
ECE 602 – Section 1
Mathematical preliminaries

Norms and inner products in Rn and Rm×n

Open sets, closed sets and closed functions

Range, nullspace, orthogonal complement and direct sum

SVD, EVD, positive definiteness, and pseudo-inverse

Differential, derivative, gradient, and Hessian
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Inner product, Euclidean norm, and angle

The standard inner product on Rn is given by

〈x, y〉 = xT y =
n∑
i=1

xiyi, for x, y ∈ Rn,

with x and y viewed as column vectors.

The Euclidean norm, or `2-norm, of x ∈ Rn is defined as

‖x‖2 = 〈x, x〉1/2 =
(
xTx

)1/2
=
(
x21 + x22 + . . .+ x2n

)1/2
.

The Cauchy-Schwartz inequality states that

|xT y| ≤ ‖x‖2‖y‖2, for x, y ∈ Rn.

The angle between x, y ∈ Rn is defined as

∠(x, y) = cos−1

(
xT y

‖x‖2 ‖y‖2

)
∈ [0, π].

We say x and y are orthogonal if xT y = 0.
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Inner product, Euclidean norm, and angle (cont.)

The standard inner product and its related norm can also be defined
on Rm×n (i.e., the linear space of m× n matrices).

The standard inner product on Rm×n is given by

〈X,Y 〉 =

m∑
i=1

n∑
j=1

XijYij = tr(XTY ), for X,Y ∈ Rm×n,

where tr stands for the trace of a matrix.

The Frobenius norm of a matrix X ∈ Rm×n is given by

‖X‖F = 〈X,X〉1/2 =
(
tr(XTX)

)1/2
=

(
m∑
i=1

n∑
j=1

X2
ij

)1/2

,

which makes it analogous to the `2-norm in Rn.
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Inner product, Euclidean norm, and angle (cont.)

Equivalence between the inner products on Rn and Rm×n can be es-
tablished as follows.

Let vec and mat denote the operations of vectorization and matriciza-
tion defined as

vec

([
a b c
d f g

])
=


a
d
b
f
c
g

 , mat




a
d
b
f
c
g



 =

[
a b c
d f g

]
.

(Note that mat is assumed to “know” the size of the output matrix.)

Then it is easy to show that, for x = vec(X) and y = vec(Y ), we have

xT y = vec(X)T vec(Y ) = tr(mat(x)Tmat(y)) = tr(XTY ).
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Inner product, Euclidean norm, and angle (cont.)

In general, norms are defied axiomatically.

A function f : Rn → R with dom f = Rn is called a norm if

1 f(x) ≥ 0, ∀x (non-negative)

2 f(x) = 0, only if x = 0 (definite)

3 f(tx) = |t|f(x), ∀x ∈ Rn, t ∈ R (homogeneous)

4 f(x + y) ≤ f(x) + f(y), ∀x, y ∈ Rn (obeys the triangle inequality)

We denote f(x) = ‖x‖ (which can be interpreted as the “length” of x).

It turns out there are many possible norms that fit the above definition.
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Examples of norms

The sum-absolute-value, or `1-norm, is defined as

‖x‖1 = |x1|+ . . .+ |xn|.

The Chebyshev, or `∞-norm, is defined as

‖x‖∞ = max {|x1|, . . . , |xn|} .

The `p-norm is defined as

‖x‖p = (|x1|p + . . .+ |xn|p)1/p .

The quadratic norm w.r.t. some P ∈ Sn++ (i.e., the set of symmetric
positive definite matrices) is defined as

‖x‖P = (xTPx)1/2 = ‖P 1/2x‖2,

where P 1/2 is the square root of P , i.e., P 1/2P 1/2 = P .
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Examples of norms (cont.)

In addition to the Frobenius norm, for any X ∈ Rm×n, one can define
the sum-absolute-value norm to be

‖X‖sav =
m∑
i=1

n∑
j=1

|Xij |.

The maximum-absolute-value norm is defined as

‖X‖mav = max {|Xij | | i = 1, . . . ,m, j = 1, . . . , n} .

