Consider an LP in standard form,

minimize ¢’z

subject to Az =0b (5.6)
z >0,
which has inequality constraint functions fi(z) = —z;, i = 1,...,n. To form

the Lagrangian we introduce multipliers A; for the n inequality constraints and
multipliers v; for the equality constraints, and obtain

Lz, \v)=c"z ~ Z Nz + v (Az = b) = =b"v + (c+ ATv - N)'z.

i=1
The dual function is
g\ v) = ixtxf L(z,\v) = -bTv + il:}f(c + ATy - N7z,

which is easily determined analytically, since a linear function is bounded below
only when it is identically zero. Thus, g()\, ) = —oc except when ¢+ ATv — A =0,
in which case it is —bTv:

g(Av) = {

Note that the dual function g is finite only on a proper affine subset of R™ x R”.
We will see that this is a common occurrence.

The lower bound property (5.2) is nontrivial only when A and v satisfy A > 0
and ATv — A + ¢ = 0. When this occurs, —b7 v is a lower bound on the optimal
value of the LP (5.6).

by ATy~ A+e=0
—-00  otherwise.

Two-way partitioning problem
We consider the (nonconvex) problem

minimize z'Wz

subject to z?=1, i=1,...,n, (5-7)



where W € S™. The constraints restrict the values of z; to 1 or —1, so the problem
is equivalent to finding the vector with components £1 that minimizes z7 Wz. The
feasible set here is finite (it contains 2" points) so this problem can in principle
be solved by simply checking the objective value of each feasible point. Since the
number of feasible points grows exponentially, however, this is possible only for
small problems (say, with n < 30). In general (and for n larger than, say, 50) the
problem (5.7) is very difficult to solve.

We can interpret the problem (5.7) as a two-way partitioning problem on a set
of n elements, say, {1,...,n}: A feasible z corresponds to the partition

{1,...,n} = {i|zi=-1} U {i|z;=1}.

The matrix coefficient W;; can be interpreted as the cost of having the elements i
and j in the same partition, and —W;; is the cost of having ¢ and j in different
partitions. The objective in (5.7) is the total cost, over all pairs of elements, and
the problem (5.7) is to find the partition with least total cost.

We now derive the dual function for this problem. The Lagrangian is

L(z,v) = z'Wz+ Z vi(z? - 1)
i=1

= z' (W + diag(v))z — 17w
We obtain the Lagrange dual function by minimizing over z:
glv) = ilesz(W + diag(v))z — 17v

_ -1Ty W + diag(v) = 0
- —oc  otherwise,

where we use the fact that the infimum of a quadratic form is either zero (if the
form is positive semidefinite) or —oo (if the form is not positive semidefinite).

This dual function provides lower bounds on the optimal value of the difficult
problem (5.7). For example, we can take the specific value of the dual variable

v=—Amin(W)1,
which is dual feasible, since
W + diag(v) = W — Apin(W)I > 0.
This yields the bound on the optimal value p*
p* > =17y = nAnin (W). (5.8)



Entropy maximization
Consider the entropy maximization problem
minimize fo(z) = Y., z:logz;

subject to Az <b (5.13)
17z =1

where dom f;, = R’ ,. The conjugate of the negative entropy function ulogu,
with scalar variable u, is "' (see example 3.21 on page 91). Since f; is a sum of
negative entropy functions of different variables, we conclude that its conjugate is

n

foy) =) e,

i=1

with dom f; = R". Using the result (5.11) above, the dual function of (5.13) is
given by

gA )= =b"A—v =N e Ao Ay ety e
=1 =1

where a; is the ith column of A.

Minimum volume covering ellipsoid

Consider the problem with variable X € 8",

minimize  fo(X) = logdet X !

subject to af Xa; <1, i=1,...,m, (5.14)

where dom fy = 87 . The problem (5.14) has a simple geometric interpretation.
With each X € S, we associate the ellipsoid, centered at the origin,

Ex ={z|2"Xz<1}.

The volume of this ellipsoid is proportional to (det X ‘1)1/ % so the objective
of (5.14) is, except for a constant and a factor of two, the logarithm of the volume



of £x. The constraints of the problem (5.14) are that a; € £x. Thus the prob-
lem (5.14) is to determine the minimum volume ellipsoid, centered at the origin,
that includes the points ai,...,a;.

The inequality constraints in problem (5.14) are affine; they can be expressed
as

tr ((a;a])X) < 1.
In example 3.23 (page 92) we found that the conjugate of fj is
f3(Y) = logdet(~¥)~* —n,

with dom f§j = —87 .. Applying the result (5.11) above, the dual function for the
problem (5.14) is given by

) { logdet (3, Miaial) = 1TA+n 37 Naal >0
—00

9(A) = otherwise. (5.15)

Thus, for any A > 0 with }°7 | A;a;a] > 0, the number

log det (Z )\,-a,ia,.T) -1TA4n

f=]

is a lower bound on the optimal value of the problem (5.14).

Least-squares solution of linear equations

Recall the problem (5.5):
minimize z'z
subject to Az =b.

The associated dual problem is
maximize —(1/4)vT AATY — b7y,

which is an unconstrained concave quadratic maximization problem.

Slater’s condition is simply that the primal problem is feasible, so p* = d*
provided b € R(A), i.e., p* < oo. In fact for this problem we always have strong
duality, even when p* = oo. This is the case when b ¢ R(A), so there is a z with
ATz =0, bTz # 0. It follows that the dual function is unbounded above along the
line {tz | t € R}, so d* = oo as well.

Lagrange dual of LP

By the weaker form of Slater’s condition, we find that strong duality holds for
any LP (in standard or inequality form) provided the primal problem is feasible.



