
Poisson Regularization in Neural Networks using the

Gumbel-Softmax/Concrete Distribution

Shamak Dutta

University of Waterloo

Abstract

Regularization constrains the parameters of a model in a certain way to
reflect our prior knowledge about them. In the context of neural networks,
this can be implemented in the form of L1/L2 weight penalties, dropout or
batch-normalization. This project proposes Poisson regularization for neu-
ral networks, where the units’ values determine the rate of an approximate
Poisson distribution and samples from this distribution are propagated for-
ward. However, sampling from discrete distributions poses a problem in
back-propagation because the process is non-differentiable and stochastic.
To solve this issue, the continuous relaxation of a discrete categorical dis-
tribution known as the Gumbel-Softmax/Concrete distribution is used to
approximate the Poisson distribution. The model is evaluated on the classi-
fication of the MNIST dataset.

1. Problem Formulation

The goal of this project is to incorporate Poisson noise into neural net-
works as a regularization technique. This is not as straight-forward as
dropout or additive Gaussian noise, because sampling from a Poisson is a
non-differentiable procedure and this breaks the back-propagation algorithm
which is the standard algorithm to update the parameters of a neural network
given an objective function. The parameter updates are guided by the gra-
dient calculation of the objective function with respect to every parameter,
which clearly cannot be used when the sampling procedure from a Poisson
distribution is used.

Email address: s7dutta@edu.uwaterloo.ca (Shamak Dutta)

Preprint submitted to the University of Waterloo April 23, 2018

2. Problem Solution

2.0.1. Objective Function

The objective function used for the classification task is the cross entropy
loss,

L(θ) =
−1

N

N∑
j

k∑
i=1

yjilog(pji), (1)

where N is the number of examples, k is the number of object categories,
yji is the binary label for the jth example whether it belongs to class i or not
and pji is the predicted label for class i on example j.

2.0.2. Poisson Noise

The ideal way to add Poisson noise to a layer in a neural network is as
follows:

1. Compute the layer’s activations as usual. This would be a linear trans-
formation followed by a non-linear function.

2. The activations serve as the rates of a Poisson distribution. Samples
from this distribution are propagated forward.

f(X) ∼ Poisson(λ = X) (2)

3. However, since f(X) is not differentiable, during back-propagation, the
gradients of f(X) with respect to X do not exist.

To overcome this problem, the Poisson distribution of a given rate is
converted to a discrete k-categorical distribution by choosing an appropriate
value of k. Once we have an approximate discrete categorical approximation
of the Poisson distribution (which is equal to the Poisson distribution as k
tends to infinity), we can use the continuous relaxation of a discrete cate-
gorical distribution as discovered in [2, 4]. This allows for a differentiable
sample from an approximate Poisson distribution and thus back-propagation
can continue as normal.

The entire procedure to sample from an approximate Poisson distribution
is as follows:

2

1. Given a rate λ ∈ IR, a k-categorical distribution is constructed as:

z = [π1 = P (X = 0;λ), π2 = P (X = 1;λ), ..., πk = P (X = k;λ)] ∈ IRk.
(3)

This is a crude approximation as we are using the probability mass
function of the Poisson distribution of rate λ to determine the indi-
vidual probabilities of a k-categorical distribution. The ideal method
would be to determine the pmf of the truncated Poisson distribution
[P (X = 0|X ≤ k;λ), P (X = 1|X ≤ k;λ), ..., P (X = k|X ≤ k;λ)].
However, this was not investigated as part of this project.

2. Using the Gumbel-Softmax distribution and a temperature parameter
τ , a one-hot sample y ∈ IRk (a sample is a k-dimensional one-hot vector)
from the categorical distribution z can be generated as follows:

(a) yi = softmax(gi+logπi
τ

), where g1..gk are i.i.d samples drawn from
a Gumbel(0,1) (The Gumbel(0, 1) distribution can be sampled
using inverse transform sampling by drawing u ∼ Uniform(0, 1)
and computing g = log(log(u))).

(b) The straight-through Gumbel-Softmax estimator is used to dis-
cretize y using argmax on the forward pass, but use the con-
tinuous softmax approximation on the backward pass. This al-
lows for discrete values to propagate through the network but
use the continuous relaxation to compute gradients. Thus, yi =
argmax[softmax(gi+logπi

τ
)], which is an approximate sample from

a Poisson distribution.

2.0.3. Quality of Approximations

The comparison between the normalized histograms of samples from a
true Poisson distribution and the Gumbel-Softmax approximation is shown
for different values of λ.

