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Projections on convex sets

Convex functions, conjugate functions
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Convex sets

A set C ⊆ Rn is convex if for any x1, x2 ∈ C and 0 ≤ θ ≤ 1, we have
θx1 + (1− θ)x2 ∈ C.

We call a point of the form θ1x1 + . . . θkxk, where
∑k
i=1 θi = 1 and

θi ≥ 0, a convex combination of the points x1, . . . , xk.

A convex combination of points {xi}ki=1 can be thought of as a mixture
or weighted average of the points, with θi being the fraction of xi in the
mixture.
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Affine sets

Suppose x1, x2 ∈ Rn and x1 6= x2. The line through x1 and x2 is
defined as

y = θx1 + (1− θ)x2 = x2 + θ(x1 − x2), θ ∈ R.

A set C ⊆ Rn is affine if for any x1, x2 ∈ C and θ ∈ R, we have that
θx1 + (1− θ)x2 ∈ C.

We refer to a point of the form θ1x1 + . . . θkxk, where
∑k
i=1 θi = 1, as

an affine combination of the points x1, . . . , xk.

E.g., the solution set of a system of linear equations, C = {x | Ax = b},
is an affine set. (The converse is true as well.)
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Convex hull

The convex hull convC of a set C is the set of all convex combinations
of points in C:

convC =

{
θ1x1 + . . . θkxk

∣∣ xi ∈ C, θi ≥ 0,∀i, &
k∑
i=1

θi = 1

}

The idea of a convex combination can be generalized to include infinite
sums, integrals, and, more generally, probability distributions.
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Cones

A set C is called a cone, if for every x ∈ C and θ ≥ 0, we have θx ∈ C.

A set C is a convex cone if it is convex and a cone, which means that
for any x1, x2 ∈ C and θ1, θ2 ≥ 0, we have θ1x1 + θ2x2 ∈ C.

A point of the form θ1x1 + . . . θkxk, where θ1, . . . , θk ≥ 0, is called a
conic combination of the points x1, . . . , xk.
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Hyperplanes and half-spaces

A hyperplane is a set of the form {x | aTx = b}, where a ∈ Rn and
b ∈ R. It is both affine and convex.

A closed half-space is a set of the form {x | aTx ≤ b}. It is only convex.
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Euclidean balls and ellipsoids

A Euclidean ball in Rn is defined as

B(xc, r) = {x | ‖x− xc‖2 ≤ r} =
{
x | (x− xc)T (x− xc) ≤ r2

}
=

= {xc + ru | ‖u‖2 ≤ 1}

A Euclidean ellipsoid in Rn has the form

E(xc, P ) =
{
x | (x− xc)TP−1(x− xc) ≤ 1

}
=
{
xc + P 1/2u | ‖u‖2 ≤ 1

}
,

where P ∈ Sn++.
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Norm balls and norm cones

Let ‖ · ‖ be some norm on Rn.

A norm ball of radius r centred at xc is a convex set which is defined as
{x | ‖x− xc‖ ≤ r}.

The norm cone associated with the norm ‖ · ‖ is the set

C = {(x, t) | ‖x‖ ≤ t} ∈ Rn+1

The second-order cone is a norm cone defined with ‖ · ‖2.
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Polyhedra

A polyhedron is defined as the solution set of a finite number of linear
equalities and inequalities:

P = {x | Ax � b, Cx = d} ,

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, and d ∈ Rp.

A polyhedron is the intersection of a finite number of halfspaces and
hyperplanes (e.g., affine sets, subspaces, hyperplanes, lines, rays, line
segments, and halfspaces).
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The positive semidefinite cone

As before, the set of symmetric matrices is denoted as

Sn = {X ∈ Rn×n | X = XT }

The set of symmetric positive semidefinite matrices is denoted by

Sn+ = {X ∈ Sn | X � 0}

The set of symmetric positive definite matrices is denoted by

Sn++ = {X ∈ Sn | X � 0}

The set Sn+ is a convex cone. (Why?)
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The positive semidefinite cone (cont.)

