/perf-events/benchmarks/rdtsc_overhead/
http://web.eecs.utk.edu/~vweaver1/projects/perf-events/benchmarks/rdtsc_overhead/
http://www.maximumcompression.com/data/files/index.html
http://www.maximumcompression.com/data/files/index.html

