ECE 602 — Section 2

Convez sets and convex functions

e Convex optimization problems
o Convex sets and their examples
@ Separating and supporting hyperplanes

o Projections on convex sets

o Convex functions, conjugate functions




Convex sets

o A set C CR" is convex if for any z1,22 € C' and 0 < 0 < 1, we have
Ox1+ (1 —0)x2 € C.

o ™Mm

o We call a point of the form 6121 + ... 0rxk, where Zle 0; =1 and
0; > 0, a convexr combination of the points z1,...,xk.

o A convex combination of points {z;}%_; can be thought of as a mizture
or weighted average of the points, with 6; being the fraction of x; in the
mixture.
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Affine sets

@ Suppose z1,2z2 € R"™ and x1 # x2. The line through z; and x5 is
defined as

y=0x1+ (1 —0)xz2 =22+ 0(x1 —22), 60 €R.

o A set C CR" is affine if for any x1,z2 € C and 6 € R, we have that
O0x1 + (1 —0)z2 € C.

o We refer to a point of the form 6;1x1 + ... 0z, where Zle 0; =1, as
an affine combination of the points x1,...,zk.

o E.g., the solution set of a system of linear equations, C = {z | Az = b},
is an affine set. (The converse is true as well.)
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Convex hull

@ The convex hull conv C' of a set C' is the set of all convex combinations

of points in C:
k
conv(C = {91x1 +...0rTk | v, €C,0; >0,Vi, & Z@i = 1}
i=1
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o The idea of a convex combination can be generalized to include infinite
sums, integrals, and, more generally, probability distributions.
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Cones

o A set C is called a cone, if for every x € C and 6 > 0, we have 0z € C.

o A set C is a convex cone if it is convex and a cone, which means that
for any x1,x2 € C and 601,02 > 0, we have 61x1 + 0222 € C.

o A point of the form 6121 + ... 0k, where 61,...,0, > 0, is called a
conic combination of the points x1, ..., zk.




Hyperplanes and half-spaces

o A hyperplane is a set of the form {x | a”x = b}, where a € R™ and
b € R. It is both affine and convex.

o

~alz=0b

o A closed half-space is a set of the form {z | a”x < b}. It is only convex.




Euclidean balls and ellipsoids

o A Fuclidean ball in R™ is defined as

B(ae,r) = {a | | —acle < 1} = {2 | (@ — 2)" (¢ — 2) <17}

= {ee+ru Jull2 < 1)

o A FEuclidean ellipsoid in R™ has the form

E@e, P) = {o| (@ —2)" P M@ —w) <1} = {we+ P%u | ullz <

where P € S .
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Norm balls and norm cones

o Let || - || be some norm on R".

o A norm ball of radius r centred at z. is a convex set which is defined as
{z|llz —zcl| <7}

e The norm cone associated with the norm || - || is the set

C={(z,t) |||z <t} e R™™

z2 -1 -1
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Polyhedra

o A polyhedron is defined as the solution set of a finite number of linear
equalities and inequalities:

P={z| Az 2 b,Cz =d},

where A € R"™*", C € R?*", b€ R™, and d € R?.
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@ A polyhedron is the intersection of a finite number of halfspaces and
hyperplanes (e.g., affine sets, subspaces, hyperplanes, lines, rays, line
segments, and halfspaces).
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The positive semidefinite cone

o As before, the set of symmetric matrices is denoted as

S"={XeR""|X=Xx"}

o The set of symmetric positive semidefinite matrices is denoted by

T={Xes8"|X =0}

o The set of symmetric positive definite matrices is denoted by

Sty ={XeS"| X >0}

o The set S7 is a convex cone. (Why?)




The positive semidefinite cone (cont.)

o Example: Positive semidefinite cone in S?. We have

X:[x y]<:>x207z20, zz >y

Yy =z
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General characterization of convex sets

o Every closed convex set is a intersection of either finite or infinite
number of halfspaces.

o In fact, a closed convex set S is the intersection of all halfspaces which
contain it:
S =nN{H | H half-space ,S C H}
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o Consider the following set
S=<zeR™| |kacoskt| <1for |t| <m/3
k=1

S is convex, since it can be expressed as an infinite intersection of
slabs, S = Njy|<x/3St, where

St = {x | =1 < (cost,cos2t ...,coskt) x < 1}
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Operations that preserve convexity

o Practical methods for establishing convexity of a given set C' consist of
either

@ applying the definition, or
© showing that C' can be obtained from a simpler convex by

operations that preserve convexity.

e Operations that preserve convexity include

@ intersections
© Cartesian products (e.g., {x € R? | ||z]joc < 1} =[1, 1] x [-1, 1])

@ affine functions (f(z) = Az + b, with A € R™*" and b € R™).
E.g., £(z., P) is the image of B(0,1) under f(z) = P2z + ..