Example: Positive semidefinite cone in S2. We have

X =

[
x y
y z

]
⇐⇒ x ≥ 0, z ≥ 0, xz ≥ y2
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General characterization of convex sets

Every closed convex set is a intersection of either finite or infinite
number of halfspaces.

In fact, a closed convex set S is the intersection of all halfspaces which
contain it:

S = ∩{H | H half-space , S ⊆ H}
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Example

Consider the following set

S =

{
x ∈ Rm |

∣∣ m∑
k=1

xk cos kt
∣∣ ≤ 1 for |t| ≤ π/3

}

S is convex, since it can be expressed as an infinite intersection of
slabs, S = ∩|t|≤π/3St, where

St =
{
x | −1 ≤ (cos t, cos 2t . . . , cos kt)Tx ≤ 1

}
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Operations that preserve convexity

Practical methods for establishing convexity of a given set C consist of
either

1 applying the definition, or

2 showing that C can be obtained from a simpler convex by
operations that preserve convexity.

Operations that preserve convexity include

1 intersections

2 Cartesian products (e.g., {x ∈ R2 | ‖x‖∞ ≤ 1} = [−1, 1]× [−1, 1])

3 affine functions (f(x) = Ax+ b, with A ∈ Rm×n and b ∈ Rm).
E.g., E(xc, P ) is the image of B(0, 1) under f(x) = P 1/2 x+ xc.

4 perspective functions (f(x, t) = x/t, with dom f = Rn ∪R++)

5 linear-fractional functions (f(x) = (Ax+ b)/(cTx+ d), with
dom f = {x | cTx+ d > 0})
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Separating and supporting hyperplanes

If C and D are nonempty disjoint convex sets, there exist a 6= 0 and b
such that

aTx ≤ b for x ∈ C, aTx ≥ b for x ∈ D

We say that the hyperplane {x | aTx = b} separates C and D.

Strict separation requires additional assumptions.

ECE 602 - Section 2 Instructor: Dr. O. Michailovich, 2022 15/34



Separating and supporting hyperplanes (cont.)

Let C ⊆ Rn and x0 ∈ bdC.

If a 6= 0 satisfies aTx ≤ aTx0, then {x | aTx = aTx0} is called the
supporting hyperplane to C at the point x0.

The supporting hyperplane theorem states that for any convex set C 6= ∅
and any x0 ∈ bdC, there exists a supporting hyperplane to C at x0.
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Projections on convex sets

Let C be a closed convex set. Then, there exists a unique projection
PC(x) of x onto C given by

PC(x) = inf
z∈C
‖x− z‖2

In other words, PC(x) solves the problem of minimizing (over z) of
‖x− z‖2 subject to z ∈ C.

Fortunately, for many interesting practical cases, such projections can
be computed in a closed form.
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Projections on convex sets (cont.)

Hyperplane: C = {x ∈ R | aTx = b} (with a 6= 0)

PC(x) = x+
b− aTx
‖a‖22

a

Affine set: C = {x ∈ R | Ax = b} (with A ∈ Rm×n and rankA = m)

PC(x) = x+AT (AAT )−1(b−Ax)

(inexpensive if m� n or AAT = I)

Halfspace: C = {x ∈ R | aTx ≤ b} (with a 6= 0)

PC(x) =

{
x+ b−aT x

‖a‖22
a, aTx > x

x, aTx ≤ b
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Projections on convex sets (cont.)

Rectangle: C = {x ∈ R | l � x � u}

PC(x)k =


lk, xk ≤ lk
xk, lk ≤ xk ≤ uk
uk, xk ≥ uk

Nonnegative orthant: C = Rn
+

PC(x) = max{x, 0} = x+

Probability simplex: C = {x ∈ Rn
+ | 1Tx = 1}

PC(x) = (x− 1λ)+,

where λ is the solution of

1T (x− 1λ)+ =
n∑
i=1

max{0, xk − λ} = 1
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Convex functions

A function f : Rn → R is convex if dom f is a convex set and if for all
x, y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

A function f is strictly convex if strict inequality holds.