As shown in Figure 1, the approximation using Gumbel-Softmax comes
quite close to the true Poisson distribution for the right choice in parameters.
It is seen in Figure 1b where the rate is 5 and the k value is 7, the densities
look quite different. This emphasizes that the value of k should be chosen
wisely. In practice, the value of k is chosen online during training where it
is set to the maximum value of the mini-batch plus 4 times the square root
of the maximum value. It is better to keep a conservative estimate of k with
rather than an exact value.

3

(a) (b)

(c) (d)

Figure 1: Normalized histograms of samples from a Poisson distribution and the Gumbel-
Softmax approximation

4

3. Data Sources

Training is performed on 28 × 28 MNIST [3] images with no additional
data augmentation/deformation. The dataset has 60K and 10K images for
training and testing respectively. 5K images out of the training set are used
for validation during training to ensure minimal overfitting to the training
set.

4. Solution

4.0.1. Network Architecture and Setup

The baseline model is standard convolutional neural network with two
convolutional layers (including max-pooling of stride 2) of 32 and 64 filters
followed by a fully connected layer of 1024 units and finally the output soft-
max layer of 10 units which is the final prediction. Each layer is followed by a
ReLu non-linearity. Dropout is added to the first fully connected layer with
a rate of 0.5. The Poisson noise is introduced in the first convolutional layer
(abbreviated as P 1) and in both first and second convolutional layers (ab-
breviated as P 2) to see if affects the classification or learning performance of
the network. To provide another point of comparison, a Poisson noise model
with straight-through gradient estimation was evaluated. In this model, the
samples on the forward pass are the true samples from the Poisson distribu-
tion with the rate equal to the unit values. However, on the backward pass,
the sampling function is treated as the identity function and the gradient
is set to be the expected value of the distribution, which in this case is the
unit’s value itself. This is somewhat reminiscent of the Straight-Through
Estimator introduced in [1]. This model is abbreviated as P STE and the
noise is added to both convolutional layers.

The TensorFlow framework was used to develop the models while the
optimizer used is stochastic gradient descent with momentum. Stochastic
gradient descent has trouble navigating through regions where the surface
curves more deeply in one direction over another dimension (ravine). This
makes SGD oscillate between the slopes of the ‘ravine’ instead of reaching the
local minimum. Momentum is a change to the stochastic gradient update by
adding a fraction γ of the update vector of the last time step to the current
vector,

vt = γvt−1 + η∇θJ(θ) (4)

5

θ = θ − vt. (5)

The mini-batch size used is 100 with a learning rate of 0.0001 for the
gradient descent optimizer with γ = 0.9. The models are trained for 64000
steps, where each step is a weight update over a batch size of 100.

5. Results

The results of training the convolutional networks with the incorporation
of Poisson noise is listed in Table 1. This is quite encouraging as the Poisson
noise models have comparable performance to non-Poisson activity networks.

Table 1: Classification results on test set of MNIST

Model Classification Accuracy (%)

Baseline 98.8
P 1 98.8
P 2 98.0

P STE 98.2

6. Analysis and Conclusions

In this project, Poisson noise was incorporated into convolutional neural
networks for the task of image classification. The activation values deter-
mine the rate of the Poisson distribution from which samples are propagated
forward. There are many choices on how to compute the gradient on the
backward pass during back-propagation. This project explored two options:
straight-through gradient estimation and the continuous relaxation of a dis-
crete distribution using the Gumbel-Softmax.

From the results in Section 5, it is noted that the performance of the
Poisson noise models do not outperform the baseline, but achieve compa-
rable accuracy. This is quite encouraging because the gradient calculations
are coarse estimates of the sampling function, in both cases of Poisson noise.
There is definitely more work to be investigated such as changing the temper-
ature parameter τ and also training the network for a longer period because
it might take longer to converge when more noise is added. It is also noted

6

that neurons in the visual cortex exhibit Poisson-like statistics with a Fano
factor of 1, which serves as the motivation for this project.

The drawbacks of this model are the computational cost of sampling
from a Poisson distribution for the straight-through estimator model and the
cost of converting to categorical distribution and gradient calculation for the
Gumbel-Softmax approximation. It does remain to be investigated with more
thorough experiments whether a model with Poisson noise can outperform
the traditional convolutional neural networks.

References

[1] Y. Bengio, N. Léonard, and A. C. Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. CoRR,
abs/1308.3432, 2013.

[2] E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with
Gumbel-Softmax. ArXiv e-prints, Nov. 2016.

[3] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[4] C. J. Maddison, A. Mnih, and Y. Whye Teh. The Concrete Distribution:
A Continuous Relaxation of Discrete Random Variables. ArXiv e-prints,
Nov. 2016.

7

