ECE 602 — Section 1

Mathematical preliminaries

e Norms and inner products in R” and R™*"

Open sets, closed sets and closed functions

Range, nullspace, orthogonal complement and direct sum
e SVD, EVD, positive definiteness, and pseudo-inverse

o Differential, derivative, gradient, and Hessian

Instructor: Dr. C



Inner product, Euclidean norm, and angle

o The standard inner product on R" is given by

(@, y) =aTy=> ww, forz,yeR",
=1

with z and y viewed as column vectors.

The Euclidean norm, or £2-norm, of x € R" is defined as
lzl2 = (z,z)"/?* = (me)1/2 = (wf +za4.. .+ mi)l/Q.

o The Cauchy-Schwartz inequality states that

"yl < llzllzllyll2, for z,y € R™.

o The angle between x,y € R" is defined as
T
_ z'y
Z(z,y) = cos " <7) € [0, 7).
[zl [lyll2

o We say z and y are orthogonal if 7y = 0.




Inner product, Euclidean norm, and angle (cont.)

o The standard inner product and its related norm can also be defined
on R™*™ (i.e., the linear space of m X n matrices).

o The standard inner product on R™*™ is given by

=> > XYy =tr(XTY), for X, Y € R™"",

i=1 j=1

where tr stands for the trace of a matrix.

o The Frobenius norm of a matrix X € R™*" is given by

1/2
IX||r = (X, X)V% = (tr(XTX))"/? = (ZZX”> :

=1 j=1

which makes it analogous to the £2-norm in R".
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Inner product, Euclidean norm, and angle (cont.)

e Equivalence between the inner products on R"™ and R™*™ can be es-
tablished as follows.

o Let vec and mat denote the operations of vectorization and matriciza-
tion defined as

a a
d d
a b c | b b _la b ¢
vec({d f g})i Fl mat f 7{d ¥ g]
c c
g g

(Note that mat is assumed to “know” the size of the output matrix.)

e Then it is easy to show that, for z = vec(X) and y = vec(Y'), we have

2Ty = vec(X) vec(Y) = tr(mat(z) mat(y)) = tr(X7Y).




Inner product, Euclidean norm, and angle (cont.)

o In general, norms are defied axiomatically.

o A function f: R" — R with dom f = R" is called a norm if

Q f(z) >0, Vx (non-negative)

@ f(z) =0, only if z =0 (definite)

Q f(tz) = |t|f(z), Vz € R",t € R (homogeneous)

Q flz+vy) < flx)+ f(y), Va,y € R™ (obeys the triangle inequality)

o We denote f(x) = ||z|| (which can be interpreted as the “length” of z).

o It turns out there are many possible norms that fit the above definition.




Examples of norms

o The sum-absolute-value, or £1-norm, is defined as
lz||1 = |z1] + ... + |znl.
@ The Chebyshev, or £s-norm, is defined as
|z|loo = max {|z1],...,|Tn|}-
o The ¢,-norm is defined as
lllp = (1" + -+ )7

e The quadratic norm w.r.t. some P € S, (i.e., the set of symmetric
positive definite matrices) is defined as

Izl = (2" Pz)""* = | P2,

where P'/2 is the square root of P, i.e., PY/?PY/? = p.




Examples of norms (cont.)

o In addition to the Frobenius norm, for any X € R™*™, one can define
the sum-absolute-value norm to be

X lsav =Y~ > Xl

i=1 j=1

o The maximum-absolute-value norm is defined as
| X [[mav = max {| X;;| | i =1,...,m, j=1,...,n}.
o Note that, in finite dimensional spaces (like R™ or R™*"™), all norms
are equivalent, which means that:
For any || - |l and || - ||s : 30 < A, B < oo, such that

Allélla < liElle < Bll€llas V8,

with the norms and £ being defined either in R™ or R™*".




Inner product, Euclidean norm, and angle (cont.)

o Norms are useful for defining distances.

o The distance between x and y can be defined as
dist(z,y) = ||lz — yl|.

o The unit ball of the norm || - || is defined as

B={zeR"||z| <1}.

p:é p=1 p=2 p

[
8

Figure: Unit balls for different £,-norms
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Operator norms

@ Suppose || - ||o and || - || are norms on R™ and R", respectively. Then,
the operator norm of R™*™ is defined as

[X1la,p = sup {| Xulla | flully <1}

o For a = b =2, we get the spectral norm of X defined as its maximum
singular value
[ X1l2 = omax(X).

o For a = b = oo, we get the maz-row-sum norm of X defined as

n
X oo = max 3 Xis1-

j=1

o For a = b =1, we get the maxz-column-sum norm of X defined as

X[ = m]aXZ | Xis]-

i=1




Dual norm

@ Let || - || be a norm on R™. Its associated dual norm is defined as
Izl = sup {27 | |}z <1} .
o For all z and z we have: |27z| < ||z||||z]|« (tight).