@ perspective functions (f(z,t) = z/t, with dom f = R"UR4)

@ linear-fractional functions (f(z) = (Azx +b)/(c = + d), with
dom f = {z | Tz +d > 0})
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Separating and supporting hyperplanes

o If C' and D are nonempty disjoint convex sets, there exist a # 0 and b
such that
aTmefor;rGC’, atz>bforzeD

aTz>b  / aTz<b

o We say that the hyperplane {z | a”2 = b} separates C' and D.

@ Strict separation requires additional assumptions.
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Separating and supporting hyperplanes (cont.)

o Let C CR" and o € bd C.

o If a # 0 satisfies a”x < a” o, then {z | a”x = aT a0} is called the
supporting hyperplane to C at the point xg.

T ~ a
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o The supporting hyperplane theorem states that for any convex set C' # ()
and any zo € bd C, there exists a supporting hyperplane to C at xo.
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Projections on convex sets

o Let C be a closed convex set. Then, there exists a unique projection
Pc(z) of x onto C' given by

Po(z) = inf ||z —
c(z) = inf |l — 2|

o In other words, Pc(z) solves the problem of minimizing (over z) of
|z — z||2 subject to z € C.

o Fortunately, for many interesting practical cases, such projections can
be computed in a closed form.
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Projections on convex sets (cont.)

e Hyperplane: C = {z € R | a”z = b} (with a # 0)

b—aTz

Po(z)=xz+ ——5—a
llall3

o Affine set: C = {z € R| Az = b} (with A € R™*™ and rank A = m)
Po(z) =z + AT (AAT) (b — Ax)

(inexpensive if m < n or AAT =1T)

o Halfspace: C = {z € R | a"z < b} (with a # 0)

b—alx T
x + a, a TrT>x

Pe(z) = { a3 ™ -
x, a'xz<b
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Projections on convex sets (cont.)

o Rectangle: C={z € R |l <Xz <u}

o Nonnegative orthant: C' =R’}

Pco(z) = max{z,0} = z4

o Probability simplex: C = {z ¢ R} | 1Tz =1}
Po(e) = (z— 1)1,

where X is the solution of

17 (z -1\ = Zmax{o,azk —At=1

i=1




Convex functions

o A function f: R"™ — R is conver if dom f is a convex set and if for all
z,y € dom f, and 0 with 0 < 0 < 1, we have

[0z + (1 —0)y) <O0f(x)+(1—-6)f(y)
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o A function f is strictly conver if strict inequality holds.

o We say f§is concave if —f is convex, and strictly concave if —f is
strictly convex.

o A function is convex if and only if it is convex when restricted to any
line that intersects its domain. (Very useful for verifying convexity.)




First order conditions

@ Suppose f is differentiable. Then f is convex if and only if dom f is
convex and, for all z,y € dom f,

fy) > fl) + V@) (y—a),

while for strict convexity we require

Fy) > f@) +Vf(@@) (y—2), z#y

Thus, for a convex f, the first-order Taylor approximation is a global
underestimator of f. (The converse is also true.)
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o Important: If V f(z) = 0, then for all y € dom f, f(y) > f(z), i.e., z
is a global minimizer of f.




Second order conditions

o Suppose f is twice differentiable (i.e., f € C*(R)). Then f is convex if
and only if dom f is convex and, for all x € dom f,

V2f(z) =0

Thus, the graph of the function have positive (upward) curvature at .

o If V2f(x) > 0 for all z € dom f, then the function f is strictly convex.
(The converse, however, is not true; example: f(z) = 2*.)

@ The requirement that dom f is convex cannot be dropped (example:
f(x) = 1/2%, with dom f = R\{0}).




The following functions are convex.
o f(z)=(1/2)2" Pz + qTx +r, with P € 8", ¢ € R", and r € R.

Since V2f(z) = P, f is convex iff P > 0 and strictly convex iff P > 0.

o f(z) = Az +b, with x € R".

o f(x) =e, with z,a € R.

o f(z) =2 withz € Ry1, a ¢ (0,1).
o f(z)=—logz, with z € Ry4.

o f(z) =zlogzx, with z € Ry. (Note that 0log0 = 0.)

Indeed, we have f'(z) = 1+ logx and, therefore, f/(z) = 1/z, which is
positive on Ry. Thus, the negative entropy function is strictly convex.




More examples

e Every norm on R" is convex. (Why ?)
e The maz function f(z) = max{z1,...,z,} is convex on R".

o The quadratic-over-linear function f(z,y) = z*/y, with dom f =
R x R4y, is convex.
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More examples (cont.)

e The geometric mean f(x) = ([T}, xi)l/" is concave on dom f = R ;.

o The log-det function f(X) =logdet X is concave on dom f = S% .