Note that, in finite dimensional spaces (like Rn or Rm×n), all norms
are equivalent, which means that:

For any ‖ · ‖a and ‖ · ‖b : ∃ 0 < A,B <∞, such that

A ‖ξ‖a ≤ ‖ξ‖b ≤ B ‖ξ‖a, ∀ξ,

with the norms and ξ being defined either in Rn or Rm×n.
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Inner product, Euclidean norm, and angle (cont.)

Norms are useful for defining distances.

The distance between x and y can be defined as

dist(x, y) = ‖x− y‖.

The unit ball of the norm ‖ · ‖ is defined as

B = {x ∈ Rn | ‖x‖ ≤ 1} .

Figure: Unit balls for different `p-norms
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Operator norms

Suppose ‖ · ‖a and ‖ · ‖b are norms on Rm and Rn, respectively. Then,
the operator norm of Rm×n is defined as

‖X‖a,b = sup {‖Xu‖a | ‖u‖b ≤ 1} .

For a = b = 2, we get the spectral norm of X defined as its maximum
singular value

‖X‖2 = σmax(X).

For a = b =∞, we get the max-row-sum norm of X defined as

‖X‖∞ = max
i

n∑
j=1

|Xij |.

For a = b = 1, we get the max-column-sum norm of X defined as

‖X‖1 = max
j

m∑
i=1

|Xij |.
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Dual norm

Let ‖ · ‖ be a norm on Rn. Its associated dual norm is defined as

‖z‖∗ = sup
{
zTx | ‖x‖ ≤ 1

}
.

For all x and z we have: |zTx| ≤ ‖x‖‖z‖∗ (tight).

The dual of ‖ · ‖∗ is ‖ · ‖.

The dual of ‖ · ‖2 is ‖ · ‖2 (Cauchy-Schwarz).

The dual of ‖ · ‖p is ‖ · ‖q, where 1/p+ 1/q = 1 (Hölder).

‖ · ‖∞ and ‖ · ‖1 are dual w.r.t. each other.
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Open and closed sets

x ∈ C ⊆ Rn is an interior point if ∃ ε > 0 such that

{y | ‖y − x‖2 ≤ ε} ⊆ C.

All such points constitute the interior of C, intC.

A set C is open if intC = C.

A set C is closed if Rn\C is open.

The closure of a set C is defined as

clC = Rn\int (Rn\C).

The boundary of the set C is defined as

bdC = clC\intC.
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Functions

We denote by
f : A→ B

a function defined on the set dom f ⊆ A into set B.

As an example consider the function f : Sn → R, given by

f(X) = log detX,

with dom f = Sn++.

A function f is closed if, for each α ∈ R, the sublevel set

{x ∈ dom f | f(x) ≤ α}

is closed.

Any closed function f approaches infinity, as its argument approaches
the boundary of dom f .
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Linear algebra

Let A ∈ Rm×n. The range of A is a subspace of Rm defined as

R(A) = {Ax | x ∈ Rn} .

The dimension of R is the rank of A, denoted rankA.

We say A has full rank if rankA = min{n,m}.

The nullspace (or kernel) of A is defined as

N (A) = {x | Ax = 0} ,

which is a subspace of Rn.
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Linear algebra (cont.)

If V is a subspace of Rn, its orthogonal complement is defined as

V⊥ =
{
x | zTx = 0, ∀z ∈ V

}
.

For any A ∈ Rm×n, we have

N (A) = R(AT )⊥, R(A) = N (AT )⊥.

The above results can also be stated as

N (A)⊕R(AT ) = Rn,

where the symbol ⊕ refers to orthogonal direct sum.
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Eigenvalue decomposition

Any real symmetric matrix A ∈ Sn can be factored as

A = QΛQT ,

where Q is orthogonal (i.e., QTQ = I), and Λ = diag (λ1, . . . , λn).

This is called the eigenvalue decomposition of A, with λi being the
eigenvalues of A.

The determinant and trace of A can be expressed as

detA =

n∏
i=1

λi, trA =

n∑
i=1

λi.

The spectral and Frobenius norms of A ∈ Sn can be expressed as

‖A‖2 = ‖λ‖∞, ‖A‖F = ‖λ‖2.
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Definiteness

For any A ∈ Sn, we have

λmax(A) = sup
‖x‖2=1

xTAx, λmin(A) = inf
‖x‖2=1

xTAx.