The dual of || - ||« is || - ||-

The dual of || - ||2 is || - ||z (Cauchy-Schwarz).

The dual of || - ||p is || - lq, where 1/p + 1/q = 1 (Holder).

|| - |loc and || - ||z are dual w.r.t. each other.
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Open and closed sets

e x € C CR" is an interior point if e > 0 such that
{yllly—=zl2<ep CC.

All such points constitute the interior of C, int C.
o A set C is open if int C = C.
o A set C is closed if R"\C is open.

The closure of a set C' is defined as

clC =R"\int (R"\C).

o The boundary of the set C' is defined as

bdC = clC\int C.

Instructor: Dr. O. Michailovich, 2022



Functions

o We denote by
f:A—B

a function defined on the set dom f C A into set B.
o As an example consider the function f : S™ — R, given by
f(X) =logdet X,

with dom f = S% .

o A function f is closed if, for each a € R, the sublevel set
{r edomf| f(z) < a}

is closed.

e Any closed function f approaches infinity, as its argument approaches
the boundary of dom f.




Linear algebra

Let A € R™*™. The range of A is a subspace of R™ defined as

R(A)={Az |z € R"}.

o The dimension of R is the rank of A, denoted rank A.

We say A has full rank if rank A = min{n, m}.

o The nullspace (or kernel) of A is defined as
N(A) =A{z | Az = 0},

which is a subspace of R".
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Linear algebra (cont.)

e If V is a subspace of R", its orthogonal complement is defined as

Vlz{x|sz:O,Vz€V}.

e For any A € R™*", we have

N(A) =R(AT)*, R(A) =N(AT™.

@ The above results can also be stated as
NA) e RAT) =R",

where the symbol @ refers to orthogonal direct sum.
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Eigenvalue decomposition

o Any real symmetric matrix A € S™ can be factored as
A=QAQ",
where Q is orthogonal (i.e., QTQ = I), and A = diag (\1,...,\n).

This is called the eigenvalue decomposition of A, with A; being the
eigenvalues of A.

@ The determinant and trace of A can be expressed as

detA:ﬁ)\i, tI‘A:i:Az
i=1 i=1

o The spectral and Frobenius norms of A € S™ can be expressed as

[Allz = l[Mloos  [[AllF = [IA]l2:




o For any A € S™, we have

Amax(A) = sup 27 Az, Amin(A) = inf 2" Az

lz]l2=1 lzll2=1

This suggests that, for any « with ||z|| = 1, one has

)\min(A) S JZ’TA(L' S )\max(A)-

o If 27 Az > 0,Vz, then A is called positive definite (A € S’ or A = 0).
In this case, Amin(A4) > 0.

o If 27 Az > 0,Vz, then A is called positive semi-definite (A € S% or
A = 0). In this case, Amin(A) > 0.

e For A, B € S", we use A > B to mean that A — B > 0.
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Definiteness (cont.)

o Let A € 87, with eigenvalue decomposition A = Q diag(\1, ..., \)Q7.

e The symmetric square root of A is defined as

AY? = Qdiag(\/?,... A/HQT.

o This is the unique symmetric positive semidefinite solution of

X% = A.

ction 1 Instructor: Dr. O. Michailovich, 2(



Singular value decomposition

e Suppose A € R™*™ with rank A = r. Then A can be factored as
A=UxVT,

where
o U € R™*" satisfies UTU =T
o V e R™*" satisfies VIV =1
e ¥ = diag(o1,...,0.), with o1 > 02> ... >0, > 0.

o This factorization is called the singular value decomposition (SVD) of
A, with o; > 0 being the singular values of A.

o The SVD of A is closely related to the eigenvalue decomposition of
AT A and AAT (how?).
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Pseudo-inverse

o Let A=USV7T, with rank A = r.

The pseudo inverse or Moore-Penrose inverse of A is defined as

AT =vy iUt e R
o If rank A = n, then AT = (AT A)~A7T.
o If rank A = m, then AT = AT(AAT)~%.

If A is square and has a full rank, then AT = A7L.

o A'bis a solution to the least-square (LS) problem

min ||Az — bl|3.
x




External derivative and gradient

o Given a real-valued f € C'(R"), its total differential at * € domf is

defined as

o of af o1 N
df (") = 6m1( “)dx1 +8 2( “)dza+.. +8mn( *)dzn 7;8%(95 Ydx;.

o Note that df (z*) has the form of an inner product, namely
df (z*) = (g(z"), dw),
where dz = [dz1,dz, . . ., dmn]T and
a of of of
o) = Vi) = [ty Wy, 2]

which is called the gradient of f at x*.

o The expression df (x) = (g(x),dz) is known as the external definition of
the gradient.
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Hessian

Recall that, for a single-variate f, we have df (z) = f'(z)dz.
f' is just a function of x that has its total differential defined as
df'(z) = f"(x)dz,
with f” being the second-order derivative of f.
In the case when f is multi-variate, we have
df (z) = (g(x), da) = ¢" (z)da.