We say f š is concave if −f is convex, and strictly concave if −f is
strictly convex.

A function is convex if and only if it is convex when restricted to any
line that intersects its domain. (Very useful for verifying convexity.)

ECE 602 - Section 2 Instructor: Dr. O. Michailovich, 2022 20/34



First order conditions

Suppose f is differentiable. Then f is convex if and only if dom f is
convex and, for all x, y ∈ dom f ,

f(y) ≥ f(x) +∇f(x)T (y − x),

while for strict convexity we require

f(y) > f(x) +∇f(x)T (y − x), x 6= y

Thus, for a convex f , the first-order Taylor approximation is a global
underestimator of f . (The converse is also true.)

Important: If ∇f(x) = 0, then for all y ∈ dom f , f(y) ≥ f(x), i.e., x
is a global minimizer of f .
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Second order conditions

Suppose f is twice differentiable (i.e., f ∈ C2(R)). Then f is convex if
and only if dom f is convex and, for all x ∈ dom f ,

∇2f(x) � 0

Thus, the graph of the function have positive (upward) curvature at x.

If ∇2f(x) � 0 for all x ∈ dom f , then the function f is strictly convex.
(The converse, however, is not true; example: f(x) = x4.)

The requirement that dom f is convex cannot be dropped (example:
f(x) = 1/x2, with dom f = R\{0}).
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Examples

The following functions are convex.

f(x) = (1/2)xTPx+ qTx+ r, with P ∈ Sn, q ∈ Rn, and r ∈ R.

Since ∇2f(x) = P , f is convex iff P � 0 and strictly convex iff P � 0.

f(x) = Ax+ b, with x ∈ Rn.

f(x) = eax, with x, a ∈ R.

f(x) = xa, with x ∈ R++, a /∈ (0, 1).

f(x) = − log x, with x ∈ R++.

f(x) = x log x, with x ∈ R+. (Note that 0 log 0 = 0.)

Indeed, we have f ′(x) = 1 + log x and, therefore, f ′′(x) = 1/x, which is
positive on R+. Thus, the negative entropy function is strictly convex.
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More examples

Every norm on Rn is convex. (Why ?)

The max function f(x) = max{x1, . . . , xn} is convex on Rn.

The quadratic-over-linear function f(x, y) = x2/y, with dom f =
R×R++, is convex.

The log-sum-exp function f(x) = log(ex1 + . . .+ exn) is convex on Rn.
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More examples (cont.)

The geometric mean f(x) =
(∏n

i=1 xi
)1/n

is concave on dom f = R++.

The log-det function f(X) = log detX is concave on dom f = Sn++.

Indeed, for arbitrary Z, V ∈ Sn, define g(t) = f(Z + tV ) and restrict it
to the interval {t | Z + tV � 0} (that is assumed to include 0).

g(t) = log det(Z + tV ) = log det(Z1/2(I + tZ−1/2V Z−1/2)Z1/2) =

=
n∑
i=1

log(1 + tλi) + log detZ

Therefore, we have

g′(t) =
n∑
i=1

λi
1 + tλi

, g′′(t) = −
n∑
i=1

λ2
i

(1 + tλi)2
≤ 0

Hence, f(X) is concave.
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Epigraph

The graph of a function f : Rn → R is defined as

{(x, f(x)) | x ∈ dom f} ,

which is a subset of Rn+1.

The epigraph of a function f : Rn → R is defined as

epi f = {(x, t) | x ∈ dom f, f(x) ≤ t}

A function is convex if and only if its epigraph is a convex set.
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Operations that preserve convexity

A nonnegative weighted sum of convex functions
∑m
i=1 ωifi is convex.

If f : Rn → R is convex, then g(x) = f(Ax+ b) is convex.

If f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex.