Indeed, for arbitrary Z,V € S™, define g(t) = f(Z + tV') and restrict it
to the interval {t | Z +tV > 0} (that is assumed to include 0).

g(t) = logdet(Z +tV) = logdet(Z"/*(I + tz /*vz**)z'/?) =

= log(1+t\:) + logdet Z

i=1
Therefore, we have
Py =3 o

Hence, f(X) is concave.
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Epigraph

@ The graph of a function f: R™ — R is defined as

{(z, f(2)) | = € dom [},

which is a subset of R*T1.

o The epigraph of a function f: R™ — R is defined as

epi f = {(x.1) | « € dom f, f() < 1}

epif |




Operations that preserve convexity

o A nonnegative weighted sum of convex functions ZZI wi fi is convex.
o If f: R™ — R is convex, then g(z) = f(Ax + b) is convex.
o If f1,..., fm are convex, then f(z) = max{fi(z),..., fm(z)} is convex.

@ The pointwise maximum of affine functions
f(z) =max{alx +by,...,anz+ by}

is convex. (This function is, in fact, piecewise linear.)
o The sum of r largest components of x € R" is convex.

o If f(x,y) is convex for each y € A, then g(z) = sup,c 4 f(z,y) is
convex.
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Operations that preserve convexity (cont.)

o Let C C R", C # 0. The support function of C,
Sc(z) = sup{z"y | y € C},
is convex.
o Also, the distance to the farthest point of C,
f(z) = sup ||z —yl|,
yec
is convex.

o The maximum eigenvalue Apmar of X € 8™ is convex. Note that, one
can express Amagz as

Amaz = sup{y’ Xy |y € R", ||y|l2 = 1},

which is a pointwise supremum of linear functions of X.




Let h:RP > R, g:R" > RP and f =hog:R" — R, meaning

f(@) = h(g(z)) = h(gi(2), ..., gp(@))

Then we have the following composition rules:

e f is convex if h is convex, h is nondecreasing in each argument, and g;
are convex,

o f is convex if h is convex, h is nonincreasing in each argument, and g;
are concave,

o f is concave if h is concave, h is nondecreasing in each argument, and
gi are concave.

Some examples:

e > loggi(x) is concave if g; are concave and positive.

o log > ™", exp gi(x) is convex if g; are convex.




Minimization

o If f is convex in (z,y), and C € R" is a convex nonempty set, then
g(x) = inf flz.y)

is convex in z, provided g(z) > —oo for all z. (Note that we define
domg = {z | (z,y) € dom f for some y € C}.)

o For example, define the distance (w.t.r. some ||-||) of z to S C R"™ as

. i e
dist(z, 5) = inf ||z —y|

As ||z — y|| is convex in (z,y), dist(z, S) is convex in x (if S is convex).
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Perspective of a function

o If f: R"™ — R, then the perspective of f is g : R*"™' — R given by

gz, t) = tf(z/t), domg = {(z,t) | /t € dom f,t > 0}

o If f is a convex function, then so is its perspective function g.

o For example, if f(z) = 27« = ||z|3, then its perspective is
T
T xr T
9z, t) = tx/t) (x/t) = ==,

which is convex for ¢ > 0.
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Quasiconvex functions

o A function f: R"™ — R is called quasiconvez if dom f is convex and all
its sublevel sets
S = {x €dom [ | f(x) < a}
are convex for all a € R.
o A function is quasiconcave if —f is quasiconvex.

e Quasiconvex + quasiconcave = quasilinear.

Dr. O. Michailovich,



o f(z) = +/|z| is quasiconvex on R.

o f(z) = ceil(z) =inf{z € Z | z > z} is quasilinear.
o f(z) =logz is quasilinear on Ry .

o f(x1, 1:2) = x1x2 is quasiconcave on Ri+4

o The linear-fractional function function f(z) = (a”x +b)/(d"z +c) is
quasilinear on dom f = {z | ¢T2 4+ d > 0}.

o The distance ratio function f(x) = ||z — al|2/||z — b||2 is quasiconvex on
dom f = {z | [lz — all2 < ||z - bl|2}.
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Log-concave and log-convex functions

o A function f: R™ — R is log-concave if f(z) > 0 for all z € dom f and
log f is concave.

o It is said to be log-convex if log f is convex.

o Thus, f is log-convex if and only if 1/f is log-concave.

@ Some important examples include:

o f(z)

o f(x) = e®® is log-convex and log-concave.

z%, on Ry, is log-convex for a < 0, and log-concave for a > 0.

®(z) = (1/V2m) [¥__ exp(—u?/2)du is log-concave.

I(z) = [;° u® te %du is log-convex for z > 1.

f(X) = det X is log-concave on S7 , .

f(X) = det X/tr X is log-concave on S7 , .
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