When f € C2(R™), the gradient g(z) can be viewed as a function from
R" to R" that obeys the differential form given by

dg(x) = H(a)de,

where H(x) € S™ is called the Hessian of f(zx) at z.

The above formula gives the external definition of the Hessian.




Hessian (cont.)

o Explicitly, the Hessian matrix H(z) can be defined as

f(z)  Of(x) 9§ ()
Ox10x1 Ox10xo T Ox10Ty,
2 f(@)  9f(a) 9%f(x)
H(m) =V f(x) — dxo0x Oxo0xo s dxo0xy
f(z)  OPf(x) 9 f(x)
Oxn 0z OxpOxo e OxpOxy,
o Alternatively, we can write
dgi(z)  gi(x) s}
8(;2(196) 892(292) 9g2(x) \V4 T(m)
H(z) = dx1 x4 Oy _ g2 7
99n(e) Ogn(x)  Ogn() T
gaxl 9012 e gaz Vgn ()
where
91(z) of(x)/0z
oy | 2 || oo
gn () of(x)/0zn
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o Differential of a linear operator y = Ax.

dy = A(z + dz) — Az = Adx.

o Differential of a linear function f(x) = b' .

df (z) = b" (z 4 dz) — b 2z = b" dx.

Comparing with df () = g7 (z)dx reveals that V f(z) = b.

o Differential of the quadratic form f(z) = 27 Ax.

df(z) = (z + dz)" A(x + dz) — 2" Az ~ 2" Adx + dz" Az =
T
= 2T Adz + 2" ATdz = (27 A + 2T AT )da = ((A n AT):C) da.

Consequently, Vf(z) = g(z) = (A + AT)z and H(z) = A+ AT.
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Functions of a matrix argument

o Let X € R™*™ and let f(X) be a scalar-valued function of X.

o Explicitly, the gradient of f is defined as

of  of - of

%y %P Dz

G(X)=Vf(X)=| Boa1 oz *° Daan

R R

Boni  Tzns ' Oomm

o With dX defined as
dri1 driz ... dzrip
ix = | dem dwm ... doam |

dmnl dCL‘nQ . dxnn

the total differential of f(X) is given by

Z ax dzi; = tr GT(X)dX = (G(X),dX)
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Jacobian of a vector-valued function

e Let FF: R® — R™ be a continuously differentiable function of the form

Ji(z)
Jm ()
@ The Jacobian of F is defined as
Af1(z) 9f1(zx) 9f1(x)
ox ox e Oxy
af2(zx)  fa(x) 0fa(x)
JF (33) — Oxq Oxo e Oy ,
Ofm(@)  Ofm(x)  Ofm(x)
oz Oxo e Oxn

which is an m X n matrix.
o The total differential of F' is then defined as

dF(z) = Jp(z)dz,

which can be viewed as a vector of the total differentials of f;.




o First note that, if m = 1, than instead of a Jacobian, F' : R™ — R has
a gradient which can formally be defined as

VF(z) = J&(z).

o Suppose we are given F : R® — R™ and ¢ : R™ — R*. Consider

P(x) = p(F(x)).

o Note that dF = Jpdx and dp = J,dF. Then,

dy = J, dF = J,Jp dz,

Jpdx

Ty

o This is called the chain rule.

and therefore




Important example

o Consider a function of the form p = h(g(f(x))), where h, g, and f are
differentiable everywhere within their respective domains, and

fAR">R" g:R"—>R"™, h:R" - R,
and, therefore, p: R — R.
@ Moreover, function g is assumed to be diagonal in the sense that, for
any y € R™, we have

9y, 92, - ym) = [p(y1), p(y2); - -, @(ym)] s

for some real-valued ¢ € C'(R).

o The gradient of p is given by Vp(z) = J. (z), where

1Ixn

—_——~
Jp= Jn - Jyg - Jf .
P h g f

IXxm mxm mxn




Back-propagation

o In computations, we frequently need to compute Jp,(z) for any given
Z € R". In this case, we compute

Jp(2) = VhT(Z) Jo(y)

z2=g(y)

-Jr(x
y=f(z) f( )

=3I

o In the special case when, for some fixed values of A € R™*"™, b€ R™
and ¢ € R™, f and h are defined as

f(z)=Az—b, h(z)=c"z

we have

e The computation of J, starts on the right by computing J; first, with
its subsequent (left-) multiplicative (recursive) update. Note how, star-
ting with & = x, we back-propagate it to y = f(x) and, subsequently, to

z=g(y) = g(f(x))-