The pointwise maximum of affine functions

f(x) = max{aT1 x+ b1, . . . , a
T
mx+ bm}

is convex. (This function is, in fact, piecewise linear.)

The sum of r largest components of x ∈ Rn is convex.

If f(x, y) is convex for each y ∈ A, then g(x) = supy∈A f(x, y) is
convex.

ECE 602 - Section 2 Instructor: Dr. O. Michailovich, 2022 27/34



Operations that preserve convexity (cont.)

Let C ⊆ Rn, C 6= ∅. The support function of C,

SC(x) = sup{xT y | y ∈ C},

is convex.

Also, the distance to the farthest point of C,

f(x) = sup
y∈C
‖x− y‖,

is convex.

The maximum eigenvalue λmax of X ∈ Sn is convex. Note that, one
can express λmax as

λmax = sup{yTXy | y ∈ Rn, ‖y‖2 = 1},

which is a pointwise supremum of linear functions of X.
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Composition

Let h : Rp → R, g : Rn → Rp, and f = h ◦ g : Rn → R, meaning

f(x) = h(g(x)) = h(g1(x), . . . , gp(x))

Then we have the following composition rules:

f is convex if h is convex, h is nondecreasing in each argument, and gi
are convex,

f is convex if h is convex, h is nonincreasing in each argument, and gi
are concave,

f is concave if h is concave, h is nondecreasing in each argument, and
gi are concave.

Some examples:∑m
i=1 log gi(x) is concave if gi are concave and positive.

log
∑m
i=1 exp gi(x) is convex if gi are convex.
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Minimization

If f is convex in (x, y), and C ∈ Rn is a convex nonempty set, then

g(x) = inf
y∈Rn

f(x, y)

is convex in x, provided g(x) > −∞ for all x. (Note that we define
dom g = {x | (x, y) ∈ dom f for some y ∈ C}.)

For example, define the distance (w.t.r. some ‖ · ‖) of x to S ⊆ Rn as

dist(x, S) = inf
y∈S
‖x− y‖

As ‖x− y‖ is convex in (x, y), dist(x, S) is convex in x (if S is convex).
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Perspective of a function

If f : Rn → R, then the perspective of f is g : Rn+1 → R given by

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0}

If f is a convex function, then so is its perspective function g.

For example, if f(x) = xTx = ‖x‖22, then its perspective is

g(x, t) = t(x/t)T (x/t) =
xTx

t
,

which is convex for t > 0.
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Quasiconvex functions

A function f : Rn → R is called quasiconvex if dom f is convex and all
its sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α ∈ R.

A function is quasiconcave if −f is quasiconvex.

Quasiconvex + quasiconcave = quasilinear.

ECE 602 - Section 2 Instructor: Dr. O. Michailovich, 2022 32/34



Examples

f(x) =
√
|x| is quasiconvex on R.

f(x) = ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear.

f(x) = log x is quasilinear on R++.

f(x1, x2) = x1x2 is quasiconcave on R2
++.

The linear-fractional function function f(x) = (aTx+ b)/(dTx+ c) is
quasilinear on dom f = {x | cTx+ d > 0}.

The distance ratio function f(x) = ‖x− a‖2/‖x− b‖2 is quasiconvex on
dom f = {x | ‖x− a‖2 ≤ ‖x− b‖2}.
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Log-concave and log-convex functions

A function f : Rn → R is log-concave if f(x) > 0 for all x ∈ dom f and
log f is concave.

It is said to be log-convex if log f is convex.

Thus, f is log-convex if and only if 1/f is log-concave.

Some important examples include:

f(x) = xa, on R++, is log-convex for a ≤ 0, and log-concave for a ≥ 0.

f(x) = eax is log-convex and log-concave.

Φ(x) = (1/
√

2π)
∫ x
−∞ exp(−u2/2)du is log-concave.

Γ(x) =
∫∞
0 ux−1e−udu is log-convex for x ≥ 1.

f(X) = detX is log-concave on Sn++.

f(X) = detX/ trX is log-concave on Sn++.
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