Lagrange dual of QCQP
We consider the QCQP

minimize (1/2)z? Poz + g = + 7o (5.28)
subject to (1/2)z"Piz +q¢fz+r; <0, i=1,...,m, ’

with Py € 8", and P; € 8T, i =1,...,m. The Lagrangian is
L(z,\) = (1/2)z" P(\)z + g(A\) z + r()),

where

P(X) =P0+Z/\ipis q(A) =‘I0+Z'\i‘In r(A) =7'0+Z'\i"i-

i=1 =1 i=1

It is possible to derive an expression for g()A) for general A, but it is quite compli-
cated. If A > 0, however, we have P()\) > 0 and

g9(A) = inf L(z, X) = —(1/2)g(A)" P(N)"'q(X) + r(A).

We can therefore express the dual problem as

maximize —(1/2)g(A)" P(A) q()) 4+ r())

subject to A > 0. (5.29)

The Slater condition says that strong duality between (5.29) and (5.28) holds if the
quadratic inequality constraints are strictly feasible, i.e., there exists an z with

(1/2)z" Pz +q¢'z+r: <0, i=1,...,m.

Minimum volume covering ellipsoid
We consider the problem (5.14):

minimize logdet X !
subject to a,TXai <1, i=1,...,m,



with domain D = S’} ,. The Lagrange dual function is given by (5.15), so the dual
problem can be expressed as

s s m . T 7T
maximize logdet (37", Aia;al’) = 1A +n (5.31)
subject to A >0
where we take logdet X = —oc if X ¥ 0.

The (weaker) Slater condition for the problem (5.14) is that there exists an
X € 8%, with af Xa; < 1, for i = 1,...,m. This is always satisfied, so strong

duality always obtains between (5.14) and the dual problem (5.31).

Example 5.1 FEguality constrained convex quadratic minimization. We consider the
problem
minimize (1/2)z" Pz +q'z+r
subject to Az = b,
where P € S.. The KKT conditions for this problem are

Az" = b, P::'+q+ATu' =0,

(5.50)

which we can write as

Solving this set of m + n equations in the m + n variables z*, v* gives the optimal
primal and dual variables for (5.50).




Example 5.2 Water-filling. We consider the convex optimization problem

minimize - 3"  log(a: + x:)
subject to z>0, 17z=1,

where a; > 0. This problem arises in information theory, in allocating power to a
set of n communication channels. The variable z; represents the transmitter power
allocated to the ith channel, and log(a; + ;) gives the capacity or communication
rate of the channel, so the problem is to allocate a total power of one to the channels,
in order to maximize the total communication rate.

Introducing Lagrange multipliers A* € R”™ for the inequality constraints z* > 0,
and a multiplier »* € R for the equality constraint 17z = 1, we obtain the KKT
conditions

x* >0, 172 =1, AT =0, Alz; =0, i=1,...,n,

~1f{a;+z])=A 4+v' =0, i=1,...,n.

We can directly solve these equations to find z*, A", and v*. We start by noting that
A* acts as a slack variable in the last equation, so it can be eliminated, leaving

z* =0, 172" =1, z; (V' = 1/{ai +2)) =0, i=1,...,n,

v' 2 1/(as+20), i=1,...,n.

If v* < 1/a, this last condition can only hold if ] > 0, which by the third condition
implies that v* = 1/(a; + z!). Solving for z;, we conclude that z; = 1/v* — a
if v*¥ < 1/aq. If v* 2 1/ay, then z] > 0 is impossible, because it would imply
v' 2 1/ai > 1/(a: + z}), which violates the complementary slackness condition.
Therefore, x; = 0if v* > 1/ai. Thus we have
ot = { 1/v' —ai v' <1l/ay
! 0 v' 2 1/ay,

or, put more simply, z; = max{0,1/v* —a:}. Substituting this expression for z;
into the condition 17 z* = 1 we obtain

Zm&x{o,l/u' —a;}=1.

The lefthand side is a piecewise-linear increasing function of 1/v", with breakpoints
at «;, so the equation has a unique solution which is readily determined.

This solution method is called water-filling for the following reason. We think of
a; as the ground level above patch ¢, and then flood the region with water to a
depth 1/v, as illustrated in figure 5.7. The total amount of water used is then
3o, max{0,1/v* — a;}. We then increase the flood level until we have used a total
amount of water equal to one. The depth of water above patch i is then the optimal
value z;.




1/v*

I;

i
Figure 5.7 Illustration of water-filling algorithm. The height of each patch is
given by «;. The region is flooded to a level 1/v* which uses a total quantity

of water equal to one. The height of the water (shown shaded) above each
patch is the optimal value of z].

Example 5.3 Entropy marimization. We consider the entropy maximization problem

minimize  fo(x) = ) | z;logz;
subject to Az <b
17z=1

with domain R’ ,, and its dual problem

maximize —b'A—v—e Ty e~
subject to A >0

where a; are the columns of A (see pages 222 and 228). We assume that the weak
form of Slater’s condition holds, i.e., there exists an z > 0 with Az <band 17z =1,
so strong duality holds and an optimal solution (A*,v*) exists.

Suppose we have solved the dual problem. The Lagrangian at (A*,v*) is

L(z,\",v") = Z zilogzi + N (Az —b) + v (172 -1)
f=]1
which is strictly convex on D and bounded below, so it has a unique solution z*,
given by
z! =1/exp(al A" +v" +1), i=1,...,n.

If z* is primal feasible, it must be the optimal solution of the primal problem (5.13).
If £* is not primal feasible, then we can conclude that the primal optimum is not
attained.