This suggests that, for any x with ‖x‖ = 1, one has

λmin(A) ≤ xTAx ≤ λmax(A).

If xTAx > 0, ∀x, then A is called positive definite (A ∈ Sn++ or A � 0).
In this case, λmin(A) > 0.

If xTAx ≥ 0, ∀x, then A is called positive semi-definite (A ∈ Sn+ or
A � 0). In this case, λmin(A) ≥ 0.

For A,B ∈ Sn, we use A � B to mean that A−B � 0.
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Definiteness (cont.)

Let A ∈ Sn+, with eigenvalue decomposition A = Qdiag(λ1, . . . , λn)QT .

The symmetric square root of A is defined as

A1/2 = Qdiag(λ
1/2
1 , . . . , λ1/2

n )QT .

This is the unique symmetric positive semidefinite solution of

X2 = A.
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Singular value decomposition

Suppose A ∈ Rm×n with rankA = r. Then A can be factored as

A = UΣV T ,

where
• U ∈ Rm×r satisfies UTU = I
• V ∈ Rn×r satisfies V TV = I
• Σ = diag(σ1, . . . , σr), with σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

This factorization is called the singular value decomposition (SVD) of
A, with σi ≥ 0 being the singular values of A.

The SVD of A is closely related to the eigenvalue decomposition of
ATA and AAT (how?).
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Pseudo-inverse

Let A = UΣV T , with rankA = r.

The pseudo inverse or Moore-Penrose inverse of A is defined as

A† = V Σ−1UT ∈ Rm×n.

If rankA = n, then A† = (ATA)−1AT .

If rankA = m, then A† = AT (AAT )−1.

If A is square and has a full rank, then A† = A−1.

A†b is a solution to the least-square (LS) problem

min
x
‖Ax− b‖22.
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External derivative and gradient

Given a real-valued f ∈ C1(Rn), its total differential at x∗ ∈ domf is
defined as

df(x∗) =
∂f

∂x1
(x∗)dx1+

∂f

∂x2
(x∗)dx2+. . .+

∂f

∂xn
(x∗)dxn =

n∑
i=1

∂f

∂xi
(x∗)dxi.

Note that df(x∗) has the form of an inner product, namely

df(x∗) = 〈g(x∗), dx〉,

where dx = [dx1, dx2, . . . , dxn]T and

g(x∗) = ∇f(x∗) =

[
∂f

∂x1
(x∗),

∂f

∂x2
(x∗), . . . ,

∂f

∂xn
(x∗)

]T
,

which is called the gradient of f at x∗.

The expression df(x) = 〈g(x), dx〉 is known as the external definition of
the gradient.
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Hessian

Recall that, for a single-variate f , we have df(x) = f ′(x)dx.

f ′ is just a function of x that has its total differential defined as

df ′(x) = f ′′(x)dx,

with f ′′ being the second-order derivative of f .

In the case when f is multi-variate, we have

df(x) = 〈g(x), dx〉 = gT (x)dx.

When f ∈ C2(Rn), the gradient g(x) can be viewed as a function from
Rn to Rn that obeys the differential form given by

dg(x) = H(x)dx,

where H(x) ∈ Sn is called the Hessian of f(x) at x.

The above formula gives the external definition of the Hessian.
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Hessian (cont.)

Explicitly, the Hessian matrix H(x) can be defined as

H(x) = ∇2f(x) =


∂2f(x)
∂x1∂x1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2∂x2

. . . ∂2f(x)
∂x2∂xn

. . . . . . . . . . . .
∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂xn∂xn

 .

Alternatively, we can write

H(x) =


∂g1(x)
∂x1

∂g1(x)
∂x2

. . . ∂g1(x)
∂xn

∂g2(x)
∂x1

∂g2(x)
∂x2

. . . ∂g2(x)
∂xn

. . . . . . . . . . . .
∂gn(x)
∂x1

∂gn(x)
∂x2

. . . ∂gn(x)
∂xn

 =


∇gT1 (x)
∇gT2 (x)
. . .

∇gTn (x)

 ,

where

g(x) =


g1(x)
g2(x)
. . .
gn(x)

 =


∂f(x)/∂x1
∂f(x)/∂x2

. . .
∂f(x)/∂xn

 .
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Examples

Differential of a linear operator y = Ax.

dy = A(x+ dx)−Ax = Adx.

Differential of a linear function f(x) = bTx.

df(x) = bT (x+ dx)− bTx = bT dx.

Comparing with df(x) = gT (x)dx reveals that ∇f(x) = b.

Differential of the quadratic form f(x) = xTAx.

df(x) = (x+ dx)TA(x+ dx)− xTAx ' xTAdx+ dxTAx =

= xTAdx+ xTAT dx = (xTA+ xTAT )dx =
(

(A+AT )x
)T

dx.

Consequently, ∇f(x) = g(x) = (A+AT )x and H(x) = A+AT .
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Functions of a matrix argument

Let X ∈ Rm×n and let f(X) be a scalar-valued function of X.

Explicitly, the gradient of f is defined as

G(X) = ∇f(X) =


∂f
∂x11

∂f
∂x12

. . . ∂f
∂x1n

∂f
∂x21

∂f
∂x22

. . . ∂f
∂x2n

. . . . . . . . . . . .
∂f
∂xn1

∂f
∂xn2

. . . ∂f
∂xnn


With dX defined as

dX =


dx11 dx12 . . . dx1n
dx21 dx22 . . . dx2n
. . . . . . . . . . . .
dxn1 dxn2 . . . dxnn

 ,

the total differential of f(X) is given by

df(X) =
∑
i,j

∂f(X)

∂xij
dxij = trGT (X)dX = 〈G(X), dX〉
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Jacobian of a vector-valued function

Let F : Rn → Rm be a continuously differentiable function of the form

F (x) =


f1(x)
f2(x)
. . .

fm(x)

 .

The Jacobian of F is defined as

JF (x) =


∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

. . . . . . . . . . . .
∂fm(x)
∂x1

∂fm(x)
∂x2

. . . ∂fm(x)
∂xn

 ,

which is an m× n matrix.

The total differential of F is then defined as

dF (x) = JF (x)dx,

which can be viewed as a vector of the total differentials of fi.
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Chain rule

First note that, if m = 1, than instead of a Jacobian, F : Rm → R has
a gradient which can formally be defined as

∇F (x) = JTF (x).

Suppose we are given F : Rn → Rm and ϕ : Rm → Rk. Consider

ψ(x) = ϕ(F (x)).

Note that dF = JF dx and dϕ = JϕdF . Then,

dψ = Jϕ dF︸︷︷︸
JF dx

= JϕJF︸ ︷︷ ︸
Jψ

dx,

and therefore
Jψ = JϕJF

This is called the chain rule.
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Important example

Consider a function of the form p = h(g(f(x))), where h, g, and f are
differentiable everywhere within their respective domains, and

f : Rn → Rm, g : Rm → Rm, h : Rm → R,

and, therefore, p : Rn → R.

Moreover, function g is assumed to be diagonal in the sense that, for
any y ∈ Rm, we have

g(y1, y2, . . . , ym) = [ϕ(y1), ϕ(y2), . . . , ϕ(ym)] ,

for some real-valued ϕ ∈ C1(R).

The gradient of p is given by ∇p(x) = JTp (x), where

Jp =

1×n︷ ︸︸ ︷
Jh︸︷︷︸

1×m

· Jg︸︷︷︸
m×m

· Jf︸︷︷︸
m×n

.
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Back-propagation

In computations, we frequently need to compute Jp(x) for any given
x̂ ∈ Rn. In this case, we compute

Jp(x̂) = ∇hT (z)
∣∣∣
z=g(y)

· Jg(y)
∣∣∣
y=f(x)

· Jf (x)
∣∣∣
x=x̂

In the special case when, for some fixed values of A ∈ Rm×n, b ∈ Rm

and c ∈ Rm, f and h are defined as

f(x) = Ax− b, h(z) = cT z,

we have
Jp = cT︸︷︷︸

Jh

diag
(
ϕ′(Ax− b)

)︸ ︷︷ ︸
Jg

A︸︷︷︸
Jf

.

The computation of Jp starts on the right by computing Jf first, with
its subsequent (left-) multiplicative (recursive) update. Note how, star-
ting with x̂ = x, we back-propagate it to y = f(x) and, subsequently, to
z = g(y) = g(f(x)).
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